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Quasi-Monte Carlo Simulation of Diffusion
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A particle method adapted to the simulation of diffusion problems is presented.
Time is discretized into increments of length 2t. During each time step, the particles
are allowed to random walk to any point by taking steps sampled from a Gaussian
distribution centered at the current particle position with variance related to the
time discretization 2t. Quasi-random samples are used and the particles are
relabeled according to their position at each time step. Convergence is proved for
the pure initial-value problem in s space dimensions. For some simple demonstra-
tion problems, the numerical results indicate that an improvement is achieved over
standard random walk simulation. � 1999 Academic Press

1. INTRODUCTION

The most famous particle method used to solve diffusive problems is the
Monte Carlo method: the diffusive term is modeled by random motions of
the particles according to a suitable probability law [Cho73]. However the
random choices introduce a large amount of noise leading to computations
of high variance. A step towards improving the accuracy of the method is
to replace the pseudo-random numbers by low-discrepancy sequences.
Quasi-Monte Carlo methods are deterministic versions of Monte Carlo
methods. In the last ten years their appeal has broadened significantly since
it was found that in certain type of computational problems they systemati-
cally outperform Monte Carlo methods [DT97, Nie92, NHLZ98, NS95].
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In the present work, we develop a particle method for solving the
diffusion equation

�c
�t

(x, t)={ } (D {c)(x, t), x # Rs, t>0, (1)

where the diagonal diffusivity tensor D has constant coefficients Di>0. We
will focus on the initial-value problem

c(x, 0)=c0(x), x # Rs, (2)

where

c0(x)�0 and |
Rs

c0(x) dx=1.

We discretize time into intervals of length 2t. Discretizing c as a sum of
$-measures, we have

c(n)(x) :=
1
N

:
0� j<N

$(x&x (n)
j ),

where the x(n)
j , 0� j<N, represent the location of N particles at time n 2t.

At every time step, each particle is moved by a quasi-random displacement.
We recall from [Nie92] the fundamental concepts of quasi-random

points. Let s�1 be a fixed dimension. Then I s :=[0, 1)s is the s-dimen-
sional unit cube and *s is the s-dimensional Lebesgue measure. Let Y be a
point set consisting of y0 , ..., yN&1 # I s. For an arbitrary set E�I s we
define the local discrepancy

D(E, Y) :=
1
N

:
0� j<N

/E(yj)&*s(E),

where /E is the characteristic function of E. If I is the family of all sub-
intervals of I s of the form >s

i=1 [zi , z$i), the discrepancy of the point set Y
is defined by

DN(Y) :=sup
J # I

|D(J, Y)|.

The star discrepancy of the point set Y is defined by

D*N(Y) := sup
J # I*

|D(J, Y)|,
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where I* is the family of all subintervals of I s of the form >s
i=1 [0, zi).

For a sequence Y of points in I s, we write DN(Y) for the discrepancy and
D*N(Y) for the star discrepancy of the first N terms of Y. The most powerful
known methods for the construction of low-discrepancy point sets and
sequences are based on the theory of (t, m, s)-nets and (t, s)-sequences. For
integers b�2 and 0�t�m, a (t, m, s)-net in base b is a point set Y consist-
ing of bm points in I s such that D(J, Y)=0 for every interval J/I s of the
form

J= `
s

i=1
_a i

bdi
,

ai+1
bdi + ,

with integers di�0 and 0�ai<bdi for 1�i�s and of measure *s(J)=bt&m.
Let b�2 and t�0 be integers. A sequence y0 , y1 , ... of points in I s is a
(t, s)-sequence in base b if, for all integers n�0 and m>t, the points yj with
nbm� j<(n+1) bm form a (t, m, s)-net in base b. For many properties of
(t, m, s)-nets and (t, s)-sequences along with their discrepancies, we refer to
[Nie87, Nie88].

Quasi-random points, unlike pseudo-random points, are highly corre-
lated with one another by design. It means that they cannot be blindly used
in place of pseudo-random points without the risk of introducing biases
into the results. For instance, it is shown in [HM97] that low-discrepancy
sequences are not suited for the quasi-Monte Carlo simulation of stochastic
differential equations. We have found that for simulation of diffusion we
can use quasi-random sequences by making use of a technique involving
renumbering the particles at each time step [CL97, Lec91, LC98, MC93,
Mos97]. With quasi-random points and renumbering, Monte Carlo results
can be significantly improved in terms of error versus number of particles.

In Section 2 we introduce the quasi-Monte Carlo method. In Section 3
we state and prove a convergence theorem for this method. In Section 4 we
present computational results illustrating our theoretical analysis.

2. THE NUMERICAL METHOD

We consider the pure initial-value problem (1)�(2) and assume that the
initial data satisfy

c0 # L1(Rs), c0�0, and |
R s

c0(x) dx=1. (3)
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It is easy to show that

\t>0 |
R s

c(x, t) dx=1, (4)

so that the total amount of heat is conserved. We shall use the fundamental
solution for the differential operator ���t&{ } (D {),

E(x, t) :=H(t) `
s

i=1

e&x i
2�4Dit

- 4? Di t
,

where H is the Heavyside function: H(t)=1 for t>0, H(t)=0 for t<0.
Then the solution of (1) satisfies

c(x, t)=|
R s

E(x&w, t&{) c(w, {) dw, x # Rs, t>{, (5)

for {�0.
Let b and d1 , ..., ds be integers and put m=d1+ } } } +ds and N=bm. We

introduce N particles at locations x (0)
j , 0� j<N. We assume that these

locations are sampled from the initial distribution c0 . Define the maps P$
and P" by P$y :=( y1 , ..., ys) and P"y :=( ys+1 , ..., y2s) for y # I 2s. We write
y$ for P$y and y" for P"y. Let Y be a sequence of points in I 2s satisfying
the following properties:

(1) for all integers n�0, the points P$yj with nbm� j<(n+1) bm

form a (0, m, s)-net in base b,

(2) for any y # Y, we have P"y # (0, 1)s. This condition ensures the
feasibility of the scheme (see (10) below).

At time tn=n 2t, we have particles at locations x (n)
j , 0� j<N. From

Eq. (5), it follows that an approximate solution to the diffusion equation at
time tn+1 is defined by

#(n+1)(x) :=
1
N

:
0� j<N

E(x&x (n)
j , 2t). (6)

If 0�Rs, we define S(0) to be the collection of all measurable charac-
teristic functions on 0. The members of S(0) are the sensor functions.
They measure the contribution of the particles to the sensor area. Define
the function e(x) :=(erf(x)+1)�2, where erf is the error function

erf(x) :=
2

- ? |
x

0
e&w2 dw for x # R.
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From the definition of #(n+1) in Eq. (6) we find that

\_ # S(Rs) |
R s

_(x) #(n+1)(x) dx=
1
N

:
0� j<N

|
Is

_(x (n)
j +f(y)) dy, (7)

where f(y) :=( f1( y1), ..., fs( ys)) and f i ( yi) :=- 4D i 2t e&1( yi). We recover
c(n+1) from #(n+1) by a quasi-Monte Carlo approximation.

v The particles are relabeled using a multi-index a=(a1 , ..., as) with
0�ai<bdi for 1�i�s, so that

a1=b1 , ..., ai&1=bi&1 , ai<bi O x (n)
a, i�x (n)

b, i .

This is done algorithmically as follows. The magnitude of the coordinates
x1 of the particles is used to order them into bd1 subsets of level 1. In each
subset of level 1, the magnitude of the coordinates x2 of the particles is
used to order them into bd2 subsets of level 2 and so on: see Fig. 1 in two
dimensions.

v Let /a be the characteristic function of Ia := >s
i = 1 [a i b&di ,

(ai+1) b&di). To each _ # S(Rs) there corresponds 7(n) # S(I 2s) by the
formula

7(n)(y) :=:
a

/a (y$) _(x (n)
a +f(y")) for y=(y$, y") # I s_I s. (8)

Then we find that

|
R s

_(x) #(n+1)(x) dx=|
I2s

7(n)(y) dy. (9)

We define c(n+1) as a sum of $-measures by

\_ # S(Rs) |
R s

_(x) c(n+1)(x)=
1
N

:
0� j<N

7(n)(ynN+ j).

To summarize the algorithm, define the function

a(y) :=(wbd1 y1 x, ..., wbds ys x) for y # I s,

where wzx denotes the greatest integer �z and put Y (n) :=[ynN+ j : 0�
j<N]. Since P$Y (n) is a (0, m, s)-net in base b, the map j � a(y$nN+ j) is
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FIG. 1. Particles locations at selected times: t=tn before (top) and after relabeling
(middle), and t=tn+1 (bottom). Here b=5 and d1=d2=1.
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one-to-one from [0, N) into [0, bd1)_ } } } _[0, bds). The location of the
a(y$nN+ j)th particle is updated according to

x(n+1)
a(y$nN+j)

=x (n)
a(y$nN+j)

+f(y"nN+ j). (10)

Here f(y"nN+ j) is well defined because y"nN+ j # (0, 1)s. Figure 1 explains the
relabeling scheme and the motion of particles in two dimensions over one
timestep.

3. CONVERGENCE OF THE METHOD

In this section, we will prove convergence of the quasi-Monte Carlo
method. We define a weak measure of error which tells how well the
particle distribution c(n) approximates the exact solution cn :=c( } , tn). If \
is a non-negative and Riemann-integrable function on Rs with �R s \(x) dx
=1, the star \-discrepancy of a point set X=[x0 , ..., xN&1] is defined by

D*N(X; \) := sup
W # R s }

1
N

:
0� j<N

_w(xj)&|
R s

_w(x) \(x) dx},

where _w denotes the characteristic function of the interval >s
i=1(&�, wi)

(see [HM72]). Let X (n) be the point set consisting of x (n)
0 , ..., x (n)

N&1 . For
w # Rs, we write

d (n)
N (w) :=

1
N

:
a

_w(x (n)
a )&|

R s
_w(x) cn(x) dx,

where we sum over all a=(a1 , ..., as) with 0�ai<bdi for 1�i�s. The
corresponding sup over all ws is the star cn -discrepancy of X (n).

It is easy to see that the quantity d (n+1)
N (w) is composed of two parts

d (n+1)
N (w)=\ 1

N
:
a

e2t
w (x (n)

a )&|
R s

e2t
w (x) cn(x) dx++$ (n)

N (w). (11)

Here

e2t
w (x) :=|

R s
E(v&x, 2t) _w(v) dv= `

s

i=1

e \ wi&xi

- 4D i 2t+ for x # Rs,
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and $ (n)
N (w) is the error of the quasi-Monte Carlo approximation

$ (n)
N (w) :=

1
N

:
0� j<N

7 (n)
w (ynN+ j)&|

I 2s
7 (n)

w (y) dy,

where 7 (n)
w is defined by Eq. (8) with _=_w .

Since e2t
w is a positive continuous function, we obtain the bound for the

first difference in (11) if we use the following variant of the classical
Koksma�Hlawka inequality.

Lemma 1. Suppose \ is a Riemann-integrable function on Rs such that
\�0 and �R s \(x) dx=1. Let f be a function on Rs such that f and | f | are
of bounded variation in the sense of Hardy and Krause. If f or \ is continuous
and if x0 , ..., xN&1 are points in Rs, then

} 1N :
0� j<N

f (xj)&|
R s

f (x) \(x) dx}�V( f ) D*N(X; \).

Furthermore, since V(e2t
w )=1, we have

} 1N :
a

e2t
w (x (n)

a )&|
R s

e2t
w (x) cn(x) dx}�D*N(X (n); cn). (12)

Consider now $ (n)
N (w). Define

e (n)
a, i (w) :=e \ w&x (n)

a, i

- 4Di 2t+ for w # R,

E (n)
w :=.

a

Ia_ `
s

i=1

[0, e (n)
a, i (wi)).

Then 7 (n)
w is the characteristic function of the staircase set E (n)

w . Hence

$ (n)
N (w)=D(E (n)

w , Y (n)). (13)

Lemma 2. We have the upper bound

|$(n)
N (w)|�bd1+ } } } +ds&1+wds �2xDN(Y (n))+

1
bd1

+ } } } +
1

bds&1
+

1
bwds�2x .
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Proof. Let $s�ds be an integer. Define the function

e (n)
a (w) :=(e (n)

a, 1(w1), ..., e (n)
a, s(ws)) for w # Rs.

Because the particles are reordered so that

a1=b1 , ..., ai&1=bi&1 , ai<bi O x (n)
a, i�x (n)

b, i ,

we can define partitions of [0, 1],

0= y (n)
0, 1(w)� y (n)

1, 1(w)� } } } � y (n)
bd 1 , 1(w)=1,

0= y (n)
:1 , 0, 2(w)� y (n)

:1 , 1, 2(w)� } } } � y (n)
:1 , bd 2 , 2(w)=1, for 0�:1<bd1,

} } }

0= y (n)
:1 , ..., :s&1 , 0, s(w)� y (n)

:1 , ..., :s&1 , 1, s(w)� } } } � y (n)
:1 , ..., :s&1, b$ s , s(w)=1,

for 0�:1<bd1 , ..., 0�:s&1<bds&1,

such that, for all integers 0�:1<bd1, ..., 0�:s&1<bds&1, 0�:s<b$s and as

with :sbds&$s�as<(:s+1) bds&$s, we have

e (n)
:1 , ..., :s&1 , as

(w) # [ y (n)
:1 , 1(w), y (n)

:1+1, 1(w)]

_ } } } _[ y (n)
:1 , ..., :s , s(w), y (n)

:1 , ..., :s+1, s(w)].

If we put J: :=>s&1
i=1 [:ib&di, (:i+1) b&di)_[:s b&$s, (:s+1) b&$s) and

E
�

(n)
w :=.

:

J:_[0, y(n)
:1 , 1(w))_ } } } _[0, y (n)

:1 , ..., :s , s(w)),

E� (n)
w :=.

:

J:_[0, y(n)
:1+1, 1(w))_ } } } _[0, y (n)

:1 , ..., :s+1, s(w)),

�E (n)
w :=.

:

J:_([ y (n)
:1 , 1(w), y (n)

:1+1, 1(w)]_I s&1

_ } } } _ [0, y (n)
:1 , 1(w))_ } } } _[ y (n)

:1 , ..., :s , s(w), y (n)
:1 , ..., :s+1, s(w)]),

then E
�

(n)
w /E (n)

w /E� (n)
w and E� (n)

w "E
�

(n)
w /�E (n)

w . Thus

D(E
�

(n)
w , Y (n))&*2s(�E (n)

w )�D(E (n)
w , Y (n))�D(E� (n)

w , Y (n))+*2s(�E (n)
w ).
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The subsets E
�

(n)
w and E� (n)

w are disjoint unions of bd1+ } } } +ds&1+$s subintervals
of I2s, hence

max(D(E
�

(n)
w , Y (n)), D(E� (n)

w , Y (n)))�bd1+ } } } +ds&1+$sDN(Y (n)).

On the other hand,

*2s(�E (n)
w )�

1
bd1

+ } } } +
1

bds&1
+

1
b$s

.

If we choose $s=wds �2x, we obtain the desired inequality. K

We can combine the previous bounds to obtain an upper bound for the
error of the quasi-Monte Carlo method.

Proposition 1. The star cn -discrepancy of X (n) satisfies

D*N(X (n); cn)�D*N(X (0); c0)+bd1+ } } } +ds&1+wds �2x :
n&1

m=0

DN(Y (m))

+n \ 1
bd1

+ } } } +
1

bds&1+
1

bwds �2x+ .

Remark 1. In two dimensions or higher, there are many choices for
d1 , ..., ds with bd1+ } } } +ds=N. The optimal choice will minimize the right-
hand side of the bound for the error.

4. COMPUTATIONAL EXAMPLES

In this section, we present results of numerical experiments which
illustrate the theoretical analysis. The quasi-Monte Carlo (QMC) method
was applied to the initial-value problem (1)�(2) with diffusion coefficients
Di=1.0 for two different sets of initial data:

v Problem 1 (smooth data)

c0(x)= `
s

i=1

1

- ?
e&xi

2
.
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v Problem 2 (non-smooth data)

c0(x)= `
s

i=1

/[&1�2, +1�2)(xi),

where /[&1�2, +1�2) is the characteristic function of the interval [&1
2 , +1

2).

For each of these problems, a closed-form analytic solution is available
with which to compare the numerical solution.

All simulations were conducted by first sampling N particles from the
initial distribution

c0(x)= `
s

i=1

c0, i (x i).

We used a (0, m, s)-net in base b, 5 and the sampling was done by
mapping 5 to Rs using the inverse function of

C0(x) :=\|
xi

&�
c0, i (w) dw+1�i�s

.

For the QMC simulations we need a low-discrepancy sequence Y of points
in I2s. We used the 2s-dimensional Faure sequence in base b, where b is the
least prime �2s (see [Fau82]). The Faure sequence S b

[1, 2s]=[z0 , z1 , ...]
is a (0, 2s)-sequence in base b. We chose

5={2j+1
2N

: 0� j<N=
in dimension s=1 and 5=P$[zj : 0� j<N] for s>1. In addition we
chose Y=[zj : N� j].

In dimension s>1, the computation time for the discrepancy D*N(X (n); cn)
would be prohibitive, therefore the error was measured by computing

D� *N(X (n); cn) := max
1�i�s

sup
w # R }

1
N

:
a

_ (i)
w (x (n)

a )&|
R s

_ (i)
w (x) cn(x) dx } ,

where _ (i)
w is the characteristic function of the interval [w # Rs : wi<w].

Assuming that the error is approximately :N&p, one can estimate : and p
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FIG. 2. Problem 1, dimension s=1, N=210, 211, 212, 213. MC (left) vs QMC (right)
results. Thick lines correspond to large N.

from plots of the error versus N. This can be accomplished as follows. The
simulation is run up to M time steps, and the averaged error

DN :=
1

M+1
:
M

n=0

D� *N(X (n); cn)

is computed. The constant prefactor : and the exponent p are then
estimated by finding the best (in the sense of least squares) straight line fit
to the log-log plot of the data.

Figures 2�7 compare errors obtained in solving Problems 1 and 2 using
two different methods:

1. quasi-Monte Carlo (QMC) using renumbering,

2. Monte Carlo (MC) utilizing pseudo-random numbers without
renumbering.

For Problem 1 a time step of 2t=0.01 was chosen and the particles were
moved 100 steps out to time T=1.0. For Problem 2 we advance up to
T=0.01 with a time step of 2t=0.0001.

FIG. 3. Problem 2, dimension s=1, N=210, 211, 212, 213. MC (left) vs QMC (right)
results. Thick lines correspond to large N.
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Figure 2 shows the result of applying MC and QMC methods to Problem
1 in dimension s=1 with the number N of particles made progressively
greater. Note the difference in vertical scales. The quasi-random strategy is
much better than pseudo-random here. The same error level is attained by
the QMC method with N=210 particles and by the MC scheme with
N=213 particles.

The effect of using pseudo-random and quasi-random sequences is
illustrated also in Fig. 3 for Problem 2 in dimension s=1. The results for
Problem 2 are similar to those for the first problem.

The results of the convergence experiment for these problems are given
in Fig. 4. One finds for Problem 1

DN(MC)r
0.71
N0.49 , DN(QMC)r

0.76
N0.71 , (14)

and for Problem 2

DN(MC)r
0.55
N0.50 , DN(QMC)r

0.61
N0.71 . (15)

In both cases the QMC method outperforms the MC method for
sufficiently large numbers of particles.

To further investigate the performance of quasi-random sequences and
renumbering for simulations, other experiments were run to solve two-
dimensional problems. Figure 5 depicts results obtained in solving Problem
1 in dimension s=2 using MC method and QMC method. Note the
change of scale. For the QMC method, only results of the optimal choice
are depicted, since it was found that other choices can fail to improve on

FIG. 4. Dimension s=1, linear fits to the averaged error for Problem 1 (left) and
Problem 2 (right). Dashed lines correspond to MC results and solid lines to QMC results.
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FIG. 5. Problem 1, dimension s=2, N=52+2, 52+3, 53+3, 53+4. MC (left) vs QMC
(right) results. Thick lines correspond to large N.

Monte Carlo. We see that quasi-random simulation still clearly outperforms
standard pseudo-random simulation, although not to as large an extent as
in dimension s=1. The QMC error with N=53+3 particles is significantly
less than the MC error with N=57 particles.

A comparison of pseudo-random and quasi-random strategies for Problem
2 in dimension s=2 is shown in Fig. 6. Once again, the superiority of the
QMC algorithm is clearly demonstrated.

Figure 7 shows plots of the averaged error as a function of N on a log-
log scale. One finds for Problem 1

DN(MC)r
0.97
N0.52 , DN(QMC)r

1.08
N0.66 , (16)

and for Problem 2

DN(MC)r
0.65
N0.51 , DN(QMC)r

1.01
N0.66 , (17)

As in dimension s=1, the QMC method produces lower errors than the
MC errors and faster convergence.

FIG. 6. Problem 2, dimension s=2, N=52+2, 52+3, 53+3, 53+4. MC (left) vs QMC
(right) results. Thick lines correspond to large N.
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FIG. 7. Dimension s=2, linear fits to the averaged error for Problem 1 (left) and
Problem 2 (right). Dashed lines correspond to MC results and solid lines to QMC results.

In dimension s=2, a more conventional measure of the error is to form
an approximation to the particle solution and to compute the L2-norm of
the difference between this empirical distribution and an approximation to
the exact solution, constructed in the same way. We introduce a cut-off
function

`(x) :=
1
?

e&(x 2
1+x 2

2 ), for x=(x1 , x2).

Then we set for all =>0

`=(x) :=
1
=2 ` \x

=+ .

Next we define

c (n)
= :=c(n) V `= and c=( } , t) :=c=( } , t) V `= .

The L2-norm of the difference c (n)
= &c=( } , tn) was computed. In Fig. 8 we

display the result of solving Problem 1 with the choice ==0.1. One can see
that the MC results are again worst.

The QMC method requires more computational effort, since the particles
have to be renumbered after each time step. Table I lists the CPU times in
seconds on a Cray C90 computer for Problems 1 and 2 in dimension s=1.
The CPU times in dimension s=2 are listed in Table II. During each time
step, each particle takes a step chosen from a Gaussian distribution.
Gaussian numbers are generated from uniform numbers by inverting the
error function. This technique is time-consuming. The renumberings do not
add a significant amount of CPU time to the overall method.
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FIG. 8. Problem 1, dimension s=2, L2 errors of MC (dashed) and QMC (solid)
methods, N=52+3, 53+3. Thick lines correspond to large N.

TABLE I

CPU Times in Seconds of One-Dimensional Simulations

N 210 211 212 213

Problem 1 MC 14.34 28.69 57.39 114.71
QMC 14.54 29.16 58.43 117.07

Problem 2 MC 14.54 29.01 58.12 116.30
QMC 14.75 29.56 59.35 118.89

TABLE II

CPU Times in Seconds of Two-Dimensional Simulations

N 52+2 52+3 53+3 53+4

Problem 1 MC 17.92 89.53 447.81 2240.32
QMC 18.28 91.11 460.50 2295.01

Problem 2 MC 18.05 90.26 451.09 2243.10
QMC 18.08 91.68 455.57 2276.48
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Remark 2. The application of quasi-random sequences to random walk
simulations cannot be implemented in a straightforward fashion, because of
correlations. Without some kind of scrambling, this will cause the particles
to just repeat the same pattern over and over, and thus the method will not
converge. For Problem 1 in dimension s=1, it was found that the error
of the method using a quasi-random sequence without renumbering was
larger than 0.10 after 7 time steps. There was little difference in the errors
obtained with N=210, N=211, or N=212 particles.

5. CONCLUSION

In this paper we have presented a particle method which replaces the
pseudo-random samples in the random walk method by quasi-random
points. In every time step the number order of the particles is scrambled
according to their positions before assigning a new quasi-random point to
each particle. We have shown that the algorithm converges as the number
of particles increases. For some model problems, the error was found to be
significantly less when quasi-random points were used than when a standard
random walk calculation was performed. Quasi-random points have also
been applied to simple nonlinear problems. We refer to [Lec91, CL97] for
1-D kinetic equations. The results show that quasi-Monte Carlo simulation
is superior to standard Monte Carlo in magnitude of error and in con-
vergence rate. The improvement degrades in two dimensions or higher.
This will probably be true for the random vortex method for viscous flow
[Cho73], but further investigation will be required to fully answer this
question.
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