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The elastostatic problem of a mode-I crack embedded in a bimaterial with an imperfect interface is inves-
tigated. The crack is in proximity to and perpendicular to the imperfect interface, which is governed by
linear spring-like relations. The Fourier transform is applied to reduce the associated mixed-boundary
value problem to a singular integral equation with Cauchy kernel. By numerically solving the resulting
equation, stress intensity factors near both crack tips are evaluated. Obtained results reveal that the
stress intensity factors in the presence of the imperfect interface vary between that with a perfect inter-
face and that with a completely debonding interface. Moreover, an increase in the interface parameters
decreases the stress intensity factors. In particular, when crack approaches to the weakened interface clo-
ser, the stress intensity factors become larger for a sliding interface, and become larger or smaller for a
Winkler interface, depending on the crack lying in a stiffer or softer material. The influences of the imper-
fection of the interface on the stress intensity factors for a bimaterial composed of aluminum and steel
are presented graphically.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Composite materials have excellent mechanical performances
such higher strength, lower weight, etc. as compared to individual
constituents. Since composite materials are commonly composed
of a matrix and some reinforced phases, the interfacial property
plays a significant role in transferring loads between the matrix
and the reinforced phases. A very large number of papers have
been published for analyzing the effects of a perfect interface on
mechanical behavior. For example, the interaction of a crack or
an inclusion and perfect interface has been investigated by
researchers (see e.g. Zak and Williams, 1963; Erdogan, 1965;
Swenson and Rau, 1970; Cook and Erdogan, 1972; Rice, 1988;
Selvadurai, 1994;Remeo and Ballarini, 1995; Li and Fan, 2001; Shin
et al., 2004; among others).

However, it is rather difficult to guarantee two dissimilar mate-
rials to be perfectly bonded. This is an ideal state, and in reality,
interfacial imperfection is inevitable, since the misfit of material
properties involved may give rise to local debonding in a micro-
scale (Suresh and Needleman, 1989). To simulate such an imper-
fect interface, some researchers suggested a spring-like model
(Benveniste, 1985; Hashin, 1991, 2002; Klarbring and Movchan,
1998; Antipov et al., 2001). That is, instead of usual interface con-
tinuity conditions of displacements and stresses, interface trac-
tions are still continuous across the interface, while interface
ll rights reserved.
displacements are discontinuous, which have a jump satisfying a
linear relation with associated interface tractions, namely

TI
n ¼ TII

n ¼ bn uI
n � uII

n

� �
; ð1Þ

TI
t ¼ TII

t ¼ bt uI
t � uII

t

� �
; ð2Þ

TI
s ¼ TII

s ¼ bs uI
s � uII

s

� �
; ð3Þ

where T and u stand for interface tractions and displacements, a
quantity with the superscript I or II refers to that in material I or
II, the subscripts n; t; s denote the normal, and two tangential direc-
tions with reference to a local orthogonal system at some point on
the interface, and bn;bt; bs are three independent spring-like con-
stants or interface parameters. It is clear that when one interface
parameter (bn, say) tends to infinity, both the traction and displace-
ment along the same (normal) direction are continuous, indicating
that the interface is perfect in this direction. Only when all three
interface parameters tend to infinity, the imperfect interface
reduces to a perfect interface.

Using the above-suggested spring-like imperfect interface mod-
el, a considerable amount of investigations have been made. In par-
ticular, Bui et al. (2000) studied imperfect interlaminar interfaces
in laminated composites, and gave their influence of strain energy
release rates based on a double cantilever beam model, and
furthermore Nairn (2007) made numerical implementation of
imperfect interfaces via using finite element analysis. For a fibre-
reinforced elastic composite, the interfaces between the elastic
matrix and inhomogeneity are usually described by imperfect

https://core.ac.uk/display/82298444?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:xfli@mail.csu.edu.cn
http://www.sciencedirect.com/science/journal/00207683
http://www.elsevier.com/locate/ijsolstr


Fig. 1. A crack perpendicular to an imperfect interface in a bimaterial.

Nomenclature

a Abscissa coordinate at the left crack tip
c Abscissa coordinate at the right crack tip
Ej Young’s modulus of material j
gðxÞ dislocation density function
Gj shear modulus of material j
kðs; xÞ kernel of integral equation
KL;KR stress intensity factors at the left and right crack tip
l half-length of crack

uj; v j displacement components of material j
bn;bt; bs interface parameters
jj elastic constant of material j
k the ratio of the crack half-length to position, i.e.

ðc � aÞ=ðc þ aÞ
mj Poisson’s ratio of material j
r0 applied stress
rj

xx;rj
xy;rj

yy stress components of material j
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interfaces. Meguid and Wang (1999) dealt with the interaction of
crack and imperfect interface when dynamic antiplane shear
waves are applied. A circular and elliptical inclusion embedded
in an infinite matrix with imperfect interfaces has been analyzed
by Sudak et al. (1999) and Shen et al. (2000). The interaction of a
screw dislocation with an imperfect interface between two dissim-
ilar semi-infinite elastic media has been analyzed by Fan and Wang
(2003). Recently, a screw dislocation located in an annular coating
layer imperfectly bonded an inner circular inhomogeneity and an
unbounded matrix has been further coped with by Wang et al.
(2007). On the other hand, a crack situated at the imperfect inter-
face has been considered by Lenci (2001), who found only the log-
arithmic stress singularity near the crack tips. Instead of the usual
traction-free crack surface condition, Udea et al. (2006) applied the
spring-like imperfect interface condition to reconsider the corre-
sponding antiplane shear problem, and found that the stress singu-
larity at the crack tips is no longer an inverse square-root
singularity, but a singularity of power law governed by the inter-
face parameters.

This paper aims at analyzing the interaction of a crack and an
imperfect interface. Differing from previous works, the crack being
studied here is assumed not to be at the interface, but in proximity
to and perpendicular to the imperfect interface. Using the Fourier
transform technique, the associated mixed-boundary value prob-
lem is reduced to a singular integral equation. Numerical results
are presented for a typical bimaterial with an imperfect interface.
The influences of interfacial imperfection on stress intensity factors
near the crack tips are analyzed in detail.
2. Problem and model

Consider two bonded dissimilar isotropic elastic solids with an
imperfect interface, which occupy the right and left half-planes,
respectively, as shown in Fig. 1. For convenience, media I and II
in x > 0 and x < 0 are marked with material I and material II,
respectively. For such a two-dimensional problem, at the imperfect
interface the linear spring-like relations reduce to

rI
xxð0; yÞ ¼ rII

xxð0; yÞ ¼ bn uIð0; yÞ � uIIð0; yÞ
� �

; ð4Þ
rI

xyð0; yÞ ¼ rII
xyð0; yÞ ¼ bt v Ið0; yÞ � v IIð0; yÞ

� �
; ð5Þ

where bn and bt are the normal and tangential interface parameters,
respectively, the dimension of which is Newton/metre3. Hereafter,
uj and v j are the non-vanishing elastic displacements; rj

xx, rj
yy and

rj
xy are the components of stress; and a quantity with superscript

j ðj ¼ I or IIÞ denotes that in material I or II, respectively. Clearly,
when bn ¼ bt ¼ 0, two materials are fully debonded, and when
bn !1 and bt !1, the interface is perfectly bonded. Other two
cases are bt ¼ 0; bn !1, corresponding to a sliding interface, and
bt ¼ 0; bn > 0, corresponding to a Winkler interface, respectively.

For the sake of simplicity, the crack is assumed to be perpendic-
ular to the interface, and embedded in material I, occupying the
segment a < x < cðc > a > 0Þ of the x-axis. So the length of the
crack is 2l ¼ c � a. Since of interest is the singular field near the
crack tip, it suffices to consider the crack subjected to internal
pressure, namely

rI
yyðx; 0Þ ¼ �r0; a < x < c: ð6Þ

For plane deformation, the associated constitutive equations are

rj
xxðx; yÞ ¼

Gj

jj � 1
ðjj þ 1Þ @uj

@x
� ðjj � 3Þ @v j

@y

� �
; ð7Þ

rj
yyðx; yÞ ¼

Gj

jj � 1
ðjj þ 1Þ @v

j

@y
� ðjj � 3Þ @uj

@x

� �
; ð8Þ

rj
xyðx; yÞ ¼ Gj @v j

@x
þ @uj

@y

� 	
; ð9Þ

where Gj is the shear modulus of material j, and in the above,
jj ¼ 3� 4mj for plane strain, while jj ¼ ð3� mjÞ=ð1þ mjÞ for plane
stress, mj the Poisson’s ratio of material j. Furthermore, by using
the equilibrium equations, the following differential equations can
be easily derived:

@2uj

@x2 þ
jj � 1
jj þ 1

@2uj

@y2 þ
2

jj þ 1
@2v j

@x@y
¼ 0; ð10Þ

@2v j

@y2 þ
jj � 1
jj þ 1

@2v j

@x2 þ
2

jj þ 1
@2uj

@x@y
¼ 0; ð11Þ

where body forces have been neglected.
On the other hand, because of the symmetry of the problem, it is

sufficient to determine elastic field in the upper half-plane of two
bonded dissimilar materials, i.e. y > 0. Therefore, in addition to (6),
the boundary conditions are easily written as

rI
xyðx; 0Þ ¼ 0; 0 < x <1; ð12Þ

v Iðx;0Þ ¼ 0; 0 < x < a; c < x <1; ð13Þ
rII

xyðx; 0Þ ¼ 0; v IIðx;0Þ ¼ 0; �1 < x < 0; ð14Þ

for a pressurized crack.
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3. Procedure of solution

In order to solve the boundary value problem posed by mode-I
crack embedded in a two-phase material with an imperfect inter-
face, following Li (2006), we take elastic displacements uj and v j in
terms of the following Fourier integrals:

ujðx; yÞ ¼
Z 1

0
Aj

1ðnÞ þ Bj
1ðnÞny

h i
e�yn sinðnxÞdn

þ
Z 1

0
Aj

2ðnÞ þ Bj
2ðnÞnx

h i
e�djxn cosðnyÞdn; ð15Þ

v jðx; yÞ ¼
Z 1

0
Aj

1ðnÞ þ jjBj
1ðnÞ þ Bj

1ðnÞny
h i

e�yn cosðnxÞdn

þ
Z 1

0
djAj

2ðnÞ � jjBj
2ðnÞ þ djBj

2ðnÞnx
h i

e�djxn sinðnyÞdn; ð16Þ

where dI ¼ 1 and dII ¼ �1, Aj
1;2ðnÞ and Bj

1;2ðnÞ are unknowns to be
solved. From (7)–(9), expressions for the stress components can
be calculated as follows:

rj
xxðx; yÞ ¼ Gj

Z 1

0
2Aj

1ðnÞ þ ðjj � 3ÞBj
1ðnÞ þ 2Bj

1ðnÞny
h i

ne�yn

� cosðnxÞdn� Gj
Z 1

0
2djAj

2ðnÞ � ðjj � 1ÞBj
2ðnÞ

h
þ2djBj

2ðnÞxn
i
ne�djxn cosðnyÞdn; ð17Þ

rj
yyðx; yÞ ¼ �Gj

Z 1

0
2Aj

1ðnÞ þ ðjj þ 1ÞBj
1ðnÞ þ 2Bj

1ðnÞny
h i

ne�yn

� cosðnxÞdnþ Gj
Z 1

0
2djAj

2ðnÞ � ðjj þ 3ÞBj
2ðnÞ

h
þ2djBj

2ðnÞxn
i
ne�djxn cosðnyÞdn; ð18Þ

rj
xyðx; yÞ ¼ �Gj

Z 1

0
2Aj

1ðnÞ þ ðjj � 1ÞBj
1ðnÞ þ 2Bj

1ðnÞny
h i


ne�yn

� sinðnxÞdnþ
Z 1

0
2Aj

2ðnÞ � ðjj þ 1ÞdjBj
2ðnÞ

h
þ2Bj

2ðnÞxn
i
ne�djxn sinðnyÞdn

o
: ð19Þ

It is readily found that with the above expressions, the constitu-
tive equations and equilibrium equations are automatically satis-
fied. The remaining is to seek elastic field, in particular near the
crack tips via using appropriate boundary conditions in connection
with interface conditions. To this end, it is natural to firstly deter-
mine the unknowns Aj

1;2ðnÞ and Bj
1;2ðnÞ. From (12) and (14), one can

obtain

AII
1ðnÞ ¼ BII

1ðnÞ ¼ 0; 2AI
1ðnÞ ¼ ð1� jIÞBI

1ðnÞ: ð20Þ

Then, application of interface condition (5) yields

2GIAI
2ðnÞ � 2GIIAII

2ðnÞ � GIðjI þ 1ÞBI
2ðnÞ � GIIðjII þ 1ÞBII

2ðnÞ ¼ 0; ð21ÞZ 1

0

jI þ 1
2
þ ny

� �
BI

1ðnÞe�yndn ¼ �
Z 1

0
1þ 2GIn

bt

 !
AI

2ðnÞ þ AII
2ðnÞ

"

� jI þ GInðjI þ 1Þ
bt

 !
BI

2ðnÞ þ jIIBII
2ðnÞ

#
sinðnyÞdn: ð22Þ

Using the conditions in (4) leads to

2GIInAII
2ðnÞ þ GIIðjII � 1ÞnBII

2ðnÞ ¼ bn½A
I
2ðnÞ � AII

2ðnÞ�; ð23ÞZ 1

0
ð�1þ ynÞBI

1ðnÞne�yndn ¼
Z 1

0
nþ bn

2GI

� 	
AI

2ðnÞ �
bn

2GI AII
2ðnÞ

�

�ðj
I � 1Þn

2
BI

2ðnÞ
�

cosðnyÞdn: ð24Þ
Now, the Fourier inverse transform is performed to Eqs. (22) and
(24), and one gets

1þ 2GIn
bt

 !
AI

2ðnÞ þ AII
2ðnÞ � jI þ GInðjI þ 1Þ

bt

 !
BI

2ðnÞ

þ jIIBII
2ðnÞ ¼ x1; ð25Þ

nþ bn

2GI

� 	
AI

2ðnÞ �
bn

2GI AII
2ðnÞ �

ðjI � 1Þn
2

BI
2ðnÞ ¼ x2; ð26Þ

with

x1 ¼ �
2
p

Z 1

0

jI þ 1
2

n

n2 þ g2
þ 2ng2

ðn2 þ g2Þ2

" #
BI

1ðgÞdg; ð27Þ

x2 ¼
2
p

Z 1

0
� g2

n2 þ g2
þ g2ðg2 � n2Þ
ðg2 þ n2Þ2

" #
BI

1ðgÞdg; ð28Þ

where known identities (A1) and (A2), given in Appendix A, have
been used.

According to Eqs. (21), (23), (25) and (26), the unknown func-
tions AI

2ðnÞ, AII
2ðnÞ, BI

2ðnÞ and BII
2ðnÞ can be then expressed in terms

of x1 and x2, i.e.

AI
2ðnÞ

AII
2ðnÞ

BI
2ðnÞ

BII
2ðnÞ

2
66664

3
77775¼

2GI �2GII �GIðjI þ 1Þ �GIIðjII þ1Þ
�bn bn þ 2GIIn 0 GIIðjII � 1Þn

1þ 2GIn
bt

1 � jI þ GInðjIþ1Þ
bt

� �
jII

nþ bn

2GI � bn

2GI �ðjI�1Þn
2 0

2
666664

3
777775

�1

0
0
x1

x2

2
6664

3
7775¼

MI
1ðnÞ

MII
1ðnÞ

NI
1ðnÞ

NII
1ðnÞ

2
66664

3
77775x1 þ

MI
2ðnÞ

MII
2ðnÞ

NI
2ðnÞ

NII
2ðnÞ

2
66664

3
77775x2; ð29Þ

where the detailed expressions for Mj
1;2ðnÞ and Nj

1;2ðnÞ are omitted
here.

Inserting the above results in (29) into the expressions (17)–
(19) for the stress components, and applying (6) and (13), we
obtain triple integral equations as follows:Z 1

0
BI

1ðnÞcosðnxÞdn¼0; 0<x<a; c<x<1; ð30ÞZ 1

0
BI

1ðnÞncosðnxÞdn�
Z 1

0
MI

1ðnÞþ �jIþ3
2
þxn

� 	
NI

1ðnÞ
� �

x1




þ MI
2ðnÞþ �jIþ3

2
þxn

� 	
NI

2ðnÞ
� �

x2


ne�xndn¼ r0

2GI ; a<x< c: ð31Þ

The explicit solution of Eqs. (30) and (31) seems hardly to ob-
tain. In what follows, we convert the above triple integral equa-
tions to a singular integral equation with Cauchy kernel, and
then give the numerical solution of the resulting singular integral
equation. To this end, we define a new auxiliary dislocation density
function gðxÞ such that

gðxÞ ¼ 2
1þ jI

@v Iðx;0Þ
@x

; ð32Þ

where the coefficient 2=ð1þ jIÞ is introduced for convenience. Tak-
ing into account (16) as well as (20) we have

v Iðx; 0Þ ¼ 1þ jI

2

Z 1

0
BI

1ðnÞ cosðnxÞdn;

and then (32) becomes

gðxÞ ¼ �
Z 1

0
BI

1ðnÞn sinðnxÞdn: ð33Þ



X.-C. Zhong et al. / International Journal of Solids and Structures 46 (2009) 1456–1463 1459
In view of v Iða;0Þ ¼ v Iðc;0Þ ¼ 0; gðxÞ is found to satisfy the fol-
lowing single-value displacement constraint conditionZ c

a
gðxÞdx ¼ 0: ð34Þ

Furthermore, performing the Fourier inverse transform to (33),
BI

1ðnÞ has the following integral representation:

BI
1ðnÞ ¼ �

2
pn

Z c

a
gðsÞ sinðnsÞds: ð35Þ

Substituting (35) into (31) and recalling the well-known identi-
ties (A3)–(A5), after some computations we get a singular integral
equation with Cauchy kernel of the first kind, i.e.

1
p

Z c

a

gðsÞ
s� x

dsþ 1
p

Z c

a
gðsÞkðs; xÞds ¼ � r0

2GI ; a < x < c; ð36Þ

with

kðs;xÞ¼ 1
sþx

þ
Z 1

0
MI

1ðnÞþ �jIþ3
2
þxn

� 	
NI

1ðnÞ
� �

ð2sn�1�jIÞ



þ2sn2 MI
2ðnÞþ �jIþ3

2
þxn

� 	
NI

2ðnÞ
� �

e�ðsþxÞndn: ð37Þ

From the above analysis, it is found that a singular term is
extracted and the kernel kðs; xÞ becomes continuous. Clearly, it
seems unlikely to obtain the closed-form solution to Eq. (36)
unless kðs; xÞ takes quite simple expressions for special situa-
tions. For a general case, introducing dimensionless variables
as follows:

x ¼ c � a
2

�xþ c þ a
2

; s ¼ c � a
2

�sþ c þ a
2

; gðsÞ ¼ r0

2GI
�gð�sÞ; ð38Þ

we can write Eq. (36) as

1
p

Z 1

�1

�gð�sÞ
�s� �x

d�sþ 1
p

Z 1

�1

�gð�sÞ�kð�s; �xÞd�s ¼ �1; �1 < �x < 1; ð39Þ

where

�kð�s; �xÞ ¼ c � a
2

kðs; xÞ:

Furthermore, from a physical viewpoint, the inverse square-
root singularity at the crack tips allows us to conveniently choose
�gð�sÞ in the form

�gð�sÞ ¼ f ð�sÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �s2
p ; ð40Þ

where f ð�sÞ is a bounded continuous function in j�sj 6 1. Conse-
quently, the closed Lobatto–Chebyshev collocation method is used
to discretize the singular integral Eq. (39) into a system of linear
algebraic equations

1
n

Xn

i¼0

ki
f ð�siÞ

�si � �xm
þ 1

n

Xn

i¼0

ki
�kð�si; �xmÞf ð�siÞ ¼ �1; m ¼ 1;2; . . . ;n; ð41Þ

where �xm ¼ cos½ð2m� 1Þp=ð2nÞ�, m ¼ 1;2; . . . ; n; �si ¼ cosðip=nÞ; i ¼
0;1;2; . . . ;n; k0 ¼ kn ¼ 1=2; k1 ¼ � � � ¼ kn�1 ¼ 1. In addition, the con-
straint condition (34) can be rewritten below

Xn

i¼0

kif ð�siÞ ¼ 0: ð42Þ

Once the solution to linear algebraic Eqs. (41) and (42) is deter-
mined, the crack tip field will be obtained easily.

From the viewpoint of fracture mechanics, stress intensity
factor is a very important parameter characterizing the stress field
around crack tip. For the present study, we define the stress inten-
sity factors near the right and left crack tips as follows:
KL ¼ lim
x!a�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pða� xÞ

p
rI

yyðx;0Þ; KR ¼ lim
x!cþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðx� cÞ

p
rI

yyðx;0Þ:

ð43Þ

Using the expression (40), one can get

KL ¼
ffiffiffiffiffi
pl
p

r0f ð�1Þ; KR ¼ �
ffiffiffiffiffi
pl
p

r0f ð1Þ: ð44Þ
4. Results and discussions

In this section, numerical computations are carried out to
examine the effects of the interface parameters on the stress
intensity factors. Prior to a general consideration, it is expedient
to consider two well-known cases.

Firstly, let us consider a special case where materials I and II are
identical and bonded perfectly, i.e. GI ¼ GII , jI ¼ jII , bn !1 and
bt !1. After some computations, we observe that

kðs; xÞ ¼ 0: ð45Þ

Furthermore, the solution of the singular integral equation with
Cauchy kernel (36) can be expressed explicitly as

gðxÞ ¼ r0

4GI

ðaþ cÞ � 2xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� aÞðc � xÞ

p : ð46Þ

With knowledge of (46), it is easy to calculate the stress inten-
sity factors at the left and right crack tips as

KL ¼ KR ¼
ffiffiffiffiffi
pl
p

r0; ð47Þ

in agreement with the known results (see, e.g. Fan, 1978).
Secondly, we deal with a two-phase material with a fully

debonded interface, i.e. bn ¼ bt ¼ 0. In this case, the kernel in
(37) reduces to

kðs; xÞ ¼ x� s

ðsþ xÞ2
þ 4xs

ðsþ xÞ3
: ð48Þ

Furthermore, with the aid of the above-suggested collocation
method, the stress intensity factors at the left and right crack tips
can be evaluated. Here, we consider an edge crack with a ¼ 0 and
bn ¼ bt ¼ 0. It is noted that in solving such an edge crack, the con-
straint condition (42) should be replaced by f ð�1Þ ¼ 0, which in
fact means that the crack mouth has no singularity. When taking
n ¼ 100 in Eqs. (41), we obtain that KR=r0

ffiffiffiffiffi
pl
p

¼ 1:5861, or equiv-
alently, KR=r0

ffiffiffiffiffiffiffiffi
2pl
p

¼ 1:1215, identical to the well-known result
for an edge crack in a semi-infinite elastic plane (see e.g. Tada
et al., 1973).

4.1. Sliding interface

Now, let us to consider another special case of bn !1 and
bt ¼ 0, which implies that the interface is sliding freely along the
y-axis. Moreover, the normal displacement is imposed to be con-
tinuous. Then, it is found that kðs; xÞ simplifies to

kðs; xÞ ¼ 1
sþ x

þ 4sx

ðsþ xÞ3
� 2s

ðsþ xÞ2

" #
GIðjII þ 1Þ

GIðjII þ 1Þ þ GIIðjI þ 1Þ
:

ð49Þ

It is clear that this kernel is dependent on all the material proper-
ties, and so are the desired stress intensity factors.

To illustrate the variation of the stress intensity factors, alumi-
num and steel are chosen in the following calculation. Their
Young’s moduli are 80.0 and 208 GPa, and Poisson’s ratios are
0:33 and 0:3, respectively. Two cases of combination are investi-
gated, and Case A means that crack lies in a softer material alumi-
num, and Case B means that the crack lies in a stiffer material steel.
Under the assumption of plane strain, Fig. 2 shows the variation of
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Table 1
K=r0

ffiffiffiffiffiffi
pa
p

for an elastic material perfectly bonded to a stiffened edge.

k Left crack tip Right crack tip

Present results Isida (1970) Present results Isida (1970)

0 1.0000 1.0000 1.0000 1.0000
0.1 0.9977 0.9980 0.9979 0.9986
0.2 0.9904 0.9910 0.9922 0.9942
0.3 0.9771 0.9776 0.9832 0.9869
0.4 0.9568 0.9563 0.9716 0.9768
0.5 0.9278 0.9256 0.9578 0.9637
0.6 0.8879 0.8841 0.9422 0.9478
0.7 0.8330 0.8302 0.9253 0.9290
0.8 0.7552 0.7626 0.9075 0.9072
0.9 0.6328 – 0.8890 0.8825
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normalized stress intensity factors K=r0

ffiffiffiffiffi
pl
p

on k for Cases A and B,
respectively. Hereafter, k is chosen as the ratio k ¼ ðc � aÞ=ðaþ cÞ.
From Fig. 2, it is found that the normalized stress intensity factors
increase with increasing k. Or rather, the closer the distance be-
tween the crack and the sliding interface, the larger the stress
intensity factors, which infers that a closer crack away from the
sliding interface enhances crack growth. Moreover, as expected,
the stress intensity factor near the left crack tip is greater than that
near the right crack tip, implying that the left crack tip is easier to
propagate than the right crack tip.

For comparison, we also depict the variation of the stress inten-
sity factors when the crack-free material is a rigid solid in Fig. 2.
For this case, GII !1 is required, and we then have

kðs; xÞ ¼ 1
sþ x

: ð50Þ

From Fig. 2, it is viewed that the corresponding stress intensity fac-
tors are least, compared to those for Cases A and B, irrespective of
the left or right crack tip.

4.2. Winkler interface

Here, we turn our attention to a Winkler interface. In other
words, we set bt !1 and so tangential displacement is continu-
ous across the interface. In particular, if material II is rigid,
GII !1, the interface collapses to the so-called Winkler founda-
tion. For this case, numerical results are calculated and presented
in Fig. 3. Different from the case of the sliding interface discussed
in the previous subsection, for a cracked elastic material with a
Winkler foundation, the stress intensity factors are found to de-
crease when the crack is close to the Winkler foundation. More-
over, the larger the normal interface parameter bn, the smaller
the stress intensity factors. This is in accordance with the observa-
tions given by Matysiak and Pauk (2003), who investigated the
stress intensity factors of an edge crack in an elastic strip resting
on Winkler foundation. In particular, when bn !1, the corre-
sponding results reduce to those an elastic material perfectly
bonded to a rigid foundation, and they are listed in Table 1, in exact
agreement with those obtained by Isida (1970), who gave fitting
approximate expressions for the stress intensity factors for this
case based on numerical results obtained

KL ¼ r0

ffiffiffiffiffi
pl
p

1� 0:175k2 � 0:245k3� �
; k 6 0:8; ð51Þ

KR ¼ r0

ffiffiffiffiffi
pl
p

1� 0:145k2� �
; k 6 0:9: ð52Þ
According to these two formulae, evaluated results are also given in
Table 1 for the purpose of comparison. It is readily found that the
present results are rather satisfactory compared to the previous
results.

On the other hand, if material II is another dissimilar elastic
solid, the interface is assumed to be governed by a linear relation
between the displacement jump and normal stress

rI
xxð0; yÞ ¼ rII

xxð0; yÞ ¼ bn uIð0; yÞ � uIIð0; yÞ
� �

; ð53Þ

which looks like a spring. For such Winkler interface, the variation
of the stress intensity factors is strongly reliant on the material
properties of the other crack-free elastic medium, which can be ob-
served in Fig. 4(a and b) for Cases A and B, respectively. Clearly, for
the crack lying in the softer Al, the stress intensity factors are seen
to drop down when the crack moves closer to the Winkler interface.
This is not true for the crack lying in the stiffer steel, and trend is
reversed for the latter. That is, when the distance between the crack
and the Winkler interface is reduced, the stress intensity factors
rise. As a consequence, for a crack lying in a softer material, it is
safer when the crack is closer to the Winkler interface, whereas
for a crack lying in a stiffer material, it is safer when the crack is far-
ther to the Winkler interface. In other words, the Winkler interface
can promote or impede crack propagation, depending on it lying in
a harder or softer material, respectively.

4.3. The case of bn ¼ bt

For the previous analysis, it is found that not only the interface
parameters but also the material properties of two materials
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strongly affect the stress intensity factors. Here, we consider a spe-
cial case of bn ¼ bt .

Fig. 5(a and b) illustrate the variation of the normalized stress
intensity factors near the crack tips against the ratio k for
c0bt=EI ¼ c0bn=EI ¼ 0;0:5;1 for Cases A and B, respectively, where
c0 ¼ ðaþ cÞ=2 and EI is the Young’s modulus of material I. When
c0bt=EI ¼ c0bn=EI ¼ 0, two materials are fully debonded, and from
Fig. 5(a and b) the curves of KR=r0ðplÞ1=2 are in agreement with
the corresponding ones given in Isida (1971). When c0bt=EI ¼
c0bn=EI !1, two materials are perfectly bonded (Remeo and
Ballarini, 1995). For this case, with increasing k, the normalized
stress intensity factors decline for Case A and increase for Case B,
respectively. This is similar to the trend when the imperfect inter-
face is Winkler interface, as seen in Fig. 4(a and b). The phenomena
reveal that when the crack is closer to the interface, crack growth
will be impeded, or the path is kinked or unstable for the crack ly-
ing in a softer material (Case A), and enhanced or stable for the
crack lying in a stiffer material (Case B), in agreement with the
experimental observations (Suresh et al., 1992) for the growth of
a crack approaching a perpendicularly-oriented bimaterial inter-
face. Also, when two dissimilar materials are perfectly bonded,
such similar trends have been confirmed for a crack embedded in
a softer or a stiffer solid, respectively (Cook and Erdogan, 1972;
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(b) crack lies in a stiffer material.
Wang and Stable, 1998). Furthermore, for the case of c0bt=EI ¼
c0bn=EI ¼ 0:5, the curves of normalized stress intensity factors are
always located between the curves corresponding to c0bt=EI ¼
c0bn=EI ¼ 0 and to c0bt=EI ¼ c0bn=EI ¼ 1. It indicates that full deb-
onding and perfect interface are indeed the limiting cases of the
imperfect interface. It is interesting to note that for Case B, the nor-
malized stress intensity factors always rise with an increase in the
ratio k, regardless of the values of bt and bn, while for Case A, the
stress intensity factors remain unchanged for a certain finite value.

4.4. General case

Generally speaking, the interface of two bonded dissimilar
materials is neither perfectly bonded nor completely debonding.
That is to say, the interface parameters bt and bn can take various
values. The influence of the imperfection of the interface on the
stress intensity factor is shown in Fig. 6(a and b) for Cases A and
B, respectively, where a specified crack geometry with k ¼ 0:9
and aþ c ¼ 0:02m is considered. From Fig. 6(a and b) it is seen that
an increase in both bn and bt decreases the normalized stress inten-
sity factors, regardless of Cases A and B. In other words, for a fixed
crack position, the stress intensity factors become larger if imper-
fection is enhanced: bn or bt declines. As a result, in order to avoid
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when two interface parameters are equal: bn ¼ bt , (a) crack lies in a softer material;
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crack advance, it is always desired that the interface is designed to
be perfectly bonded together as possible as we can, since the stress
intensity factors at both crack tips can be effectively reduced when
bn and/or bt increase.

5. Conclusions

The analysis of the stress intensity factors for a crack perpendic-
ular to an imperfect interface is made. In order to simulate the
imperfection of the interface of two dissimilar elastic materials, a
spring-like model with vanishing thickness is proposed. Applying
the Fourier transform technique, the crack problem is reduced to
solving singular integral equation. Then, by using the Lobatto–
Chebyshev collocation method, the numerical results of the stress
intensity factors near the left and right crack tips are obtained. The
effects of the imperfect interface on the fracture parameter are dem-
onstrated graphically. Some conclusions are drawn out as follows:

� An increase in the interface parameters bn and bt decreases the
stress intensity factors for a fixed crack.

� Imperfection of the interface causes the stress intensity factors
to vary between that with a completely debonding and that with
a perfectly bonded interface.

� For a sliding interface, the closer a crack is away from the inter-
face, the larger the stress intensity factors, irrespective of a crack
lying in softer or stiffer materials.

� For a Winkler interface, with the distance of the crack and the
interface decreasing, the stress intensity factors become smaller
when the crack is situated in a softer material, and larger when
the crack is situated in a stiffer material, respectively.
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Appendix A. Appendix

Some identities related to infinite integrals used in the present
paper are listed as follows (Gradshteyn and Ryzhik, 1980):
Z 1

0
e�yg sinðnyÞdy¼ n

n2þg2
;

Z 1

0
ye�yg sinðnyÞdy¼ 2gn

ðn2þg2Þ2
; ðA1Þ

Z 1

0
e�yg cosðnyÞdy¼ g

n2þg2
;

Z 1

0
ye�yg cosðnyÞdy¼ g2�n2

ðn2þg2Þ2
ðA2Þ

and

2
p

Z 1

0
sinðsnÞ cosðxnÞdn ¼ 1

p
1

s� x
þ 1

sþ x

� 	
; ðA3ÞZ 1

0

sinðgsÞ
ðg2 þ n2Þg

dg ¼ pð1� e�nsÞ
2n2 ;

Z 1

0

g sinðgsÞ
g2 þ n2 dg ¼ p

2
e�ns; ðA4Þ

Z 1

0

g sinðgsÞ
ðg2 þ n2Þ2

dg ¼ ps
4n

e�ns: ðA5Þ
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