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Abstract

We consider the problem of deriving the asymptotic distribution of the three commonly used multi-
variate test statistics, namely likelihood ratio, Lawley–Hotelling and Bartlett–Nanda–Pillai statistics,
for testing hypotheses on the various effects (main, nested or interaction) in multivariate mixed mod-
els. We derive the distributions of these statistics, both in the null as well as non-null cases, as the
number of levels of one of the main effects (random or fixed) goes to infinity. The robustness of these
statistics against departure from normality will be assessed.

Essentially, in the asymptotic spirit of this paper, both the hypothesis and error degrees of freedom
tend to infinity at a fixed rate. It is intuitively appealing to consider asymptotics of this type because,
for example, in random or mixed effects models, the levels of the main random factors are assumed
to be a random sample from a large population of levels.

For the asymptotic results of this paper to hold, we do not require any distributional assumption on
the errors. That means the results can be used in real-life applications where normality assumption is
not tenable.

As it happens, the asymptotic distributions of the three statistics are normal. The statistics have been
found to be asymptotically null robust against the departure from normality in the balanced designs.
The expressions for the asymptotic means and variances are fairly simple. That makes the results an
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attractive alternative to the standard asymptotic results. These statements are favorably supported by
the numerical results.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Let the N × p observation matrix Y have the following structure:

Y = 1N�′ +
t∑

i=1

XiBi +
k−1∑

i=t+1

AiTi + E, (1.1)

where � is a p × 1 vector of the grand mean effect, Xi and Ai are, respectively, N ×mi and
N × ri known design matrices of group indicators, Bi is an mi ×p unknown matrix of fixed
effects and Ti is ri ×p random effects matrix whose rows are identically and independently
distributed random vectors with mean zero and variance �i . Also, E is an N × p random
error matrix whose rows are identically and independently distributed with mean zero and
variance �. Further, Ti’s and E are mutually independent.

We know that when Ti and E have normal distributions, there may not always exist a
unique partitioning of the total sum of squares and cross products into quadratic forms that
have independent Wishart distributions [14]. Even if such partitioning is possible, tests on
the various effects in (1.1) can be derived by comparing the expected values of the partitions
only if there exists a random effect whose mean square matrix has the same expected value
as that of the effect under consideration (see, for example, [11]). In the cases where tests can
be derived from partitioned sum of squares, the usual multivariate test criteria, i.e. likelihood
ratio (LR), Lawley–Hotelling (LH) and Bartlett–Nanda–Pillai (BNP) can be used as test
statistics. It should be remarked that the LR criterion is not the conventional likelihood
procedure (See [3,15]). When the error degrees of freedom is large, the null distribution of
these statistics can be approximated by chi-square distribution. For an extensive treatment
of these statistics under normality one may refer to Anderson [2] and Siotani et al. [16].

Due to their intuitive appeal, these statistics have also been studied under non-normality.
Fujikoshi [5] provides a summary of works in this connection.

In this paper, we are concerned with the asymptotic distribution of these statistics under
non-normality. The asymptotic frame work is when both hypothesis and error degrees of
freedom tend to infinity at the same rate. Fujikoshi [4] is in the same spirit but under
normality and fixed effects MANOVA. More recently, Akritas and Arnold [1] derived the
asymptotic [large hypothesis degrees of freedom] distribution of F-statistics in the univariate
fixed, random and mixed models. Their fixed effects results have been extended to the
multivariate situation by Gupta et al. [8]. In this paper, we extend the works of Gupta et al.
[8] and Akritas and Arnold [1] to multivariate mixed models. In Section 2, notations and
some lemmas needed in the subsequent sections are presented. In Section 3, we consider the
balanced case. Detailed results are given for one-way random, two-way random and two-
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way mixed effects models and the extension to the general case is outlined. The unbalanced
mixed model is treated in Section 4. Section 5 contains the simulation study. We summarize
our findings and conclusions in Section 6. Proofs and some technical details for results
presented in Section 2 are given in Appendix A.

2. Notations and lemmas

In the sequel, the notations EN , V arN and CovN mean expected value, variance and
covariance, respectively, when the random variables involved have normal distribution.
Given a partitioned matrix Y = (Y1, . . . , Yq) where Yi, i = 1, . . . , q, is n × qi matrix,
we write V ar(Y ) to refer to the q × q block partitioned matrix whose (i, j)th block is
Cov(vec(Yi), vec(Yj )). The notations Jn and 1n stand for n × n matrix and n × 1 vector
of ones, respectively. The notation Ip stands for p × p identity matrix. In the cases where
the dimension is clear we drop the subscript p of Ip. Furthermore, Kp stands for a p2 × p2

commutation matrix, which is a block matrix whose block in position (i, j) is ej e′
i where

ej is a p-dimensional unit vector with unity on the jth entry. For properties of commutation
matrix, see [9,12].

We will next present results useful in the subsequent sections. We first generalize a result
given in [8] to fit in the settings of this paper. The generalization is developed in four steps.
We present the final result below, and defer the details to Appendix A. The result is stated
keeping in mind the balanced two-way mixed model. The extension to the general balanced
mixed model can easily be figured out by induction.

Lemma 2.1. Let E ′ = (�1, . . . , �n) be a p×n random matrix whose columns are identically
and independently distributed with E(�1) = 0, V ar(�1) = �ε(> 0) and finite fourth-order
moments (i.e., E(vec(�1�

′
1)vec(�1�

′
1)

′) =: �ε with finite entries). Let T ′ = (�1, . . . , �s)

be a p × s random matrix whose columns are identically and independently distributed
with E(�1) = 0, V ar(�1) = �� (�� �0) and finite fourth-order moment ��. Let Z ′ =
(�1, . . . , �t ) be a p × t random matrix whose columns are identically and independently
distributed with E(�1) = 0, V ar(�1) = ��(�0) and finite fourth-order moment ��. Let
Bi , i = 1, . . . , q, be n×n fixed symmetric matrices. Let Ai , Li and Mi be n×p, n× s and
n× t fixed matrices. Suppose Bi , Ci = L′

iBiLi and Di = M ′
iBiMi each has equal diagonal

elements. Define Qi = Qi(E, T , Z, Ai) = (E+Ai+LiT +MiZ)′Bi(E+Ai+LiT +MiZ)

and let Q = (Q1, . . . , Qq). If the third-order moments of �1, �1 and �1 are zero or Ai =
0, i = 1, . . . , q, then

E(Q) = EN(Q)

and

V ar(Q) = V arN(Q) + n(bb′) ⊗ (� − Ip2 − Kp − vec(Ip)vec(Ip)′)
+s(cc′) ⊗ (�� − (Ip2 + Kp)(�� ⊗ ��) − vec(��)vec(��)

′)
+t (dd′) ⊗ (�� − (Ip2 + Kp)(�� ⊗ ��) − vec(��)vec(��)

′),
where b, c and d are q × 1 vectors with ith elements bi11, ci11 and di11 which obviously are
the entries in the (1, 1) position of Bi , Ci and Di , respectively.
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As Akritas and Arnold [1] have noted, such a result can be proved in its generality by
dropping the restrictions on the diagonal elements of Bi , Ci and Di . However, the resulting
expressions will be far too complicated to be of any practical use.

The next result is concerned with the mean and variance of non-central Wishart random
matrix. Its proof is given in [9,12].

Lemma 2.2. Suppose S ∼ Wp(n, �, M) and � > 0. Then,

(i) E(S) = n� + M and
(ii) V ar(S) = (I + Kp)(n� ⊗ � + � ⊗ M + M ⊗ �).

3. The balanced mixed model

For a normal balanced mixed MANOVA model, it is well known that there exists a
unique partitioning of the total sum of squares and cross products into quadratic forms
that have independent Wishart distributions [14]. This results from the fact that the design
matrices Xi and Ai can be expressed as Kronecker products of identity matrices and vectors
of ones of appropriate dimensions. In light of this fact and on condition that there exists
a suitable random effect, the three multivariate statistics, viz. LR, LH and BNP, can be
used to develop tests. We will use these test criteria to develop asymptotic tests under non-
normality. Instructively, we discuss the one-way random and two-way random and mixed
effects model first.

3.1. One-way random effects model

Consider the balanced one-way random effects model given by

yij = � + Lai + �1/2�ij , i = 1, . . . , k, j = 1, . . . , n, (3.1)

where �ij are identically independently distributed p × 1 random vectors with E(�11) = 0,
V ar(�11) = Ip and finite � := E(vec(�11�

′
11)vec(�11�

′
11)

′), ai are r × 1(r �p) identically
and independently distributed random vectors with E(a1) = 0, V ar(a1) = Ir and finite
E(vec(a1a′

1)vec(a1a′
1)

′), ai’s and �ij ’s are assumed mutually independent, L is a p × r

fixed but unknown matrix of parameters with rank r �p and � is a p × p positive definite
matrix of parameters.

We would like to test H0 : LL′ = 0 versus H1 : not H0.

3.1.1. Asymptotic distribution of the sum of squares and products
For the testing problem mentioned above, the MANOVA hypothesis and error sums of

squares and products are,

Sh =
k∑

i=1

n(ȳi. − ȳ..)(ȳi. − ȳ..)
′ and Se =

k∑
i=1

n∑
j=1

(yij − ȳi.)(yij − ȳi.)
′,

where ȳi. = 1
n

n∑
j=1

yij and ȳ.. = 1
k

k∑
i=1

ȳi..
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The LR, LH and BNP test statistics given, respectively, by T1 = − log |Se||Se+Sh| , T2 =
tr ShS

−1
e and T3 = tr Sh(Se +Sh)

−1 can be used to construct tests under normality. Besides
their intuitive appeal, it will be shown later that they are null-robust for large k against
departure from normality. Therefore, they can be considered as viable criteria under non-
normality.

Let U
(h)
i and U

(e)
i be defined as follows:

U
(h)
i := n(�−1/2Lai + �̄i.)(�

−1/2Lai + �̄i.)
′

and

U
(e)
i :=

n∑
j=1

(�ij − �̄i.)(�ij − �̄i.)
′, i = 1, . . . , k,

where �̄i. = 1
n

∑n
i=1 �ij .

Put � = n�−1/2LL′�−1/2, Ui = (U
(h)
i , U

(e)
i ) and Ūk = 1

k

∑k
i=1 Ui .

Lemma 3.1. The limiting distribution of
√

k(Ūk − E(Ūk)) is N(0, �) with � given by

� = � + 1

n
C ⊗ (

� − (Ip2 + Kp) − vec(I )vec(I )′
)

+D ⊗ (
�1 − (Ip2 + Kp)(� ⊗ �) − vec(�)vec(�)′

)
, (3.2)

where

�1 = n2E(vec(�−1/2Laia′
iL

′�−1/2)vec(�−1/2Laia′
iL

′�−1/2)′),

� = (�ij ) is a 2 × 2 block matrix with �11 = (I + Kp)
(
(Ip + �) ⊗ (Ip + �)

)
, �22 =

(n−1)(Ip2 +Kp),�′
21 = �12 = 0, C = (cij ) is a 2×2 matrix with c11 = 1, c22 = (n−1)2,

c12 = c21 = (n − 1) and D = (dij ) is a 2 × 2 matrix with d11 = 1, d12 = d21 = d22 = 0.

Proof. That the limiting distribution is normal follows from the fact that Ui’s are identically
and independently distributed. We also note that � = V ar(Ui). To derive the expression
for V ar(Ui), let us express U

(h)
i and U

(e)
i , more conveniently, as

U
(h)
i = (1na′

iL
′�−1/2 + Ei )

′
(

1

n
Jn

)
(1na′

iL
′�−1/2 + Ei )

and

U
(e)
i = E ′

i

(
I − 1

n
Jn

)
Ei , (3.3)

where E ′
i = (εi1, . . . , εin).
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Now, if Ei ∼ N(0, In ⊗ Ip) then U
(h)
i and U

(e)
i will be independently distributed as

Wp(1, I + �) and Wp(n − 1, Ip), respectively. Then by Lemma 2.2 we have,

V arN(U
(h)
i ) = (I + Kp)

(
(I + �) ⊗ (I + �)

)
,

V arN(U
(e)
i ) = (n − 1)(Ip2 + Kp)

and

CovN(U
(h)
i , U

(e)
i ) = 0. (3.4)

Finally appealing to Corollary A.1 (q = 1, B1 = 1
n
Jn, B2 = I − 1

n
Jn, L1 = 1n, L2 = 0

s = 1 and T = a′
iL

′�−1/2), we get the expression for V ar(Ui) under non-normality. �

Noting that E(U
(h)
i ) = I + � and E(U

(e)
i ) = (n − 1)I , it can be verified that,

1

k
�−1/2Sh�

−1/2 = I + � + 1√
k
Z(h)

and

1

k
�−1/2Se�

−1/2 = (n − 1)I + 1√
k
Z(e), (3.5)

where Z(h) = √
k
(
Ū

(h)
k − E(Ū

(h)
k )

) − √
kn(�̄.. + �−1/2āk)(�̄.. + �−1/2āk)

′, Z(e) =√
k
(
Ū

(e)
k − E(Ū

(e)
k )

)
and āk = 1

k

∑k
i=1 ai .

Putting Z = (Z(h), Z(e)) we get the following result.

Corollary 3.1. The random matrix Z is asymptotically normally distributed with mean 0
and variance �.

Proof. It can easily be shown that,
√

kn(Lāk + �−1/2�̄..)(Lāk + �−1/2�̄..)
′ p→ 0

as k → ∞. As a result,

Z = √
k(Ūk − E(Ūk)) + op(1). (3.6)

Then, the desired result follows from Lemma 3.1. �
More explicit expression can be derived for � when the random effect and error terms

have spherical distribution.

Example 3.1. Let

ai ∼ (−2	′
a(0))−1/2ECDr(0, I, 	a)

and

�ij ∼ (−2	′
ε(0))−1/2ECDp(0, I, 	ε)
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where ECDk(0, I, 	) stands for k-variate elliptically contoured distribution with charac-
teristic function generator 	. It can be shown [6] that

E(aia′
i ) = I

and

E(vec(aia′
i )vec(aia′

i )
′) = 	′′

a(0)

(	′
a(0))2

(
Ir2 + Kr + vec(Ir )vec(Ir )

′).

Then one can verify that,

� = � + 1

n

(
	′′

ε (0)

(	′
ε(0))2

− 1

) [(
1 n − 1
n − 1 (n − 1)2

)

⊗(
Ip2 + Kp + vec(I )vec(I )′

)]

+
(

	′′
a(0)

(	′
a(0))2

− 1

) (
1 0
0 0

)
⊗ ((Ip2 + Kp)(� ⊗ �) + vec(�)vec(�)′).

Further, if we use the generator of multivariate t distribution with 
 degrees of freedom for
both ai and εij , we get

	′′
a(0)

(	′
a(0))2

− 1 = 	′′
ε (0)

(	′
ε(0))2

− 1 = 2


 − 4
.

3.1.2. Distribution of test statistics
Let us finally derive the distribution of the three test statistics. To that end we will show

that T1, T2 and T3 are asymptotically linear functions of elements of Z. Define,

T̃1 := √
k

(
nT1 + n log

|(n − 1)I |
|nI + �|

)
,

T̃2 := √
k((n − 1)T2 − tr(I + �)) (3.7)

and

T̃3 := √
k

(
n2

n − 1
T3 − n2

n − 1
tr(I + �)(nI + �)−1

)
.

As in [8], T̃1, T̃2 and T̃3 can be expanded as,

T̃i = tr A
(h)
i Z(h) + tr A

(e)
i Z(e) + Op

(
1√
k

)
(3.8)

for i = 1, 2, 3, where A
(h)
1 = n(nI + �)−1, A

(e)
1 = −( n

n−1 )I + n(nI + �)−1, A
(h)
2 = I ,

A
(e)
2 = − 1

n−1 (I + �), A
(h)
3 = 1

n−1 (I + 1
n
�)−1

(
nI − (I + �)(I + 1

n
�)−1

)
and A

(e)
3 =

−1
n−1 (I + 1

n
�)−1(I + �)(I + 1

n
�)−1. Finally, we get the following result.
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Theorem 3.1. T̃i is asymptotically normally distributed with mean 0 and variance �2
i

given by

�2
i = 2tr

(
A

(h)
i (Ip + �)

)2 + 2(n − 1)tr(A
(e)
i )2 + Ri + Si,

where

Ri = vec(Ai)
′[C ⊗ (

� − (Ip2 + Kp) − vec(I )vec(I )′
)]vec(Ai),

Si = vec(Ai)
′[D ⊗ (

�1 − (Ip2 + Kp)(� ⊗ �) − vec(�)vec(�)′
)]vec(Ai)

and

Ai = (A
(h)
i , A

(e)
i ).

The theorem needs only the assumption of existence of fourth-order moment of the
errors and the random effects. Note that Ri = 0 and Si = 0 under normality. Hence, the
terms Ri and Si arise due to non-normality in the errors and random effect, respectively.
Thus, the effects of non-normality in the errors and non-normality in the random effect are
additive. For example, since C�0 and D�0, if

(
�− (Ip2 +Kp)− vec(I )vec(I )′

)
�0 and(

�1 − (Ip2 + Kp)(� ⊗ �) − vec(�)vec(�)′
)
�0, the overall effect of non-normality will

be reduced.
Under the null hypothesis (� = 0), A

(h)
1 = A

(h)
2 = A

(h)
3 = I and A

(e)
1 = A

(e)
2 = A

(e)
3 =

− 1
n−1I .

Corollary 3.2. Under the null hypothesis (� = 0),

�2
i = 2np

n − 1
f or i = 1, 2, 3.

Corollary 3.2 tells us that the three test statistics are asymptotically null invariant to
departure from normality. However, it is clear from the expression of � in Lemma 3.1
that they are, in general, not non-null robust. What is more, it is apparent from the above
example that the lack of non-null robustness remains even when the departure is only
towards Elliptically Contoured distributions. As was shown in [17], BNP criterion is locally
best invariant (LBI) in the balanced one-way random effect model under normality. It is,
therefore, clear that the stability of this optimality is less likely.

3.2. Two-way random effects model

Let yijk be a p × 1 vector of observations following the two-way random effects model
given by,

yijk = � + Lai + Nbj + Mdij + �1/2�ijk,
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where i = 1, . . . , r; j = 1, . . . , c; k = 1, . . . , n,; � and �(> 0) are p × 1 and p × p,
respectively, fixed unknown parameters, L, N, M are, respectively, p × s, p ×u, p × t fixed
unknown parameters of ranks s, u, t (s, u, t �p), ai’s , bj ’s, dij and �ijk are s×1, u×1, t ×1
and p×1, respectively, random vectors which are mutually independent. Moreover assume
that, for all i = 1, . . . , r; j = 1, . . . , c; and k = 1, . . . , n, ai’s are identically and indepen-
dently distributed with E(ai ) = 0, V ar(ai ) = Is and finite E(vec(aia′

i )vec(aia′
i )

′); bj ’s
are identically and independently distributed with E(bj ) = 0, V ar(bj ) = Iu and finite
E(vec(bib′

i )vec(bib′
i )

′); dij ’s are identically and independently distributed with E(dij ) =
0, V ar(dij ) = Is and finite E(vec(dij d′

ij )vec(dij d′
ij )

′); and �ijk’s are identically and in-
dependently distributed with E(�ijk) = 0, V ar(�ijk) = Ip and finite fourth-order moment
� := E(vec(�ijk�

′
ijk)vec(�ijk�

′
ijk)

′).
Often the hypotheses of interest are H01 : MM ′ = 0, H02 : LL′ = 0 and H03 : NN ′ = 0.

We will be restricted to the case in which the levels of only one of the main effects go to
infinity. Without loss of generality we consider the case r goes to infinity and, n and c are
fixed. Since the hypothesis degrees of freedom for H03 stays fixed, we will not be concerned
with it.

3.2.1. Asymptotic distribution of the sum of squares and products
The MANOVA sums of squares and products for the above hypotheses are,

S
(a)
h = nc

r∑
i=1

(ȳi.. − ȳ...)(ȳi.. − ȳ...)
′,

S
(d)
h = n

r∑
i=1

c∑
j=1

(ȳij. − ȳi.. − ȳ.j. + ȳ...)(ȳij. − ȳi.. − ȳ.j. + ȳ...)
′

and

Se =
r∑

i=1

c∑
j=1

n∑
k=1

(yijk − ȳij.)(yijk − ȳij.)
′,

where ȳij., ȳi.., ȳ.j., ȳ... are defined in the obvious way.

The three multivariate test statistics corresponding to H02 are T
(a)

1 = − log
|S(d)

h |
|S(d)

h +S
(a)
h | ,

T
(a)
2 = tr S

(a)
h S

(d)
h

−1
and T

(a)
3 = tr S

(a)
h (S

(d)
h + S

(a)
h )−1. It is easy to see that these three

statistics are valid under normality. Hence, we may use them under non-normality. The test

statistics corresponding to H03 are T
(d)
1 = − log |S(e)|

|Se+S
(d)
h | , T

(d)
2 = tr S

(d)
h S−1

e and T
(d)

3 =
tr S

(d)
h (Se + S

(d)
h )−1. They are also valid under normality and, thus, can be considered

as candidates under non-normality. Another motivation for the viability of the three test
statistics under non-normality is that they all are asymptotically null robust against departure
from normality as will be shown later.

Let us denote,

U
(a)
i = nc(�̄i.. + �−1/2Lai + �−1/2M d̄i.)(�̄i.. + �−1/2Lai + �−1/2M d̄i.)

′,
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U
(d)
i = n

c∑
j=1

(�−1/2M(dij − d̄i.) + (�̄ij. − �̄i..))

×(�−1/2M(dij − d̄i.) + (�̄ij. − �̄i..))
′

and

U
(e)
i =

c∑
j

n∑
k

(�ijk − �̄ij.)(�ijk − �̄ij.)
′,

where d̄i., d̄..,�̄ij., �̄i.. are defined in the usual way. Put Ui = (U
(a)
i , U

(d)
i , U

(e)
i ), �(a) =

nc�−1/2LL′�−1/2 and �(d) = n�−1/2MM ′�−1/2 .
We will need the following lemma in deriving the asymptotic distribution of the test

statistics.

Lemma 3.2. The limiting distribution of
√

r(Ūr − E(Ūr)) is N(0, �) where

� = � + 1

cn
H1 ⊗ (� − (Ip2 + Kp) − vec(I )vec(I )′)

+H2 ⊗ (
�1 − (Ip2 + Kp)(�(a) ⊗ �(a)) − vec(�(a))vec(�(a))′

)
+1

c
H3 ⊗ (�2 − (Ip2 + Kp)(�(d) ⊗ �(d)) − vec(�(d))vec(�(d))′),

� = (�ij ) is a 3×3 block matrix with �11 = (I +Kp)((Ip +�(a) +�(d))⊗ (Ip +�(a) +
�(d))), �22 = (c − 1)(I + Kp)((Ip + �(d)) ⊗ (Ip + �(d))), �33 = c(n − 1)(I + Kp),
�ij = 0 for i �= j ,

H1 =
⎛
⎝ 1 c − 1 c(n − 1)

c − 1 (c − 1)2 c(c − 1)(n − 1)

c(n − 1) c(c − 1)(n − 1) c2(n − 1)2

⎞
⎠ ,

H2 =
⎛
⎝ 1 0 0

0 0 0
0 0 0

⎞
⎠ , H3 =

⎛
⎝ 1 c − 1 0

c − 1 (c − 1)2 0
0 0 0

⎞
⎠ ,

�1 = n2c2E(vec(�−1/2Laia′
iL

′�−1/2)vec(�−1/2Laia′
iL

′�−1/2)′)

and

�2 = n2E(vec(�−1/2Mdij d′
ijM

′�−1/2)vec(�−1/2Mdij d′
ijM

′�−1/2)′).

Proof. Since Ui’s are identically and independently distributed, asymptotic normality fol-
lows immediately. It remains to derive the expression for the asymptotic variance. For that
purpose, it will be handy, as before, to express U

(a)
i , U(d)

i and U
(e)
i in generalized quadratic

forms as

U
(a)
i = (Ei + (1c ⊗ 1n)a′

iL
′�−1/2 + (Ic ⊗ 1n)DiM

′�−1/2)′
[

1

cn
Jc ⊗ Jn

]

×(Ei + (1c ⊗ 1n)a′
iL

′�−1/2 + (Ic ⊗ 1n)DiM
′�−1/2)),
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U
(d)
i = (Ei + (Ic ⊗ 1n)DiM

′�−1/2)′
[

1

n
(Ic − 1

c
Jc) ⊗ Jn

]

×(Ei + (Ic ⊗ 1n)DiM
′�−1/2)

and

U
(e)
i = E ′

i

[
Ic ⊗

(
In − 1

n
Jn

)]
Ei ,

where E ′
i = (�i11, . . . , �i1n, . . . , �ic1, . . . , �icn) and D′

i = (di1, . . . , dic).
Under normality, i.e. Ei ∼ N(0, Ic ⊗ In ⊗ Ip), ai ∼ N(0, Is) and Di ∼ N(0, Ic ⊗ Ip),

it is easy to see that U
(a)
i ∼ Wp(1, I + �(a) + �(d)), U

(d)
i ∼ Wp(c − 1, I + �(d)) and

U
(e)
i ∼ Wp(c(n − 1), I ). Moreover, they are mutually independent. Therefore, applying

Lemma 2.2,

V arN(U
(a)
i ) = (I + Kp)((I + �(a) + �(d)) ⊗ (I + �(a) + �(d))),

V arN(U
(d)
i ) = (c − 1)(I + Kp)((I + �(d)) ⊗ (I + �(d)))

and

V arN(U
(d)
i ) = c(n − 1)(I + Kp).

Now invoking Lemma 2.1 with q = 3, s = 1, t = c, A1 = A2 = A3 = 0, T =
aiL

′�−1/2, Z = DiM
′�−1/2, L1 = 1c ⊗ 1n, L2 = L3 = 0, M1 = M2 = Ic ⊗ 1n, M3 = 0,

B1 = 1
cn

Jc ⊗ Jn, B2 = 1
n
(Ic − 1

c
Jc) ⊗ Jn and B3 = Ic ⊗ (In − 1

n
Jn), we have the desired

result in the non-normal case. �
Note that E(U

(a)
i ) = I + �(a) + �(d), E(U

(d)
i ) = (c − 1)(I + �(d)) and E(U

(e)
i ) =

c(n − 1)I . One can also see that
1

r
�−1/2S

(a)
h �−1/2 = I + �(a) + �(d) + 1√

r
Z(a),

1

r
�−1/2S

(d)
h �−1/2 = (c − 1)(I + �(d)) + 1√

r
Z(d)

and

1

r
�−1/2Se�

−1/2 = c(n − 1)I + 1√
r
Z(e), (3.9)

where

Z(a) = √
r(Ū (a)

r − E(Ū(a)
r ))

−√
rnc(�−1/2Lā + �−1/2M d̄.. + �̄...)(�

−1/2Lā + �−1/2M d̄.. + �̄...)
′,

Z(d) = √
r(Ū (d)

r − E(Ū(d)
r )) − √

rn
∑

j
(�−1/2M(d̄.j − d̄..) + (�̄.j. − �̄...))

×(�−1/2M(d̄.j − d̄..) + (�̄.j. − �̄...))
′,

Z(e) = √
r(Ū (e)

r − E(Ū(e)
r )) and �̄.j., �̄..., d̄.j. and d̄.. are defined as usual.

Define Z := (Z(a), Z(d), Z(e)). Then, we get the following Corollary as an immediate
consequence of Lemma 3.2.
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Corollary 3.3. Z has asymptotic normal distribution with mean 0 and variance �.

Proof. Clearly Z = √
r(Ūr − E(Ūr)) + op(1). Hence, the desired result follows from the

Lemma. �

3.2.2. Distribution of T
(d)
i and T

(a)
i

For the test statistics concerning H01, let us define

T̃
(d)
1 := √

r
(
(cn − 1)T

(d)
1 + (cn − 1) log

|c(n − 1)I |)
|(cn − 1)I + (c − 1)�(d)|

)
,

T̃
(d)
2 := √

r(c(n − 1)T
(d)
2 − (c − 1)tr(I + �(d)))

and

T̃
(d)
3 := √

r
( (cn − 1)2

c(n − 1)
T

(d)
3

− (cn − 1)2(c − 1)

c(n − 1)
tr(I + �(d))((cn − 1)I + (c − 1)�(d))−1

)
. (3.10)

It can be seen that,

T̃
(d)
i = tr A

(d)
i Z(d) + tr B

(d)
i Z(e) + Op

(
1√
r

)
for i = 1, 2, 3, (3.11)

where A
(d)
1 = (I + (c−1)

(cn−1)
�(d))−1, B

(d)
1 = (

−(cn−1)
c(n−1)

I + (I + (c−1)
(cn−1)

�(d))−1), A
(d)
2 =

I , B
(d)
2 = −(c−1)

c(n−1)
(I + �(d)), A

(d)
3 = 1

c(n−1)
(I + (c−1)

(cn−1)
�(d))−1

[
(cn − 1)I − (c −

1)(I +�(d))(I + (c−1)
(cn−1)

�(d))−1
]
, and B

(d)
3 = − (c−1)

c(n−1)
(I + (c−1)

(cn−1)
�(d))−1(I +�(d))(I +

(c−1)
(cn−1)

�(d))−1.
We know that Z has asymptotic normal distribution. Therefore we have proved the

following result.

Theorem 3.2. T̃
(d)
i has asymptotic normal distribution with mean 0 and variance

�2(d)
i = 2(c − 1)tr(A

(d)
i (Ip + �(d)))2 + 2c(n − 1)tr(B

(d)
i )2 + Ri + Si,

where

Ri = vec(C
(d)
i )′

[
1

cn
H1 ⊗ (� − (Ip2 + Kp) − vec(I )vec(I )′)

]
vec(C

(d)
i ),

Si = vec(C
(d)
i )′

[
1

c
H3 ⊗ (�2 − (Ip2 + Kp)(�(d) ⊗ �(d))

−vec(�(d))vec(�(d))′)
]

vec(C
(d)
i )

and

C
(d)
i = (0, A

(d)
i , B

(d)
i ).
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It does not appear that the three statistics are, in general, non-null robust. However, as
shown in the following corollary, under the null hypothesis (�(d) = 0), �2(d)

i does not
depend on �, �1 and �2. This ensures null-robustness against departure from normality.

Corollary 3.4. Let �(d) = 0. Then

�2(d)
i = 2p(c − 1)

(
1 + (c − 1)

(cn − 1)

)
.

Similarly for the test concerning H02, we define

T̃
(a)
1 := √

r
(
cT

(a)
1 + c log

|(c − 1)(I + �(d))|
|c(I + �(d)) + �(a)

)
,

T̃
(a)
2 := √

r
(
(c − 1)T

(a)
2 − (c − 1)tr(I + �(a) + �(d))(I + �(d))−1

)
and

T̃
(a)
3 := √

r

(
c2

c − 1
T

(a)
3 − c2

c − 1
tr(I + �(a) + �(d))(�(a)

+c(I + �(d)))−1
)

. (3.12)

It can also be shown that

T̃
(a)
i = tr A

(a)
i Z(a) + tr B

(a)
i Z(d) + Op

(
1√
r

)
for i = 1, 2, 3, (3.13)

where A
(a)
1 = (I + �(d) + 1

c
�(a))−1, B

(a)
1 = (I + �(d) + 1

c
�(a))−1 − c

c−1 (I + �(d))−1,

A
(a)
2 = (I + �(d))−1, B

(a)
2 = −1

c−1 (I + �(d))−1(I + �(a) + �(d))(I + �(d))−1, A
(a)
3 =

1
c−1 ( 1

c
�(a) + I + �(d))−1[cI − (I + �(a) + �(d))( 1

c
�(a) + I + �(d))]−1, and B

(a)
3 =

−1
c−1 ( 1

c
�(a) + I + �(d))−1(I + �(a) + �(d))( 1

c
�(a) + I + �(d))−1).

Thus, we have established the following theorem.

Theorem 3.3. T̃
(a)
i has asymptotic normal distribution with mean 0 and variance

�2(a)
i = 2tr(A

(a)
i (Ip + �(a) + �(d)))2 + 2(c − 1)tr(B

(a)
i (Ip + �(d)))2

+Ri + Si + Ti

where

Ri = vec(C
(a)
i )′

[
1

cn
H1 ⊗ (� − (Ip2 + Kp) − vec(I )vec(I )′)

]
vec(C

(a)
i ),

Si = vec(A
(a)
i )′

(
�1 − (Ip2 + Kp)(�(a) ⊗ �(a)) − vec(�(a))vec(�(a))′

)
vec(A

(a)
i ),

Ti = vec(C
(a)
i )′

[
1

c
H3 ⊗ (�2 − (Ip2 + Kp)(�(d) ⊗ �(d))

−vec(�(d))vec(�(d))′)
]

vec(C
(a)
i )
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and

C
(a)
i = (A

(a)
i , B

(a)
i , 0).

Asymptotic null-robustness follows from the following Corollary.

Corollary 3.5. When �(a) = �(d) = 0, we get

�2(a)
i = 2p

(
1 + 1

c − 1

)

for i = 1, 2, 3.

3.3. Two-way mixed effects model

The two-way mixed effects model can be expressed as

yijk = � + �i + Laj + Mdij + �−1/2�ijk,

where i = 1, . . . , r; j = 1, . . . , c; k = 1, . . . , n, �, M, L, �, aj , dij , �ijk are as defined in
the previous sections and �i are fixed effects with

∑r
i=1 �i = 0.

We consider the unrestricted version of the two-way mixed effects model. That is, we do
not assume

∑r
i=1 dij = 0. One may be interested in testing H01 : �i = 0; i = 1, . . . , r ,

H02 : LL′ = 0 and H03 : MM ′ = 0. In the asymptotic frame work of this paper two cases
can be considered.

The first one is the case when c → ∞ but r and n remain fixed. In this case the testing
problem H01 will not be of interest to us since its hypothesis degrees of freedom stays fixed.
Moreover, we note that the test statistics used for the main random effect and the interaction
effects are exactly the same as those for two-way random effects model. Consequently, the
results given in Section 3.2 will apply directly to this case.

In the second case, we let r → ∞ [c and n fixed]. In this case, we will not be interested
in the hypothesis H02. In the rest of this section we will provide some details for testing
H01 and H03.

3.3.1. Asymptotic distribution of the sum of squares
Except changing the notation S

(a)
h to S

()
h , the sum of squares and products are identical

to those given in Section 3.2. Here also let us denote

U
()
i = nc(�̄i.. + �−1/2�i + �−1/2M d̄i.)(�̄i.. + �−1/2�i + �−1/2M d̄i.)

′,

U
(d)
i = n

c∑
j=1

(�−1/2M(dij − d̄i.) + (�̄ij. − �̄i..))

×(�−1/2M(dij − d̄i.) + (�̄ij. − �̄i..))
′
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and

U
(e)
i =

c∑
j=1

n∑
k=1

(�ijk − �̄ij.)(�ijk − �̄ij.)
′,

where d̄i., �̄i.. and �̄ij. are defined as before.

Let us put Ui = (U
()
i , U

(d)
i , U

(e)
i ), �(d) = n�−1/2MM ′�−1/2 and �()

i = nc�−1/2�i�
′
i

�−1/2. Let �̄
()

r = 1
r

∑r
i=1 �()

i . We are, now, ready to prove the following.

Lemma 3.3. Assume there exists a fixed matrix �() such that
√

r(�̄
()

r − �()) → 0 as
r → ∞. Suppose for some �, � > 0, E|ε111aε111b|2+� < ∞ and E|d11ed11f |2+� < ∞ for
1�a, b�p and 1�e, f � t where ε111a is the ath entry of �111 and d11e is the eth entry of
d11. Suppose also that the third-order moments of �111 and d11 are zero. Then the limiting
distribution of

√
r
(
Ūr − E(Ūr)

)
is N(0, �) and � is given by

� = � + 1

cn
H1 ⊗ (

� − (Ip2 + Kp + vec(I )vec(I )′)
)

+1

c
H3 ⊗ (

�2 − (Ip2 + Kp)(�(d) ⊗ �(d)) − vec(�(d))vec(�(d))′)
)

where � = (�ij ) is a 3 × 3 block matrix with �11 = (I + Kp)((I + �(d)) ⊗ (I + �(d)) +
(I +�(d))⊗�()+�()⊗(I +�(d))) , �22 = (c−1)(I +Kp)((Ip +�(d))⊗(Ip +�(d))),
�33 = c(n − 1)(I + Kp), �ij = 0 for i �= j , H1, H3, � and �2 are as defined in Section
3.2.

Proof. It should be noted that unlike the previous cases Ui’s are not identically distributed.
We will, however, appeal to the Lindeberg Feller Version of the central Limit Theorem, as
in [8], to establish asymptotic normality.

To find the expression for the asymptotic variance, we start out by expressing U
()
i , U(d)

i

and U
(e)
i as quadratic forms as before. That is,

U
()
i =

(
Ei + (1c ⊗ 1n)�

′
i�

−1/2 + (Ic ⊗ 1n)DiM
′�−1/2

)′[ 1

nc
Jc ⊗ Jn

]

×
(
Ei + (1c ⊗ 1n)�

′
i�

−1/2 + (Ic ⊗ 1n)DiM
′�−1/2

)
,

U
(d)
i =

(
Ei + (Ic ⊗ 1n)DiM

′�−1/2
)′[1

n

(
Ic − 1

c
Jc

)
⊗ Jn

]

×
(
Ei + (Ic ⊗ 1n)DiM

′�−1/2
)

and

U
(e)
i = E ′

i

[
Ic ⊗

(
In − 1

n
Jn

)]
Ei ,

where Ei and Di are as defined in the previous section.
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For the normal model, i.e. Ei ∼ N(0, Ic ⊗ In ⊗ Ip), ai ∼ N(0, Is) and Di ∼ N(0, Ic ⊗
Ip), we see that U

()
i ∼ Wp(1, I + �(d), �()

i ), U
(d)
i ∼ Wp(c − 1, I + �(d)) and U

(e)
i ∼

Wp(c(n − 1), I ). Moreover, U
()
i , U

(d)
i and U

(e)
i are mutually independent.

Now applying Lemma 2.2, we get,

V arN(U
()
i ) = (I + Kp)((I + �(d)) ⊗ (I + �(d))

+(I + �(d)) ⊗ �()
i + �()

i ⊗ (I + �(d))),

V arN(U
(d)
i ) = (c − 1)(I + Kp)((Ip + �(d)) ⊗ (Ip + �(d)))

and

V arN(U
(e)
i ) = c(n − 1)(I + Kp).

Hence, in the non-normal case

lim
k→∞

1

k

k∑
i=1

V ar(Ui) = �. �

It can easily be seen that E(U
()
i ) = I +�(d) +�()

i , E(U
(d)
i ) = (c − 1)(I +�(d)) and

E(U
(e)
i ) = c(n − 1)I . Then, as in the previous sections, one can show that

1

r
�−1/2S

()
h �−1/2 = I + �() + 1√

r
Z(),

1

r
�(−1/2)S

(d)
h �−1/2 = (c − 1)(I + �(d)) + 1√

r
Z(d)

and

1

r
�−1/2Se�

−1/2 = c(n − 1)I + 1√
r
Z(e), (3.14)

where

Z() = √
r(Ū ()

r − E(Ū()
r )) + √

r(�̄
()

r − �())

−√
rnc(�−1/2L�̄r + �−1/2M d̄.. + �̄...)(�

−1/2L�̄r + �−1/2M d̄.. + �̄...)
′,

Z(d) = √
r(Ū (d)

r − E(Ū(d)
r )) − √

rn

c∑
j=1

(�−1/2M(d̄.j − d̄..) + (�̄.j. − �̄...))

×(�−1/2M(d̄.j − d̄..) + (�̄.j. − �̄...))
′



164 A.K. Gupta et al. / Journal of Multivariate Analysis 97 (2006) 148–178

and

Z(e) = √
r(Ū (e)

r − E(Ū(e)
r ).

Denote Z = (Z(), Z(d), Z(e)). Since Z = √
r
(
Ūr − E(Ūr)

) + op(1), we obtain the
following corollary.

Corollary 3.6. Under the assumptions of Lemma 3.3, Z is asymptotically normally
distributed with mean 0 and variance �.

Let us define T̃
()
i and T̃

(d)
i , i = 1, 2, 3, analogous to (3.10) and (3.12) . By comparing

(3.9) and (3.14), it is not hard to see that,

T̃
()
i = tr A

()
i Z() + tr B

()
i Z(d) + Op

(
1√
r

)

and

T̃
(d)
i = tr A

(d)
i Z(d) + tr B

(d)
i Z(e) + Op

(
1√
r

)
for i = 1, 2, 3,

where the coefficient matrices A
(.)
i and B

(.)
i are as given in (3.11) and (3.13) except that we

need to replace every occurrence of a by .
Hence, we have proved the following Theorem.

Theorem 3.4. Under the assumptions of Lemma 3.3, T̃ (d)
i and T̃

()
i will each have asymp-

totic normal distribution with means 0 and variances, respectively,

�2(d)
i = 2tr(A

(d)
i (Ip + �(d)))2 + 2c(n − 1)tr(B

(d)
i )2 + R

(d)
i + T

(d)
i

�2()
i = 2tr(A

(a)
i (I + �(d)))2 + 2c(n − 1)tr(B

(a)
i )2

+4tr(A
()
i (I + �(d))A

()
i �()) + R

()
i + S

()
i + T

()
i ,

where

R
(d)
i = vec(C

(d)
i )′

[
1

cn
H1 ⊗ (� − (Ip2 + Kp) − vec(I )vec(I )′)

]
vec(C

(d)
i ),

T
(d)
i = vec(C

(d)
i )′

[
1

c
H3 ⊗ (�2 − (Ip2 + Kp)(�(d) ⊗ �(d))

−vec(�(d))vec(�(d))′)
]

vec(C
(d)
i ),

R
()
i = vec(C

()
i )′

[
1

cn
H1 ⊗ (� − (Ip2 + Kp) − vec(I )vec(I )′)

]
vec(C

()
i ),

S
()
i = vec(A

()
i )′

(
�1 − (Ip2 + Kp)(�() ⊗ �()) − vec(�())vec(�())′

)
vec(A

()
i ),
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T
()
i = vec(C

()
i )′

[
1

c
H3 ⊗ (�2 − (Ip2 + Kp)(�(d) ⊗ �(d)),

−vec(�(d))vec(�(d))′)
]

vec(C
()
i ),

where C
(d)
i = (0, A

(d)
i , B

(d)
i ) and C

()
i = (A

()
i , 0, B

()
i ).

The assumptions of zero third-order moments for �111 and d11 appear strong. However,
these assumptions are crucial for the computation of the variances. They are very helpful
in simplifying the expression for the variances as given in Lemma 3.3 and Theorem 3.4.
Moreover, these assumptions are not needed for the null distributions.

It may be noted that Ui’s are identically distributed if �(d) = 0 and �() = 0. Conse-
quently, we can drop the conditions of the theorem and get the following result.

Corollary 3.7. Suppose �(d) = 0 and �()
j = 0, j = 1, . . . , r . Then,

�2(d)
i = 2p(c − 1)

(
1 + (c − 1)

(cn − 1)

)

and

�2()
i = 2p

(
1 + 1

c − 1

)

for i = 1, 2, 3.

Clearly, null robustness is exhibited by the three statistics.

3.4. The general balanced mixed model

Now, we return to the case where there are arbitrarily many effects. We use more involved
notations adopted from [10]. In the general balance MANOVA model the p × 1 vector of
observations can be expressed as,

yϑ =

+1∑
j=0

Lj g(j)

ϑj
,

where ϑ = {k1, k2, . . . , ks} is a complete set of subscripts with ki = 1, . . . , ai , ϑj is the set

of subscripts of the j th effect g(j)

ϑj
. For 0�j � t , g(j)

ϑj
are fixed effects and Lj = Ip. For

t + 1�j �
, g(j)

ϑj
are random effects and Lj is a p × rj matrix of rank rj �p. And g(
+1)

ϑ
+1
is

the error term and L
+1 = �−1/2 is p ×p positive definite matrix. Note that since ϑ0 is the
set of subscripts for the grand mean effect, it is empty set, and ϑ
+1 = ϑ since it is the set
subscripts for the error term. Due to the balanced property of the model, the total sample

size equals
s∏

i=1
ai . We assume that g(j)

ϑj
are mutually independent for all possible values of

ϑj and t + 1�j �
 + 1.
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The design matrices Xi and Ai of (1.1) can be expressed as Kronecker products of an
identity matrices and vectors of ones of appropriate dimensions. More precisely, (1.1) can
be written as,

Y =

+1∑
i=1

HiBi ,

where Bi is a matrix whose columns are g(i)

ϑi
, Hi = ⊗s

j=1Cij and Cij =
{

Iaj
if kj ∈ ϑi ,

1aj
if kj /∈ ϑi .

Let Y ′PjY be the sum of squares associated with the jth effect. It is known that Pj is
symmetric and idempotent. The following lemma is proved in [10].

Lemma 3.4. Let Aj = HjH
′
j and bj = ∏

kl /∈ϑj

al . Then

Pj =

+1∑
i=0

�ji

bi

Ai,

where �ji ∈ {−1, 0, 1}.

We want to study the distribution of the three multivariate statistics when the number
of levels of one of the main effects goes to infinity. With out loss of generality, we may
consider the case when a1 → ∞ and a2, . . . , as are fixed. Let us define � := {j : 0�j �
+
1 and k1 ∈ ϑj }. We will concern ourselves with testing the significance of the jth effect
for j ∈ � because those are the only effects for which the hypothesis degrees of freedom
goes to infinity as a1 → ∞. We can write,

Pj =
∑
�

�ji

bi

Ai +
∑
�c

�ji

bi

Ai. (3.15)

Then by virtue of the above lemma and the structure of Ai for k1 ∈ ϑi ,

Y ′PjY =
a1∑

k1=1

Y ′
k1

[ ∑
�

�ji

bi

A∗
i

]
Yk1 + Y ′

⎡
⎣∑

�c

�ji

bi

Ai

⎤
⎦ Y, (3.16)

where Yk1 = (yk111···1, . . . , yk1a2a3···as
)′, A∗

j = H ∗
j H ∗

j
′, H ∗

j = ⊗s
j=2Cij and Cij is as

defined before.
For j ∈ �, suppose we are interested in testing the significance of the jth effect. Let S(j)

be the sum of squares and products associated with the jth effect. Suppose there exists a
random effect, say lth effect, whose associated mean square has the same expectation as
that of jth effect under the null hypothesis. Needless to say l ∈ �. Let S(l) denote the sum
of square associated with that random effect. Define

U
(j)
k1

= Y ′
k1

[ ∑
�

�ji

bi

A∗
i

]
Yk1 and U

(l)
k1

= Y ′
k1

[ ∑
�

�li

bi

A∗
i

]
Yk1 . (3.17)
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Let us assume that there exist constant matrices �(j) and �(l) such that
√

a1(E(Ū
(j)
a1 ) −

(I + �(j))) → 0 and
√

a1(E(Ū
(l)
a1 ) − (I + �(l))) → 0. It can easily be seen that

1

a1
�−1/2S(.)�−1/2 = I + �(.) + 1√

a1
Z(.), (3.18)

where

Z(.) = √
a1(Ū

(.)
a1

− E(Ū(.)
a1

)) + √
a1(E(Ū (.)

a1
) − �(.)) + 1√

a1
Y ′[ ∑

�c

�.i

bi

Ai

]
Y.

(3.19)

Put Uk1 = (U
(j)
k1

, U
(j)
k1

), Z = (Z(j), Z(l)) and � = (�(j), �(j)). Noting the fact that
1√
a1

Y ′
[ ∑

�c

�.i

bi
Ai

]
Y

p→ 0, it is clear that Z and
√

a1(Ūa1 −E(Ūa1)) have the same asymptotic

distribution. The remaining part of the work is pretty similar to Sections 3.1–3.3.

4. Unbalanced mixed model

We consider the one-way random effect model to show the results for balanced mixed
model given in Section 3 can be extended to the unbalanced case. As it turns out we will
need some restrictions on the sample sizes to derive our results. It will not be hard to see
that the conditions get more stronger as the number of factors in the model increases.

Consider the unbalanced model given by

yij = � + Lai + �1/2�ij , j = 1, . . . , ni, i = 1, . . . , k, (4.1)

where �ij , ai , L and � are as defined in Section 3.1 with all the assumptions there.
Suppose we want to test H0 : LL′ = 0 versus H1: not H0.

4.1. Asymptotic distribution of the sum of squares and products

The hypothesis and error sum of squares and products are

Sh =
k∑

i=1

ni(ȳi. − ȳ..)(ȳi. − ȳ..)
′

and

Se =
k∑

i=1

ni∑
j=1

(yij − ȳi.)(yij − ȳi.)
′,

where ȳi. = 1
ni

k∑
j=1

yij and ȳ.. is as defined before.
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Let U
(h)
i , U

(e)
i and Ui be defined as follows:

U
(h)
i := ni(�

−1/2Lai + �̄i.)(�
−1/2Lai + �̄i.)

′,

U
(e)
i :=

n∑
j=1

(�ij − �̄i.)(�ij − �̄i.)
′

and

Ui := (U
(h)
i , U

(h)
i ),

where �̄i. and Ūk are defined in the obvious way.

Let n̄k =
k∑

i=1

ni

k
, ¯̄nk =

k∑
i=1

n2
i

k
and nk =

k∑
i=0

1
kni

. Put �i = ni�−1/2LL′�−1/2 and

�̄k = n̄k�−1/2LL′�−1/2. We can prove the following result in a similar way as Lemma
3.1.

Lemma 4.1. Suppose there exist real numbers n̄, ¯̄n and n such that
√

k(n̄k − n̄) → 0,√
k( ¯̄nk − ¯̄n) → 0 and

√
k(nk − n) → 0 as k → ∞. Suppose also that for some �, � > 0,

E|ε11sε11t |2+� < ∞ and E|a1la1m|2+� < ∞ for 1�s, t �p and 1� l, m�r where ε11s

is the sth entry of �11 and a1l is the lth entry of a1. Then, the limiting distribution of√
k(Ūk − E(Ūk)) is N(0, �) and � is given by,

� = � + C ⊗ (� − Ip2 − (Kp + vec(I )vec(I )′))

+ ¯̄n
n̄2 H ⊗ (�1 − (Ip2 + Kp)(� ⊗ �) − vec(�)vec(�)′)

where

�1 = n̄2E(vec(�−1/2Laia′
iL

′�−1/2)vec(�−1/2Laia′
iL

′�−1/2)′),

� = n̄�−1/2LL′�−1/2, � = (�ij ) is a 2 × 2 block matrix with �11 = (I + Kp)(Ip +
� ⊗ I + I ⊗ � + ¯̄n

n̄2 � ⊗ �), �22 = (n̄ − 1)(Ip2 + Kp),�′
21 = �12 = 0, C = (cij ) is a

2 × 2 matrix with c11 = n, c21 = c12 = (1 − n) and c22 = (n̄ + n − 2), H = (hij ) is a
2 × 2 matrix with h11 = 1 and h12 = h21 = h22 = 0.

Proof. Normality follows by a similar type of Lindeberg–Feller argument as in [8]. The
limiting variance can be derived as in the proof of Lemma 3.1 but in this case,

� = lim
k→∞

1

k

k∑
i=1

V ar(Ui). �

We note that E(Ū
(h)
k ) = I + �̄k and E(Ū

(e)
k ) = (n̄k − 1)I , it can be verified that

1

k
�−1/2Sh�

−1/2 = I + � + 1√
k
Z(h)
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and

1

k
�−1/2Se�

−1/2 = (n̄ − 1)I + 1√
k
Z(e),

where Z(h) = √
k
(
Ū

(h)
k −E(Ū

(h)
k )

)+√
k(�̄k −�)−√

kn̄k(�̄.. +�−1/2āk)(�̄.. +�−1/2āk)
′,

Z(e) = √
k
(
Ū (e) − E(Ū(e))

) + √
(n̄k − n̄) and āk = 1

k

k∑
i=1

ai .

Putting Z = (Z(h), Z(e)) we can get the following as a consequence of Lemma 4.1.

Corollary 4.1. Under the assumptions of Lemma 4.1, Z is asymptotically normally dis-
tributed with mean 0 and variance �.

Proof. It can easily be seen that
√

kn(Lāk + �−1/2�̄..)(Lāk + �−1/2�̄..)
′ p→ 0 and

√
k(�̄k − �)

as k → ∞. As a result

Z = √
k(Ūk − E(Ūk)) + op(1). �

4.2. Distribution of test statistics

Let T̃i be as in (3.7) but replacing n with n̄. Here also we can write

T̃i = tr A
(h)
i Z(h) + tr A

(e)
i Z(e) + Op

(
1√
k

)
(4.2)

for i = 1, 2, 3 where A
(h)
i and A

(e)
i are defined as in Section 3.1 but replacing n with n̄. As

in the previous sections we get the following theorem.

Theorem 4.1. If the assumptions of Lemma 4.1 hold, then T̃i is asymptotically normally
distributed with mean 0 and variance �2

i given by

�2
i = 2tr(A

(h)
i )2 + 4tr(A

(h)
i �) + 2

¯̄n
n̄2 tr(A

(h)
i �)2 + 2(n̄ − 1)tr(A

(e)
i )2 + Ri + Si,

where

Ri = vec(Ai)
′(C ⊗ (� − I 2

p − Kp − vec(I )vec(I )′)
)
vec(Ai),

Si = vec(A
(h)
i )′

[
�1 − (Ip2 + Kp)(� ⊗ �) − vec(�)vec(�)′

]
vec(A

(h)
i )

and Ai = (A
(h)
i , A

(e)
i ).

Under the null hypothesis (� = 0), we get simpler expression for the variances of T̃i .
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Corollary 4.2. Under the assumptions of Lemma 4.1, the asymptotic variances of T̃i , i =
1, 2, 3 under the null hypotheses are:

�2
i = n̄(n̄n − 1)

(n̄ − 1)2 �(1)
4 + 2n̄p

n̄ − 1
,

where �(1)
4 =

p∑
a,b

�aabb, �aabb = E(ε2
11aε

2
11b) − 2�ab − 1 are fourth-order cumulants and

�ab = 1 when a = b and �ab = 0 when a �= b.

It may be noted that �(1)
4 is the multivariate measure of kurtosis suggested by Mardia

[13]. It is known that �(1)
4 = 0 when �11 is normal. Thus, it is clear from Corollary 4.2 that,

in general, the null and non-null distributions of the three test statistics are not stable against
departure from normality.

The extension to the unbalanced two-way random and mixed effects model can be ob-
tained in a similar way. But it is not hard to imagine that more stronger assumptions will be
needed on the sample sizes. The extension to the general unbalanced mixed model (as done
in Section 3.4 for the balanced cases) is not easy to come by at this point. In the balanced
mixed model the situation is simplified by the fact that the design matrices can be written
as the kronecker products of the identity matrices and a vector of ones.

5. Simulation study

In this section, we assess the numerical accuracy of the asymptotic distributions for one-
way random effect model. We assume multivariate skew t distribution with 12 degrees of
freedom for both the error and random effect. For the definition and properties of multivariate
skew t distribution see [7]. Gupta uses the notation MST
(�) for the multivariate skew t

distribution with skewness parameter � and degrees of freedom 
. It must be noted that
values of � away from 0 provide higher skewness and larger values of 
 provide lesser
kurtosis.

In our simulation study, we consider the values 2 and 3 for p and the values 15, 20,
30 and 40 for k. The p-dimensional skewness parameter vectors we consider are � =
(0, 0, . . . , 0)′ and (1, 1, . . . , 1)′. We will consider three sample size structures. They are
ni = 5 for i = 1, . . . , k; n1 = 8 and ni = 5 for i = 2, . . . , k; and n1 = · · · = n5 = 8
and ni = 5 for i = 6, . . . , k. We will denote the three structures as n = 1, 2 and 3,
respectively. For the alternative point we use � = dn̄� with values 0.1 and 0.2 for d, and
diag{1, 0, . . . , 0} + 1p ⊗ 1′

p for �.
In Tables 1 and 2 are displayed the achieved test sizes when sampling is done from

MST12(�) and MST35(�), respectively. It is clear from these tables that the asymptotic
approximation for the null distribution does a pretty good job for LR statistic. In the cases
of LH and BNP, we see that the asymptotic results lead to liberal and conservative rejection
regions, respectively. It is also clear that large value of p requires large value of k. We also
observe that the effects of skewness and kurtosis are not considerable.

Tables 3–6 display simulated powers and theoretical powers for 5% test size. Note that the
theoretical powers do not depend on the skewness parameter �. Similar patterns as exhibited
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Table 1
Achieved 5% and 1% test sizes when sampling from MST12(�)

p k n 5% 1%

� = (0, 0, 0)′ � = (1, 1, 1)′ � = (0, 0, 0)′ � = (1, 1, 1)′

LR LH BNP LR LH BNP LR LH BNP LR LH BNP

2 15 1 4.8 6.3 3.3 5.0 6.5 3.5 1.5 2.4 0.9 1.6 2.6 0.8
2 20 1 4.8 6.3 3.5 4.8 6.3 3.7 1.5 2.1 0.9 1.4 2.2 0.8
2 30 1 4.9 6.1 4.0 5.2 6.4 4.1 1.4 2.1 1.0 1.4 2.0 0.9
2 40 1 4.7 5.5 3.9 4.5 5.5 3.8 1.3 1.7 0.9 1.2 1.8 0.8
2 15 2 4.6 6.1 3.3 4.8 6.5 3.6 1.3 2.3 0.7 1.3 2.4 0.7
2 20 2 4.7 6.0 3.4 4.9 6.3 3.7 1.4 2.0 0.9 1.5 2.2 0.9
2 30 2 4.7 5.7 3.9 4.8 5.8 3.9 1.4 2.0 0.9 1.5 2.0 1.0
2 40 2 4.4 5.3 3.6 4.8 5.8 4.0 1.2 1.5 0.9 1.4 1.7 1.0
2 15 3 4.8 6.1 3.6 4.9 6.4 3.6 1.3 2.1 0.6 1.7 2.4 1.0
2 20 3 4.8 5.8 3.8 4.6 5.7 3.5 1.4 2.1 1.0 1.4 1.9 0.8
2 30 3 4.8 5.6 3.9 5.1 6.0 4.1 1.3 1.8 0.9 1.4 2.0 0.9
2 40 3 4.4 5.4 3.7 4.7 5.4 3.9 1.1 1.5 0.9 1.3 1.6 0.9
3 15 1 5.0 7.5 2.9 4.6 7.2 2.7 1.4 3.0 0.6 1.5 2.7 0.6
3 20 1 4.6 6.8 3.1 5.1 7.2 3.3 1.1 2.2 0.5 1.4 2.6 0.7
3 30 1 4.7 6.5 3.4 5.0 6.8 3.5 1.3 2.3 0.7 1.3 2.1 0.7
3 40 1 5.0 6.5 3.9 4.9 6.3 3.6 1.3 2.0 0.8 1.4 1.9 0.9
3 15 2 4.8 7.1 3.0 4.9 7.6 3.0 1.3 2.7 0.6 1.4 2.7 0.7
3 20 2 4.6 6.4 3.1 4.5 6.5 3.0 1.3 2.1 0.7 1.3 2.3 0.7
3 30 2 4.6 6.2 3.2 4.6 6.1 3.0 1.2 1.9 0.8 1.1 1.8 0.7
3 40 2 4.5 5.9 3.4 4.8 6.1 3.7 1.1 1.7 0.8 1.4 1.9 1.0
3 15 3 4.4 6.4 3.0 4.4 6.5 2.9 1.3 2.3 0.7 1.2 2.2 0.6
3 20 3 4.7 6.4 3.1 4.5 6.4 3.2 1.2 2.2 0.7 1.2 2.1 0.7
3 30 3 4.5 5.9 3.4 4.9 6.6 3.7 1.3 2.0 0.7 1.3 2.0 0.8
3 40 3 4.7 5.9 3.6 4.3 5.3 3.4 1.2 1.7 0.8 1.0 1.6 0.7

by the null case is observed in the non-null case. In a simulation study not reported here,
we have been able to observe similar pattern for 1% test size. Also, as expected, numerical
and theoretical powers approached 1.000 quickly as d and/or k gets larger.

6. Concluding remarks

We derived the asymptotic distribution of the three commonly used multivariate test
statistics, namely LR, LH and BNP statistics, for testing hypotheses on the fixed and random
effects of multivariate mixed linear models. The asymptotic framework is as the number of
levels of one of the main factors goes to infinity. This essentially means, both the hypothesis
and error degrees of freedom go to infinity at a fixed rate.

We found, under no distributional assumptions on the error and random effects, the asymp-
totic distributions of the three test statistics to be normal. In our approach, it was necessary
to make some usual type restrictions on the non-centrality parameter and symmetric error
structure to establish normality in the non-null case when both fixed and random effects
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Table 2
Achieved 5% and 1% test sizes when sampling from MST35(�)

p k n 5% 1%

� = (0, 0, 0)′ � = (1, 1, 1)′ � = (0, 0, 0)′ � = (1, 1, 1)′

LR LH BNP LR LH BNP LR LH BNP LR LH BNP

2 15 1 4.5 5.9 3.3 5.0 6.7 3.8 1.5 2.5 0.9 1.7 2.7 1.0
2 20 1 4.5 5.9 3.5 4.4 5.8 3.4 1.2 1.9 0.7 1.1 2.0 0.7
2 30 1 4.9 5.9 3.9 5.2 6.4 4.4 1.4 1.9 0.9 1.7 2.2 1.1
2 40 1 4.9 5.9 4.1 4.6 5.4 3.8 1.4 2.1 1.0 1.2 1.7 0.9
2 15 2 4.5 6.1 3.1 4.8 6.5 3.4 1.2 2.2 0.7 1.5 2.5 0.8
2 20 2 5.1 6.4 3.9 4.8 6.2 3.6 1.6 2.3 1.0 1.2 1.8 0.8
2 30 2 4.7 5.7 3.8 5.2 6.3 4.1 1.4 2.0 1.0 1.5 2.2 1.0
2 40 2 5.2 6.1 4.5 4.8 5.9 4.0 1.3 1.9 1.0 1.3 1.8 0.9
2 15 3 4.5 5.5 3.2 4.3 5.7 3.2 1.3 2.0 0.8 1.1 1.8 0.6
2 20 3 4.7 5.9 3.5 4.9 6.0 3.7 1.3 1.9 0.9 1.4 2.1 0.9
2 30 3 5.2 6.0 4.3 4.7 5.7 3.8 1.4 2.0 1.0 1.3 1.8 0.8
2 40 3 4.9 5.6 4.1 5.1 5.8 4.2 1.4 1.9 1.0 1.3 1.8 1.0
3 15 1 4.5 7.1 2.8 4.8 7.3 2.8 1.3 2.7 0.6 1.4 2.6 0.5
3 20 1 4.7 6.6 3.2 4.9 7.0 3.1 1.3 2.4 0.7 1.4 2.5 0.7
3 30 1 4.6 6.3 3.2 4.9 6.8 3.3 1.1 1.8 0.7 1.3 2.1 0.7
3 40 1 4.8 6.1 3.6 5.1 6.4 3.8 1.2 1.9 0.8 1.4 2.1 0.9
3 15 2 4.8 7.0 2.9 4.8 7.1 3.0 1.4 2.6 0.6 1.4 2.7 0.6
3 20 2 4.8 7.2 3.2 4.8 7.0 3.3 1.3 2.3 0.7 1.4 2.4 0.8
3 30 2 4.7 6.4 3.5 4.6 6.2 3.4 1.2 1.9 0.7 1.1 1.9 0.7
3 40 2 5.0 6.3 3.8 4.9 6.4 3.7 1.5 2.1 0.9 1.3 1.9 0.9
3 15 3 4.2 6.3 2.9 4.5 6.7 3.1 1.2 2.1 0.6 1.4 2.4 0.8
3 20 3 4.7 6.5 3.3 4.7 6.7 3.2 1.4 2.2 0.7 1.4 2.3 0.9
3 30 3 4.6 6.2 3.5 5.0 6.5 3.7 1.2 2.0 0.8 1.2 1.9 0.7
3 40 3 5.0 6.2 3.7 5.1 6.7 4.0 1.3 1.8 0.9 1.4 2.0 0.9

exist in the model. Indeed, the conditions were only needed for testing the fixed effects. In
the pure random effects model, only the i.i.d. version of Central Limit Theorem is needed.
In the unbalanced case, we require the convergence of some partial sums of the sample
sizes.

Appendix A.

A.1. Details for Section 2

We first generalize Theorem 2.1 in [8] to the case when the covariance of the random
matrix in the quadratic form is non-negative definite.

Lemma A.1. Let E = (�1, �2, . . . , �n)
′ be an n × p matrix whose rows are identically and

independently distributed vectors with E(�1) = 0, V ar(�1) = �ε(�0) and finite fourth-
order moment � = E(vec(�1�

′
1)vec(�1�

′
1)

′). Suppose Bi , i = 1, . . . , q, are n×n symmetric
matrices with equal diagonal elements. Define Q = (Q1, Q2, . . . , Qq) with Qi = E ′BiE .
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Table 3
Simulated and theoretical powers when sampling from MST12(�) with p = 2

d k n Simulated Theoretical

� = (0, 0, 0)′ � = (1, 1, 1)′

LR LH BNP LR LH BNP LR LH BNP

0.1 15 1 0.580 0.579 0.569 0.677 0.691 0.655 0.668 0.689 0.637
0.1 20 1 0.699 0.703 0.689 0.771 0.781 0.758 0.745 0.759 0.724
0.1 30 1 0.826 0.832 0.817 0.896 0.903 0.886 0.851 0.854 0.842
0.1 40 1 0.905 0.910 0.899 0.956 0.960 0.949 0.913 0.911 0.911
0.2 15 1 0.879 0.880 0.871 0.921 0.928 0.911 0.899 0.883 0.904
0.2 20 1 0.950 0.950 0.945 0.970 0.972 0.967 0.945 0.928 0.953
0.2 30 1 0.991 0.992 0.990 0.996 0.997 0.995 0.984 0.972 0.989
0.2 40 1 0.997 0.998 0.997 1.000 1.000 1.000 0.995 0.989 0.998
0.1 15 2 0.609 0.617 0.602 0.686 0.698 0.671 0.687 0.706 0.659
0.1 20 2 0.698 0.702 0.689 0.798 0.804 0.783 0.759 0.771 0.740
0.1 30 2 0.837 0.843 0.829 0.911 0.916 0.904 0.858 0.860 0.851
0.1 40 2 0.904 0.910 0.897 0.959 0.964 0.953 0.917 0.915 0.916
0.2 15 2 0.896 0.900 0.888 0.931 0.937 0.924 0.908 0.890 0.915
0.2 20 2 0.949 0.951 0.946 0.975 0.976 0.971 0.949 0.932 0.959
0.2 30 2 0.990 0.991 0.987 0.997 0.997 0.996 0.985 0.974 0.991
0.2 40 2 0.998 0.998 0.998 1.000 1.000 1.000 0.996 0.990 0.998
0.1 15 3 0.687 0.692 0.677 0.772 0.781 0.759 0.753 0.761 0.737
0.1 20 3 0.761 0.762 0.752 0.840 0.847 0.831 0.808 0.812 0.797
0.1 30 3 0.859 0.868 0.853 0.931 0.936 0.924 0.885 0.883 0.882
0.1 40 3 0.936 0.940 0.930 0.969 0.972 0.965 0.933 0.928 0.933
0.2 15 3 0.931 0.934 0.927 0.962 0.964 0.959 0.934 0.913 0.947
0.2 20 3 0.969 0.968 0.967 0.985 0.986 0.983 0.963 0.945 0.974
0.2 30 3 0.992 0.993 0.991 0.998 0.998 0.997 0.989 0.978 0.994
0.2 40 3 0.999 0.999 0.999 1.000 1.000 1.000 0.997 0.991 0.999

Then,

E(Q) = EN(Q) = nB ⊗ �ε

and

V ar(Q) = V arN(Q) + (nbb′) ⊗ (
� − (I + Kp)(�ε ⊗ �ε) − vec(�ε)vec(�ε)

′),
where b = (bi11) is a q × 1 vector and bi11 is the (1, 1)th entry of the matrix Bi .

Proof. That E(Q) = EN(Q) is obvious. Indeed,

E(E ′BiE) = (tr Bi)V ar(�1) = nbi11�ε.

For the second part, we note that

E(vec(Qi)vec(Qj )
′) =

n∑
l=1

n∑
m=1

n∑
l′=1

n∑
m′=1

bilmbjl′m′E(vec(�l�
′
m)vec(�l′�

′
m′)′).
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Table 4
Simulated and theoretical powers when sampling from MST12(�) with p = 3

d k n Simulated Theoretical

� = (0, 0, 0)′ � = (1, 1, 1)′

LR LH BNP LR LH BNP LR LH BNP

0.1 15 1 0.619 0.641 0.590 0.764 0.785 0.727 0.704 0.730 0.664
0.1 20 1 0.740 0.757 0.716 0.853 0.870 0.829 0.783 0.799 0.753
0.1 30 1 0.874 0.884 0.854 0.949 0.959 0.933 0.884 0.889 0.870
0.1 40 1 0.936 0.944 0.922 0.984 0.987 0.977 0.939 0.938 0.933
0.2 15 1 0.907 0.918 0.893 0.962 0.968 0.946 0.923 0.906 0.922
0.2 20 1 0.967 0.972 0.957 0.988 0.990 0.983 0.962 0.946 0.965
0.2 30 1 0.996 0.997 0.994 0.999 0.999 0.998 0.991 0.982 0.994
0.2 40 1 0.999 0.999 0.998 1.000 1.000 1.000 0.998 0.994 0.999
0.1 15 2 0.652 0.665 0.633 0.789 0.801 0.760 0.723 0.745 0.687
0.1 20 2 0.773 0.783 0.749 0.874 0.888 0.844 0.797 0.810 0.770
0.1 30 2 0.865 0.878 0.849 0.959 0.966 0.946 0.891 0.894 0.878
0.1 40 2 0.939 0.948 0.924 0.986 0.989 0.980 0.942 0.941 0.937
0.2 15 2 0.924 0.930 0.912 0.966 0.971 0.957 0.930 0.912 0.932
0.2 20 2 0.971 0.974 0.965 0.991 0.992 0.985 0.965 0.949 0.970
0.2 30 2 0.995 0.996 0.993 0.999 1.000 0.999 0.992 0.983 0.994
0.2 40 2 0.999 1.000 0.999 1.000 1.000 1.000 0.998 0.994 0.999
0.1 15 3 0.725 0.733 0.705 0.849 0.862 0.825 0.788 0.798 0.767
0.1 20 3 0.815 0.826 0.796 0.917 0.925 0.900 0.842 0.847 0.827
0.1 30 3 0.907 0.915 0.893 0.972 0.978 0.962 0.914 0.913 0.908
0.1 40 3 0.954 0.960 0.947 0.990 0.992 0.987 0.954 0.951 0.952
0.2 15 3 0.957 0.960 0.949 0.982 0.985 0.976 0.953 0.931 0.962
0.2 20 3 0.983 0.985 0.979 0.995 0.996 0.993 0.976 0.959 0.983
0.2 30 3 0.998 0.998 0.997 1.000 1.000 0.999 0.994 0.986 0.997
0.2 40 3 1.000 1.000 0.999 1.000 1.000 1.000 0.999 0.995 0.999

Further we observe that

E(vec(�l�
′
m)vec(�l′�

′
m′)′) = EN(vec(�l�

′
m)vec(�l′�

′
m′)′)

unless l = m = l′ = m′.
Let the rank of �ε be r. It is obvious that under normality, we can write �l�

′
l

d= Laa′L
where a ∼ N(0, Ir ) and LL′ is rank factorization of �ε. Therefore,

EN(vec(�l�
′
l )vec(�l�

′
l )

′) = (L ⊗ L)
[
E(vec(aa′)vec(aa′)′)

]
(L′ ⊗ L′).

Noting that aa′ ∼ Wr(1, Ir ), we can appeal to Lemma 2.2 to get,

EN(vec(�l�
′
l )vec(�l�

′
l )

′)
= (L ⊗ L)

[
(I + Kr + vec(Ir )vec(Ir )

′)(Ir ⊗ Ir )

+vec(Ir )vec(Ir )
′](L′ ⊗ L′) (A.1)
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Table 5
Simulated and theoretical powers when sampling from MST35(�) with p = 2

d k n Simulated Theoretical

� = (0, 0, 0)′ � = (1, 1, 1)′

LR LH BNP LR LH BNP LR LH BNP

0.1 15 1 0.583 0.589 0.573 0.691 0.699 0.670 0.673 0.696 0.641
0.1 20 1 0.702 0.708 0.687 0.791 0.798 0.773 0.753 0.767 0.730
0.1 30 1 0.822 0.832 0.815 0.914 0.921 0.902 0.859 0.862 0.849
0.1 40 1 0.922 0.927 0.914 0.963 0.967 0.958 0.920 0.919 0.917
0.2 15 1 0.886 0.890 0.879 0.935 0.937 0.927 0.912 0.897 0.916
0.2 20 1 0.954 0.956 0.949 0.977 0.979 0.974 0.955 0.940 0.961
0.2 30 1 0.991 0.991 0.990 0.997 0.998 0.997 0.988 0.979 0.992
0.2 40 1 0.999 0.999 0.998 1.000 1.000 1.000 0.997 0.993 0.999
0.1 15 2 0.602 0.613 0.590 0.710 0.715 0.687 0.694 0.713 0.665
0.1 20 2 0.707 0.717 0.696 0.807 0.821 0.789 0.767 0.779 0.747
0.1 30 2 0.838 0.847 0.827 0.914 0.919 0.905 0.867 0.869 0.859
0.1 40 2 0.919 0.923 0.913 0.963 0.968 0.957 0.925 0.923 0.923
0.2 15 2 0.900 0.905 0.895 0.946 0.949 0.939 0.921 0.905 0.927
0.2 20 2 0.958 0.959 0.954 0.980 0.981 0.976 0.959 0.944 0.966
0.2 30 2 0.992 0.992 0.989 0.997 0.998 0.996 0.989 0.980 0.993
0.2 40 2 0.998 0.998 0.998 1.000 1.000 0.999 0.997 0.993 0.999
0.1 15 3 0.709 0.716 0.701 0.779 0.788 0.768 0.763 0.772 0.746
0.1 20 3 0.764 0.768 0.754 0.856 0.862 0.846 0.818 0.822 0.807
0.1 30 3 0.880 0.884 0.872 0.939 0.943 0.930 0.894 0.893 0.891
0.1 40 3 0.937 0.941 0.932 0.975 0.976 0.969 0.940 0.936 0.940
0.2 15 3 0.942 0.944 0.939 0.967 0.969 0.962 0.947 0.928 0.958
0.2 20 3 0.973 0.974 0.970 0.988 0.988 0.986 0.972 0.957 0.980
0.2 30 3 0.995 0.995 0.995 0.998 0.999 0.998 0.993 0.985 0.996
0.2 40 3 1.000 1.000 1.000 1.000 1.000 1.000 0.998 0.995 0.999

Applying the well-known identity Kmn(An×p ⊗ Bm×q) = (B ⊗ A)Kqp (see [9]) to (A.1),
we get,

EN(vec(εlε
′
l )vec(εlε

′
l )

′) = (I + Kp + vec(I )vec(I )′)(�ε ⊗ �ε)

+vec(�ε)vec(�ε)
′.

Consequently,

E(vec(Qi)vec(Qj )
′) − EN(vec(Qi)vec(Qj )

′)
= � − (Ip2 + Kp + vec(I )vec(I )′)(�ε ⊗ �ε) − vec(�ε)vec(�ε).

Finally, since E(vec(Qi)) = EN(vec(Qi)) by the first part, the desired result
follows. �

Next we extend Lemma A.1 to the case when the random matrix in the quadratic form is
the sum of two-independent random matrices.

Corollary A.1. In Lemma A.1, let �ε > 0 and Qi = Qi(E, T ) = (E +LiT )′Bi(E +LiT )

whereT ′ = (�1, �2, . . . , �s) isp×s matrix whose columns are identically and independently
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Table 6
Simulated and theoretical powers when sampling from MST35(�) with p = 3

d k n Simulated Theoretical

� = (0, 0, 0)′ � = (1, 1, 1)′

LR LH BNP LR LH BNP LR LH BNP

0.1 15 1 0.635 0.650 0.603 0.779 0.800 0.740 0.711 0.738 0.669
0.1 20 1 0.738 0.755 0.710 0.874 0.888 0.842 0.792 0.809 0.760
0.1 30 1 0.883 0.896 0.860 0.960 0.967 0.947 0.893 0.898 0.877
0.1 40 1 0.941 0.948 0.928 0.989 0.992 0.983 0.946 0.946 0.939
0.2 15 1 0.919 0.927 0.902 0.964 0.971 0.948 0.935 0.921 0.932
0.2 20 1 0.967 0.971 0.959 0.991 0.992 0.986 0.970 0.957 0.972
0.2 30 1 0.996 0.997 0.995 0.999 1.000 0.999 0.994 0.987 0.996
0.2 40 1 0.999 1.000 0.999 1.000 1.000 1.000 0.999 0.996 0.999
0.1 15 2 0.641 0.658 0.608 0.794 0.813 0.760 0.732 0.755 0.693
0.1 20 2 0.754 0.772 0.729 0.884 0.899 0.856 0.806 0.821 0.778
0.1 30 2 0.884 0.900 0.864 0.963 0.971 0.949 0.900 0.904 0.886
0.1 40 2 0.944 0.952 0.932 0.987 0.990 0.981 0.949 0.949 0.943
0.2 15 2 0.930 0.938 0.912 0.974 0.979 0.962 0.943 0.927 0.942
0.2 20 2 0.975 0.979 0.965 0.993 0.994 0.989 0.974 0.960 0.976
0.2 30 2 0.997 0.997 0.994 1.000 1.000 0.999 0.995 0.988 0.996
0.2 40 2 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.996 0.999
0.1 15 3 0.749 0.762 0.732 0.870 0.881 0.850 0.800 0.811 0.777
0.1 20 3 0.815 0.826 0.797 0.918 0.930 0.902 0.854 0.859 0.837
0.1 30 3 0.915 0.924 0.901 0.977 0.981 0.969 0.924 0.924 0.916
0.1 40 3 0.950 0.957 0.942 0.992 0.994 0.989 0.961 0.959 0.958
0.2 15 3 0.962 0.965 0.954 0.988 0.989 0.984 0.964 0.946 0.970
0.2 20 3 0.986 0.988 0.982 0.996 0.997 0.994 0.983 0.970 0.988
0.2 30 3 0.998 0.998 0.997 1.000 1.000 0.999 0.996 0.991 0.998
0.2 40 3 1.000 1.000 0.999 1.000 1.000 1.000 0.999 0.997 1.000

distributed with E(�1) = 0, V ar(�1) = �� (�� �0) and finite fourth-order moment ��. Let
Ci = L′

iBiLi has equal diagonal elements. Then,

E(Q) = EN(Q)

V ar(Q) = V arN(Q) + n(bb′) ⊗ (� − Ip2 − 2Kp)

+s(cc′) ⊗ (�� − (Ip2 + Kp)(�� ⊗ ��) − vec(��)vec(��)
′),

where c = (ci11) is a q × 1 vector of the (1, 1)th entries ci11 of Ci .

Proof. The first part is obvious. For the second part we note that

Qi(E, T ) = Qi(E, 0) + Qi(0, T ) + T ′L′
iBiE + E ′BiLiT . (A.2)

Now in the computation of E(vec(Qi(E, T ))vec(Qj (E, T ))′) the terms involving the third
and fourth terms on the right-hand side of A.2 will have either zero expectation or same
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expectation in the normal and non-normal cases. As a result,

E(vec(Qi(E, �))vec(Qj (E, T ))′) − EN(vec(Qi(E, T ))vec(Qj (E, T ))′)
= E(vec(Qi(E, 0))vec(Qj (E, 0))′) − EN(vec(Qi(E, 0))vec(Qj (E, 0))′)

+E(vec(Qi(0, T ))vec(Qj (0, T ))′) − EN(vec(Qi(0, T ))vec(Qj (0, T ))′).

The desired result follows now from Lemma A.1. �
Finally, we extend Corollary A.1 to cover quadratic forms where the random matrix has

location parameter. The proof goes along the same lines and, hence, is omitted.

Corollary A.2. Let Qi in Corollary A.1 be redefined as Qi = Qi(E, T , Ai) = (E + Ai +
LiT )′Bi(E +Ai +LiT ) where Ai is an n×p fixed matrix. If, in addition to the assumptions
in Corollary A.1, the third-order moments of �1 are zero, then the results of Corollary A.1
still hold.

Lemma 2.1 also follows in a similar manner.
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