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Abstract The double-diffusive natural convection in an enclosure filled with nanofluid is studied

using ISPH method. The model used for the nanofluid incorporates the effects of Brownian motion

and thermophoresis. In addition the thermal energy equations include regular diffusion and cross-

diffusion terms. In ISPH algorithm, a semi implicit velocity correction procedure is utilized and the

pressure is implicitly evaluated by solving pressure Poisson equation. The results are presented with

flow configurations, isotherms, concentration and nanoparticle volume fraction contours and aver-

age Nusselt and Sherwood numbers for different cases. The results from this investigation are well

validated and have favorable comparisons with previously published results. It is found that, among

all cases, a good natural convection can be obtained by considering the double diffusive case. An

increase in Soret number accompanied by a decrease in Dufour number results in an increase in

average Nusselt number and a decrease in average Sherwood number.
� 2016 Faculty of Engineering, Alexandria University. Production and hosting by Elsevier B.V. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The term ‘‘nanofluid” refers to a liquid containing a suspen-
sion of metallic or non-metallic nanometer-sized solid particles

and fibers (nanoparticles). The term was suggested by Choi [1].
The characteristic feature of nanofluids is thermal conductivity
enhancement, a phenomenon observed by Masuda et al. [2].

This phenomenon suggests the possibility of using nanofluids
in a variety of engineering applications, including advanced
nuclear systems [3]. The general topic of heat transfer in
nanofluids has been surveyed in a review article by [4] and a
book by Das et al. [5]. A review of the heat transfer character-
istics of nanofluids has been made by Wang and Mujumdar [6].
Rahimi-Gorji et al. [7] introduced an analytical investigation

of the heat transfer for the microchannel heat sink (MCHS)
cooled by different nanofluids (Cu, Al2O3, Ag, TiO2 in water
and ethylene glycol as base fluids). They performed this study
by the porous media approach and the Galerkin method and

their results are compared with numerical procedure.
Pourmehran et al. [8] presented a thermal and flow analysis
of a fin shaped microchannel heat sink (MCHS) cooled by dif-

ferent nanofluids (Cu and Al2O3 in water) based on ‘‘saturated
porous medium” and least square method. They calculated the
effective thermal conductivity and viscosity of nanofluid by

KKL correlation. Central composite design (CCD) is applied
to obtain the desirability of the optimum value of the
nanofluid flow characteristics. Rahimi-Gorji et al. [9] applied
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Nomenclature

C concentration of species

DB Brownian diffusion coefficient
d0 particle size
DT thermophoresis diffusion coefficient
DCT Soret diffusivity

DTC Dufour diffusivity
DS solute diffusivity of porous medium
g gravitational acceleration vector

H enclosure height
k thermal conductivity
Le Lewis number

Ln nanofluid Lewis number
Nb Brownian motion parameter
Nd modified Dufour parameter
Nr buoyancy ratio parameter

Nt thermophoresis parameter
Nu Nusselt number
P pressure

Pr Prandtl number
Sr Soret parameter
Sh Sherwood number

RaT thermal Rayleigh number
Rac concentration Rayleigh number
T temperature

t time

u; v velocity vectors

U;V dimensionless velocity components
W enclosure width
x; y Cartesian coordinates
X;Y dimensionless coordinates

Greek symbols
a thermal diffusivity
bT thermal expansion coefficient

bC compositional expansion coefficient
l viscosity
U dimensionless species concentration
t kinematic viscosity

u rescaled nanoparticle volume fraction
/ nanoparticle volume fraction
h dimensionless temperature

s dimensionless time
qf density of base fluid
qp nanoparticle mass density

ðqcÞf heat capacity of the fluid
ðqcÞp effective heat capacity of the nanoparticle material
r2 Laplacian operator
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an analytical investigation for unsteady motion of a rigid

spherical particle in a quiescent shear-thinning power-law
fluid. They used collocation Method (CM) and Numerical
Method to solve the present problem. Also, Pourmehran

et al. [10] applied an analytical investigation for unsteady flow
of a nanofluid squeezing between two parallel plates. Their
results were compared with those obtained from Collocation

Method (CM), Least Square Method and the established
Numerical Method (Fourth order Runge-Kutta) scheme. They
calculated the effective thermal conductivity and viscosity of

the nanofluid using the Maxwell–Garnett (MG) and Brinkman
models, respectively.

Double-diffusive convection refers to buoyancy-driven
flows induced by combined temperature and concentration

gradients. The cases of cooperating thermal and concentration
buoyancy forces where both forces act in the same direction
and opposing thermal and concentration buoyancy forces

where both forces act in opposite directions have been consid-
ered in the literature. Double diffusion occurs in a wide range
of scientific fields such as oceanography, astrophysics, geology,

biology and chemical processes (Béghein et al. [11]). Ostrach
[12] reported complete reviews on the subject. Lee and Hyun
[13] and Hyun and Lee [14] have reported numerical solutions
for double-diffusive convection in a rectangular enclosure with

aiding and opposing temperature and concentration gradients.
Their solutions were compared favorably with reported exper-
imental results. Mamou et al. [15] have reported an analytical

and numerical study of double diffusive convection in a verti-
cal enclosure.

In recent years, the SPH method had been applied into

compressible and incompressible viscous fluid flow problems
[16,17]. The SPH was originally developed in compressible
flow, and then some special treatment was required to satisfy

the incompressible condition. One approach is to run the sim-
ulations in the quasi-incompressible limit, that is, by selecting
the smallest possible speed of sound which still gives a very low

Mach number ensuring density fluctuations [16,17]. This
method is known as the weakly compressible smoothed parti-
cle hydrodynamics (WCSPH). Cummins and Rudman [18]

introduced a new formulation for enforcing incompressibility
in Smoothed Particle Hydrodynamics (SPH). The method uses
a fractional step with the velocity field integrated forward in

time without enforcing incompressibility. The resulting inter-
mediate velocity field is then projected onto a divergence-free
space by solving a pressure Poisson equation derived from
an approximate pressure projection. Our group improved

ISPH method by introducing both velocity divergence condi-
tion and relaxing density invariance condition in the source
term of pressure Poisson equation (Asai et al. [19]). Aly

et al. [20] modeled the surface tension force for free surface
flows and an eddy viscosity based on the Smagorinsky sub-
grid scale model using incompressible smoothed particle

hydrodynamics (ISPH) method. They declared that, the eddy
viscosity has clear effects in adjusting the splashes and reduces
the deformation of free surface in the interaction between two
fluids and also, the proposed stabilization using relaxing den-

sity invariance with velocity divergence appeared in the source
term of pressure Poisson equation has an important role to
keep the total volume of fluid by decreasing particles cluster-

ing. In addition, Aly et al. [21] applied the stabilized incom-
pressible SPH method to simulate free falling of rigid body
and water entry/exit of circular cylinder into water tank. Aly

[22] simulated fluid-soil-structure interactions using stabilized
ISPH method. In this thesis, the evaluation of pressure is
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stabilized by including relaxing density invariance with veloc-
ity divergence of pressure Poisson equation and the current
improvement try to avoid the particles clustering. In addition,

soil erosion by fluid flow during dam break is simulated and
discussed in detail using stabilized ISPH method. Aly and
Lee [23] adapted ISPH method to simulate impact flows asso-

ciated with complex free surface. They tested the accuracy and
efficiency of the proposed incompressible SPH method using
several sample problems with largely distorted free surface,

including 2D dam-break over horizontal and inclined planes
with different inclination angles, as well as the water entry of
a circular cylinder into a tank.

Numerical modeling of transient natural convection by

using SPH method has also been investigated. Chaniotis
et al. [24] proposed a remeshing algorithm based on weakly
compressible flow approach and performed a comprehensive

study for non-isothermal flows. SPH simulation of flow and
energy transport using SPH was performed by Szewc et al.
[25]. In their study, natural convection in a square cavity prob-

lem with a Boussinesq and a non-Boussinesq formulation was
performed. They introduced a new variant of the Smoothed
Particle Hydrodynamics (SPH) simulations of the natural con-

vection phenomena. Danis et al. [26] modeled the transient and
laminar natural convection in a square cavity using SPH
method with a discretization tool on uniform Eulerian grids.
Aly [27] modeled the multi-phase flow and natural convection

in a square/cubic cavity using ISPH method in two and three
dimensions. Rayleigh-Taylor instability between two and three
adjacent fluid layers has been simulated and also the natural

convection in a square/cubic cavity has been introduced with
a good agreement compared to benchmark tests. Aly and Asai
[28] modeled non-Darcy flows through porous media using an

extended ISPH method. In their study, unsteady lid-Driven
flow, natural convection in non-Darcy porous cavities and nat-
ural convection in porous medium-fluid interface are examined

separately by using ISPH method. In addition, Aly and
Ahmed [29] modeled the non-Darcy flows through anisotropic
porous media for natural/mixed convection and heat transfer
in a cavity using ISPH method. They studied unsteady natu-

ral/mixed convection in non-Darcy porous cavities using both
ISPH method and Finite Volume Method. The objective of
this study was to present ISPH method to model the double-

diffusive natural convection in an enclosure filled with nano-
fluid. In this study, the model used for the binary nanofluid
incorporates the effects of Brownian motion and thermophore-

sis. In addition, the thermal energy equations include regular
diffusion and cross-diffusion terms. The results are presented
with flow configurations, isotherms, concentration and
nanoparticle volume fraction contours and average Nusselt

and Sherwood numbers for different cases. The results from
this investigation are well validated and have favorable com-
parisons with previously published results. It is found that,

among all cases, a good natural convection can be obtained
by considering the double diffusive case.

2. Problem description

Fig. 1 shows the physical model for the current problem for the
natural convection in an enclosure filled with nanofluid. It is

assumed that, the vertical walls are kept at constant tempera-
tures, Th and Tl, constant masses Ch and Cl and constant
nanoparticle volume fraction /h and /l where,
Th > Tl; Ch > Cl and /h > /l. However, the horizontal walls
are adiabatic. Thermophoresis and Brownian motion effects

are included in these assumptions.

3. Mathematical analysis

Here, we used mathematical nanofluid model proposed by
Buongiorno [30] for nanofluid in combination with thermo-
diffusion and the Boussinesq approximation for the buoyancy

force. The water is assumed as a base fluid and the solid
nanoparticles are in thermal equilibrium. Boussinesq approxi-
mation is used to determine the variation of density in the

buoyancy term where the other thermo-physical properties of
the nanofluid are assumed constant. The continuity, momen-
tum, energy and concentration equations for the unsteady nat-

ural convection in the two-dimensional enclosure can be
written in dimensional form [27–29] as follows:
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where u and v are the velocity components in the x- and

y-directions. p is the fluid pressure, T is the temperature, C is
the solute concentration. qf is the density of the base fluid

and l; k; bT and bC are the viscosity, thermal conductivity,
volumetric thermal expansion coefficient and volumetric solu-
tal expansion coefficient of the nanofluid.

The following dimensionless parameters are used to convert

Eqs. (1)–(6) to non-dimensional forms:

X ¼ x

W
; Y ¼ y

W
; s ¼ taf

W2
; U ¼ uW

af
; V ¼ vW

af
;

P ¼ pW2

qfa
2
f

; h ¼ T� Tl

DT
� 0:5ðH�WÞ; Ra ¼ gbfW

3DT

vaf
;

Pr ¼ v

af
; U ¼ C� Cl

DC
� 0:5ðH�WÞ;

u ¼ /� /l

D/
� 0:5ðH�WÞ; ð7Þ
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Figure 1 Boundary condition for natural convection in an

enclosure filled with nanofluid.
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Then, the dimensionless continuity, momentum, energy and

mass equations are written as follows:
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where the various parameters are defined as follows:

RaT ¼ ð1�/lÞgbTW3DT
vaf

is thermal Rayleigh number.

RaTc ¼ Rac=RaT is concentration Rayleigh number to thermal

Rayleigh number ratio. Nr ¼ ðqp�qfÞD/
ð1�/lÞbTafDT is buoyancy ratio for
nanofluid. Nt ¼ DTDTðqcÞp
TmafðqcÞf is thermophoresis parameter.

Nb ¼ ðqcÞpDBD/

afðqcÞf is Brownian motion parameter. Nd ¼ DTCDC
afDT

is

modified Dufour parameter. Le ¼ af
DS

is regular Lewis number.

Sr ¼ DCTDT
afDC

is Soret parameter. Ln ¼ af
DB

is nanofluid Lewis

number.
In this, the boundary conditions have been introduced in

dimensionless form as follows:

U¼ 0; V¼ 0; h¼ 0:5; U¼ 0:5; u¼ 0:5 for X¼ 0; 06Y6 2;
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The local Nusselt number and local Sherwood number can

be defined as follows:

Nu ¼ �@h
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����
X¼0

; ð15Þ

Sh ¼ �@U
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����
X¼0

: ð16Þ

For the majority of design problems, the knowledge of the
average Nusselt number is very useful. The average Nusselt

number and average Sherwood number are obtained through
the following integration:
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dY: ð17Þ
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A

Z A

0

@U
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dY ð18Þ

where A ¼ H=W is the enclosure aspect ratio.

4. ISPH method

The ISPH algorithm is implemented in a semi-implicit form in
order to solve the incompressible viscous flow equations. In

this section, the procedure for the solution of governing non-
dimensional equations is described.

The ISPH method is based on the calculation of an interme-

diate velocity from a momentum equation where the pressure
gradients are omitted. Then, the pressure is evaluated through
solving the pressure Poisson equation (PPE). The PPE after

SPH interpolation is solved by a preconditioned diagonal scal-
ing Conjugate Gradient PCG method [31] with a convergence
tolerance (=1.0 � 10�9). Finally, the velocity is corrected
using the evaluated pressure.

4.1. Temporal discretization

The momentum equation can be discretized in time using

predictor-corrector scheme. Here, the momentum, energy
and concentration equations are described in Lagrangian
description. In particular, the time discrete momentum equa-

tion in its semi-implicit form can be written as follows:
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Table 1 The analysis parameters for double-diffusive natural

convection in an enclosure.

Number of particles 5775

Initial particle distance 0.02 m

Time step 0.0001 sec

Relaxation coefficient (c) 0.25

Boundary condition Non-slip
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Step 1: Predict the velocity

The first step of the predictor-corrector scheme is the calcu-
lation of an intermediate velocity (U�; V�) from the momen-
tum equation without including the pressure terms. Thus, the
following equations are obtained:

U� ¼ Un þ Dt Pr
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; ð21Þ
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 !
:

ð22Þ
Step 2: Solving the pressure Poisson equation

In the second step, the pressure is calculated using the mod-

ified Poisson equation, which ensures that the continuity equa-
tion is satisfied and for the generalized model can be written as
follows:
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Note, the relaxation coefficient c; ð0 6 c 6 1Þ can be

decided from pre-analysis calculation. In this study, the parti-
cle size d0 is taken as 2.0 cm and then the relaxation coefficient
is decided as c ¼ 0:25 according to Asai et al. [19].

Step 3: Corrected velocity

In the third step, the real velocity values are obtained using
the following correction:

Unþ1 ¼ U� � Dt
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; ð24Þ
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Step 4: Thermal flow problems:

In this step, the time discretization of the energy equation is
introduced:
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Figure 2 Particle approximations in support domain (left) and
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Step 5: Concentration flow problems:

In this step, the time discretization of the concentration

equation is introduced:
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Step 6: Nanoparticle volume fraction problems:
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4.2. SPH formulations

A spatial discretization using scattered particles, which is
based on the SPH, is summarized. First, a physical scalar func-

tion AðXiÞ at a sampling point Xi can be represented by the fol-
lowing integral form:

AðXiÞ ¼
Z

WðXi �Xj;hÞAðXiÞdX¼
Z

WðRij;hÞAðXjÞdX; ð29Þ

where W is a weight function called by smoothing kernel func-
tion in the SPH literature. In the smoothing kernel function,
Rij ¼ jXi � Xjj and h are the distance between neighbor

particles and smoothing length (which is taken as 1.2 times
the initial particle size), respectively. For SPH numerical anal-

ysis, the integral Eq. (29) is approximated by a summation of
contributions from neighbor particles in the support domain.
-2 -1 0 1 2 3

W

W'

the quintic kernel function with its first derivative (right).
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Figure 3 Comparison of compositional-dominated solution with Nishimura et al. [32] and Chamkha [33] for Le ¼ 2:0; N ¼ 1:3;

Pr ¼ 1:0 and Ra ¼ 105.
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Figure 5 Isotherms, concentration and rescaled nanoparticle volume fraction lines and contours of horizontal and vertical velocities,

respectively for (—) regular fluid and (- - - -) nanofluid at Ra ¼ 104; Le ¼ 1:0; Ln ¼ 10 and Sr ¼ 1:0.
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AðXiÞ � hAii ¼
X
j

mj

qj

WðRij; hÞAðXjÞ; ð30Þ

where the subscripts i and j indicate positions of labeled parti-

cle, qj and mj mean density and representative mass related to

particle j, respectively. Note that, the triangle bracket hAii
means SPH approximation of a function A. The gradient of

the scalar function can be assumed by using the above defined
SPH approximation as follows:

rAðXiÞ � hrAii ¼ 1

qi

X
j

mjðAj � AiÞrWðRij; hÞ; ð31Þ

Also, the other expression for the gradient can be represented
by

rAðXiÞ � hrAii ¼ qi

X
j

mj

Aj

q2
j

þ Ai

q2
i

 !
rWðRij; hÞ; ð32Þ

In this paper, we used quintic spline function as a kernel
function:

Wðq; hÞ ¼ bd

ð3� qÞ5 � 6ð2� qÞ5 þ 15ð1� qÞ5; 0 6 q < 1;

ð3� qÞ5 � 6ð2� qÞ5; 1 6 q < 2;

ð3� qÞ5; 2 6 q < 3;

0; q P 3;

8>>><
>>>:

ð33Þ
where q ¼ Rij=h; bd is 7=478ph2 and 3=358ph3, respectively,
in two- and three dimensional space. The particle approxima-
tions in support domain and the quintic kernel function with
its first derivative are shown in Fig. 2.

4.3. Projection-based ISPH formulations

Here, the projection method for incompressible fluid problem,

which is summarized in Section 4, is discretized into particle
quantities based on the SPH methodology. For this purpose,
the gradient of pressure and the divergence of velocity are

approximated as follows:

hrPðxiÞi ¼ qi

X
j

mj

Pi

q2
i

þ Pj

q2
j

 !
rWij; ð34Þ

hr �UðxiÞi ¼
X
j

mj

qj

ðUðxjÞ �UðxiÞÞrWij; ð35Þ

The second derivative of velocity and the Laplacian of pres-

sure have been proposed by Morris et al. [17] by an approxi-
mation expression as follows:

hr2UðxiÞi ¼
X
j

mj

qi þ qj

qiqj

Rij � rWij

R2
ij þ g2

 !
ðVðxjÞ � VðxiÞÞ; ð36Þ

where g is a parameter to avoid a zero dominator, and its value

is usually given by g2 ¼ 0:0001h2.
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Figure 6 The temperature, solutal concentration, nanoparticle volume fraction, horizontal and vertical velocities, respectively for four

cases, mono-diffusive regular fluid, mono-diffusive nanofluid, double-diffusive regular fluid and double-diffusive nanofluid at

Ra ¼ 104; Le ¼ 1:0; Ln ¼ 10 and Sr ¼ 1:0.
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(a) Temperature distribution 

(b) Solutal concentration distribution 

(c) Nanoparticle volume fraction distribution 

Figure 7 The snapshots of the temperature, solutal concentration, nanoparticle volume fraction, horizontal and vertical velocities,

respectively at steady state for four cases, mono-diffusive regular fluid, mono-diffusive nanofluid, double-diffusive regular fluid and

double-diffusive nanofluid at Ra ¼ 104; Le ¼ 1:0; Ln ¼ 10 and Sr ¼ 1:0.
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Table 2 Effects of thermal Rayleigh number on Nu and Sh for

different types of convection at Ra ¼ 104; Le ¼ 1:0; Ln ¼ 10

and Sr ¼ 1:0.

Case Ra Nu Sh

Mono-diffusive regular fluid 103 0.9037 0.7033

104 1.3461 0.8315

Mono-diffusive nanofluid 103 0.7459 0.8784

104 1.1290 1.0364

Double-diffusive regular fluid 103 0.9160 0.6695

104 1.3682 0.9558

Double-diffusive nanofluid 103 0.7089 0.8689

104 1.1179 1.2128
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hr2PðxiÞi ¼
X
j

mj

qi þ qj

qiqj

PijRij � rWij

R2
ij þ g2

 !
; ð37Þ

The PPE after SPH interpolation is solved by a precondi-
tioned (diagonal scaling) Conjugate Gradient (PCG) method
[31] with a convergence tolerance (=1.0 � 10�9).

In a similar way, the Laplacian operators for the tempera-
ture, concentration and nanoparticle volume fraction are given
as

hr2hðxiÞi ¼
X
j

mj

qi þ qj

qiqj

hijRij � rWij

R2
ij þ g2

 !
; ð38Þ

hr2UðxiÞi ¼
X
j

mj

qi þ qj

qiqj

UijRij � rWij

R2
ij þ g2

 !
; ð39Þ

hr2uðxiÞi ¼
X
j

mj

qi þ qj

qiqj

uijRij � rWij

R2
ij þ g2

 !
; ð40Þ
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5. Results and discussion

In this section, the obtained results were discussed. In fact,
wide ranges for the governing parameters were considered,

namely, thermal Rayleigh number ð103 6 RaT 6 104Þ; modi-
fied Dufour parameter ð0:03 6 Nd 6 0:6Þ and Soret number
(0:1 6 Sr 6 2Þ: Also, four cases of convection were studied:
Mono-diffusive regular fluid case ðRaTc = 0, Nr = 0) with

(Nb = 0, Nt = 0, Nd = 0). Mono-diffusive nanofluid case
(RaTc ¼ 0, Nr = 0.2), with (Nb = 0.2, Nt = 0.2, Nd = 0).
Double-diffusive regular fluid case ðRaTc ¼ 0:2, Nr = 0) with

(Nb = 0, Nt = 0, Nd = 0.2). Double-diffusive nanofluid case
ðRaTc ¼ 0:2, Nr= 0.2) with (Nb= 0.2, Nt = 0.2, Nd= 0.2).
It should be noted that the details of the calculations in the

current study are clearly presented in Table 1. In all the
obtained results, the value of Prandtl number was fixed at
Pr = 1.0.

Firstly, the accuracy of the present results must be checked.

This point can be observed from Figs. 3 and 4 which shows a
comparison of compositional-dominated solution with Nishi-
(a) Temperature profiles

(c) Nanoparticle volume fraction profiles
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Figure 8 Effects of Soret and Dufour numbers on temperature, soluta

profiles for the case of double-diffusive nanofluid at Ra ¼ 104; Le ¼ 1
mura et al. [32] and Chamkha [33] for buoyancy ratio N= 1.3

and N= 0.8, respectively and Le ¼ 2:0; Pr ¼ 1:0; Ra ¼ 105.
It is found that, the present isothermal and isoconcentration

contours and Nishimura et al. [32] and Chamkha [33] contours
are almost similar. Therefore, we are confident that the results
presented in this paper are very accurate.

Fig. 5 presents the isotherms, concentration and rescaled

nanoparticle volume fraction lines and contours of horizontal
and vertical velocities, respectively at Ra= 104, Le = 1.0,
Ln = 10 and Sr = 1.0. It is observed that, in general, the iso-

therm lines gather beside the vertical walls, indicating thermal
boundary layers beside the bottom of the left wall and top of
the right wall of the enclosure. Regarding the solutal concen-

tration lines, these contours are parallel to each other within
the core of the cavity. Unlike the isotherms and isoconcentra-
tion contours, the nanoparticle volume fraction lines are dis-
torted in the core. The contours of horizontal velocity

component formed in the shape of two vertically-extended
clockwise and anticlockwise circular cells next to the bottom
and top walls of the enclosure. On the contrary, the contours
Solutal concentration profiles (b)

(d) Vertical velocity profiles
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Table 3 Effects of Soret and Dufour numbers in Nusselt and

Sherwood numbers for the case of double-diffusive nanofluid at

Ra ¼ 104; Le ¼ 1:0 and Ln ¼ 10.

Sr Nd Nu Sh

0.1 0.6 0.9697 1.4262

0.5 0.3 1.0769 1.3256

1.0 0.12 1.1441 1.1753

2.0 0.03 1.1894 0.9153
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of the vertical velocity component formed in the shape of two
horizontally-extended clockwise and anticlockwise circular
cells next to left and right walls of the enclosure. Also, in view

of Fig. 5a and b, we can observe a high natural convection can
be obtained in case of double-diffusive than mono-diffusive.
This can be noted from the following points: (a) the fluid flow

is stronger in case of double-diffusive than mono-diffusive, (b)
the distortion of nanoparticle volume fraction lines is more in
case of double-diffusive than mono-diffusive. Adding the

nanoparticle to the base fluid leads to shrinkage the thermal
boundary layers mentioned previously and the distortion of
the nanoparticle volume fraction lines does not occur in this
case. However, the horizontal and vertical velocity compo-

nents contours become more stretch in case of nanofluid than
the case of the regular fluid.

Fig. 6 shows the temperature, solutal concentration,

nanoparticle volume fraction, horizontal and vertical veloci-
ties, respectively for four cases, mono-diffusive regular fluid,
mono-diffusive nanofluid, double-diffusive regular fluid and

double-diffusive nanofluid at Ra= 104, Le = 1.0, Ln = 10
and Sr = 1.0. It is found that, at the end of the wall, the tem-
perature takes its highest value in case of double diffusive

nanofluid and takes its lowest value in case of mono diffusive
regular fluid but we have the inverse of this behavior at the
beginning of the wall. The Solutal concentration profiles differ
in its behavior from the temperature, the double diffusive reg-

ular fluid gives a high concentration among all the cases and
mono-diffusive nanofluid gives a lowest one. This behavior
can be observed at the end of the wall; however, at the begin-

ning of the wall, the mono diffusive regular fluid gives a high
concentration and double diffusive nanofluid gives the lowest
one. At the middle of the wall, the nanoparticle volume frac-

tion profiles are not much affected by changing the convection
mode from mono diffusive regular fluid to double diffusive
regular fluid, whereas, it has a slightly decrease when the con-

vection mode was switched off from regular fluid to nanofluid.
Regarding the profiles of horizontal and vertical velocity com-
ponents at the center line of the enclosure, the values of the
velocities in case of double diffusive convection are higher than

those of mono diffusive convection and this behavior is clearly
evident at the bottom half of the enclosure but at the top half,
the inverse behavior is observed. In any case, the presence of

the nanoparticle in the base fluid supports the fluid flow.
Fig. 7 shows the snapshots of the temperature, solutal con-

centration, nanoparticle volume fraction, horizontal and verti-

cal velocities, respectively at steady state for four cases, mono-
diffusive regular fluid, mono-diffusive nanofluid, double-
diffusive regular fluid and double-diffusive nanofluid at
Ra= 104, Le = 1.0, Ln = 10 and Sr = 1.0. This figure con-

firms the observations that have been written previously.
Table 2 displays the effects of thermal Rayleigh number on
Nu and Sh for different types of convection at Ra= 104,

Le = 1.0, Ln = 10 and Sr = 1.0. The results show that, the
effect of nanofluid is a clear reduction in Nu and a clear
enhancement in Sherwood number Sh and this effect for both

mono diffusive and double diffusive. On the other hand,
among all convection types under concentration, the rate of
heat transfer gets its highest value in case of double diffusive

regular fluid and the rate of mass transfer gets its highest value
in case of double diffusive nanofluid. In any case, as usual in
such kind of problems, an increase in thermal Rayleigh num-
ber leads to an increase in the temperature and concentration
gradients and consequently increases both of average Nusselt
number and average Sherwood number.

Fig. 8 depicts the effects of Soret and Dufour numbers on

temperature, solutal concentration, nanoparticle volume frac-
tion and vertical velocity profiles for the case of double-
diffusive nanofluid at Ra= 104, Le = 1.0 and Ln = 10. It is

noted that, an increase in Sr accompanied by a decrease in
Nd leads to increase both of fluid temperature and vertical
velocity component in the left half of the enclosure. However,
an inverse behavior is obtained for the fluid concentration.

Table 3 displays the effects of Soret and Dufour numbers in
Nusselt and Sherwood numbers for the case of double-
diffusive nanofluid at Ra= 104, Le = 1.0 and Ln = 10. It is

clear that, an increase in Sr accompanied by a decrease in
Nd results in an increase in the gradient of the fluid tempera-
ture and a decrease in the concentration gradient which results

in an enhancement in heat transfer rate and a reduction in the
concentration transfer rate. In fact, to understand this effect, it
is useful to give a definition for Dufour and Soret effects as the
Dufour effect is the energy flux due to a mass concentration

gradient occurring as a coupled effect of irreversible processes.
It is the reciprocal phenomenon to the Soret effect.

6. Conclusion

In this study, the problem of double diffusive natural convec-
tion of a nanofluid in a rectangular enclosure was investigated.

The governing equations were presented in a dimensional form
and were converted to a dimensionless form using non-
dimensional quantities. The incompressible smoothed particle

hydrodynamic (ISPH) method was used to solve the dimen-
sionless governing equations. Comparisons with previously
published results were presented and found to be in a good

agreement. The results of the current problem were presented
for four cases, namely, mono diffusive regular fluid, mono dif-
fusive nanofluid, double diffusive regular fluid and double dif-
fusive nanofluid. From this investigation, we can conclude the

following:

� The double diffusive mode gives a high natural convection

in the enclosure.
� The presence of the nanoparticle in the base fluid leads to
activity of the fluid motion.

� An increase in Soret number accompanied by a decrease in
Dufour number results in an increase in average Nusselt
number and a decrease in average Sherwood number.

� For both mono diffusive and double diffusive, a reduction
in average Nusselt number and an enhancement in average
Sherwood number can be obtained by considering
nanofluid.
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� An increase in thermal Rayleigh number leads to increase

both of average Nusselt number and average Sherwood
number.
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