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A new high-precision experiment to measure the muon g − 2 factor is proposed. The developed
experiment can be performed on an ordinary storage ring with a noncontinuous and nonuniform field.
When the total length of straight sections of the ring is appropriate, the spin rotation frequency becomes
almost independent of the particle momentum. In this case, a high-precision measurement of an average
magnetic field can be carried out with polarized proton beams. A muon beam energy can be arbitrary.
Possibilities to avoid a betatron resonance are analyzed and corrections to the g − 2 frequency are
considered.

© 2010 Elsevier B.V. Open access under CC BY license.
1. Introduction

Measurement of the anomalous magnetic moment of the muon
is very important because it can in principle bring a discovery of
new physics. Experimental data dominated by the BNL E821 ex-
periment, aexp

μ± = 116 592 080(63) × 10−11 (0.54 ppm), are not con-

sistent with the theoretical result, athe
μ± = 116 591 790(65) × 10−11,

where a = (g − 2)/2. The discrepancy is 3.2σ : aexp
μ± − athe

μ± =
+290(90)× 10−11 [1]. In this situation, the existence of the incon-
sistency should be confirmed by new experiments. The past BNL
E821 experiment [2] was based on the use of electrostatic focusing
at the “magic” beam momentum pm = mc/

√
a (γm = √

1 + 1/a ≈
29.3). An upgraded (but not started up) experiment, E969 [3], with
goals of σsyst = 0.14 ppm and σstat = 0.20 ppm is based on the
same principle.

Since the muon g − 2 experiment is very important, a search
for new methods of its performing is necessary. One of new meth-
ods has been proposed by Farley [4]. Its main distinctions from
the usual g − 2 experiments are (i) noncontinuous magnetic field
which is uniform into circular sectors, (ii) edge focusing, and
(iii) measurement of an average magnetic field with polarized pro-
ton beams instead of protons at rest. A chosen energy of muons
can be different from the “magic” energy. Its increasing prolongs
the lab lifetime of muons. As a result, a measurement of muon
g − 2 at the level of 0.03 ppm appears feasible [4].

In the present work, we develop the ideas by Farley. We adopt
his propositions to measure the average magnetic field with polar-
ized proton beams and to use a ring with a noncontinuous field
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for keeping the independence of the spin rotation frequency from
the particle momentum. We also investigate the most interesting
case when the beam energy can be arbitrary. However, we pro-
pose to perform the high-precision muon g − 2 experiment on an
ordinary storage ring with a nonuniform field created by super-
conducting magnets. We prove that the independence of the spin
rotation frequency from the particle momentum can be reached
not only in a continuous uniform magnetic field [2,3] and a non-
continuous and locally uniform one [4] but also in a usual storage
ring with a noncontinuous and nonuniform magnetic field. In the
last case, the total length of straight sections of the ring should be
appropriate. We also analyze possibilities to avoid the betatron res-
onance νx = 1 (νx is the horizontal tune) and consider corrections
to the g − 2 frequency.

The system of units h̄ = c = 1 is used.

2. g − 2 ring with a noncontinuous magnetic field and magnetic
focusing

Let us consider spin dynamics in a usual storage ring with a
noncontinuous magnetic field and magnetic focusing. The general
equation for the angular velocity of spin precession in the cylindri-
cal coordinates is given by (see Ref. [5])

ω(a) = − e

m

{
aB − aγ

γ + 1
β(β · B) + 1

γ

[
B‖ − 1

β2
(β × E)‖

]

+ η

2

(
E − γ

γ + 1
β(β · E) + β × B

)}
, β = v

c
. (1)

Eq. (1) is useful for analytical calculations of spin dynamics
with allowance for field misalignments and beam oscillations. This
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Fig. 1. The storage ring.

equation does not contain small terms which can be neglected.
η = 4dm/e is an analogue of the g factor for the electric dipole
moment, d. The sign ‖ denotes a horizontal projection for any vec-
tor. Thereinafter, the electric dipole moment will be disregarded.
The vertical magnetic field, Bz , is the main field in the muon g − 2
experiment. The spin precession caused by this field is defined by

ω
(a)
z = − e

m
aBz. (2)

Let Ω(a) denotes the average value of ω(a) . The spin coherence
is kept when

dΩ
(a)
z

dp
= 0. (3)

For a storage ring with a noncontinuous field, the quantity Bz

should be averaged.
This condition defines a spin-isochronous ring, i.e., the spin pre-

cession frequency is independent of the momentum at the first
order.

Condition (3) can be satisfied for ordinary storage rings with
magnets creating nonuniform field (Fig. 1). Beam direction is nor-
mal to the magnet faces and there is not edge focusing. The num-
ber of bending sections can be different. If the field created by the
magnets is given by Bz(ρ) = const · ρ−n , the field index and beta-
tron tunes into bending sections are equal to

n = − R0

B0

(
∂ Bz

∂ρ

)
ρ=R0

, ν
(b)
x = √

1 − n, ν
(b)
z = √

n,

where B0 ≡ Bz(R0), x = ρ − R0, and R0 is the ring radius. Average
angular frequency of spin precession is given by

Ω(a) = ω
(a)
z πρ

πρ + L
= −πeaρBz(ρ)

m(πρ + L)
, (4)

where L is a half of the total length of the straight sections (Fig. 1).
The muon anomaly is equal to

aμ = gp − 2

2

mμ

mp

Ω
(a)
μ

Ω
(a)
p

, (5)

where the fundamental constants gp and mμ/mp are measured
with a high precision. The magnetic field is the same for muons
and protons when they move on the same trajectory. In this case,
their momenta coincide.

When the momentum increases (p > p0), the magnetic field
becomes weaker, but the time of flight in the magnetic field be-
comes longer. The spin precession is defined by
dΩ
(a)
z

dp
= dΩ

(a)
z

dρ

(
dp

dρ

)−1

,
dp

dρ
= (1 − n)eBz(ρ). (6)

Condition (3) leads to dΩ
(a)
z /dρ = 0 and is satisfied when

L = L0 = n

1 − n
π R0, (7)

where R0 corresponds to p0 and B0. In this case

R0 = p0

|e|B0
, Ω(a) = Ω

(a)
0 = −(1 − n)

eaB0

m
, (8)

and the following relation takes place:

�C

C0
= �p

p0
= (1 − n)

x

R0
,

where C is the orbit circumference. As a result, the momentum
compaction factor is

α = �C/C0

�p/p0
= 1. (9)

Since

�C

C0
= 1

γ 2
0

�p

p0
+ �T

T0
,

where T is the revolution period, the definition of α can be
brought to the usual form:

�T

T0
=

(
α − 1

γ 2
0

)
�p

p0
.

Evidently, the spin-isochronous ring (α = 1) is not isochronous in
the usual sense, i.e., the beam revolution frequency depends on the
momentum.

Eq. (7) is not exact because it does not include a correction for
the fringe field. This field also contributes to the average field, but
it is independent of ρ . The fringe field is important only near the
magnet edges and causes the correction to L0 of order of the ra-
tio of the magnet gap to the ring radius (∼ 10−2). This correction
depends on the number of the straight sections and can be an-
alytically and numerically calculated because the magnet field is
known with a needed accuracy.

Evidently, the correction to the local value of ω
(a)
z is given by

δω
(a)
z /ω

(a)
z = δBz/Bz.

The corrected values of L0 also coincide for muons and protons
because particles with equal momenta move in the same field.

Two other corrections to the angular velocity of spin preces-
sion caused by the longitudinal magnetic field and the vertical
betatron oscillations are considered in Section 4. While these cor-
rections are different for the muons and protons, they are rather
small (∼ 1 ppm).

The real value of the length of the straight section, L, can
slightly differ from L0. In the general case,

α = π R0

π R0 + L − L0
. (10)

The difference between the real and nominal values of the average
angular frequency of spin rotation is given by

Ω(a) − Ω
(a)
0

Ω
(a)
0

= n · L − L0

L0
· p − p0

p0
− n

2(1 − n)
· (p − p0)

2

p2
0

. (11)

It is important that Eq. (11) does not depend explicitly on B .
The first term in the r.h.s. of this equation disappears if we define
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L0 = L. In this case, p0 is the vertex of a parabola in the momen-
tum space. To find p0 and adjust the ring lattice, one can make
measurements with proton beams. Three measurements with dif-
ferent values of p are sufficient. The average proton momentum
can be kept with radio frequency (RF) cavities put into straight
sections of the ring. The longitudinal electric field in the cavities
does not influence the spin dynamics.

3. Avoiding a betatron resonance

Condition (3) leading to Eq. (9) should not be exactly satis-
fied. It can be shown that the relation α = 1 leads to the betatron
resonance νx = 1 which results in zeroth frequency of horizontal
coherent betatron oscillation (CBO) of the beam as a whole and a
loss of the beam [6]. Therefore, the total length of the straight sec-
tions should slightly differ from L0 so that the CBO tune would be
small but nonzero:

νCBO ≡ |1 − νx| = |1 − √
1 + λ| � 1, λ = L − L0

L0
n. (12)

Typically, in a weak focusing ring α > 1. Eq. (10) results in
L < L0. We expect that the CBO tune about 0.01 is sufficient to
keep the beam. In this case, the appropriate choice of the total
length of straight sections λ ∼ 0.01 reduces the dependence of the
spin rotation frequency on the beam momentum by two orders of
magnitude. As a result, the use of proton beams for measuring the
average magnetic field becomes quite possible.

Experimental details depend on the beam momentum. If it
is higher than in the completed experiment (see Ref. [4]), the
muon lifetime in the laboratory frame increases and the RF cavities
may be helpful not only for protons but also for muons to keep
the spin coherence. Otherwise, the use of low muon momentum
(∼ 0.3 GeV/c) and much higher statistics (see Ref. [7]) may even
be more preferable. In this case, the RF cavities are unnecessary
for muons.

4. Corrections to the g − 2 frequency

The problem of taking into account corrections to the g − 2
frequency is very important. One of the main problems is an influ-
ence of the radial and vertical betatron oscillations on the average
vertical magnetic field. We can consider the case when the veloc-
ity of unperturbed motion, v0, coincides with the absolute value of
the velocity of perturbed motion. For the latter motion, the aver-
age longitudinal component of the velocity is approximately equal
to

vφ = v0

(
1 − 〈v2

ρ + v2
z 〉

2v2
0

)
= v0

(
1 − v2

0ρ + v2
0z

4v2
0

)
. (13)

It can be shown that the average magnetic field for the per-
turbed motion, B p , slightly differs from that for the unperturbed
motion, Bu :

B p = 1 − n

1 + λ(1 + v2
0ρ+v2

0z

4v2
0

)

B0, Bu = 1 − n

1 + λ
B0, (14)

where λ is given by Eq. (12). Approximately,

B p =
(

1 − λ

1 + λ
· v2

0ρ + v2
0z

4v2
0

)
Bu . (15)

When v0ρ/v0 ∼ v0z/v0 ∼ 0.001, λ ∼ 0.01, the correction to
the average vertical magnetic field for the betatron oscillations is
rather small and may be even negligible.
A noncontinuous vertical magnetic field leads to a longitudi-
nal magnetic field on the edges of the magnets. Possibly, the latter
field is a reason of the main correction to the g − 2 frequency. It
was asserted in Ref. [8] that this field causes “the need to know∫

B · dl for the muons to a precision of 10 ppb”. However, we
should take into account that the longitudinal magnetic field can-
not be neglected only on small segments of the beam trajectory
near edges of magnets. As a result, the above estimate of precision
should be decreased by several orders of magnitude.

The correction for the longitudinal magnetic field can be
carefully examined. As curl B = 0 and Bφ = (z/ρ)(∂ Bz/∂ρ), the
longitudinal magnetic field acting on a particle oscillates. When
the vertical velocity oscillation (pitch) is given by vz/v0 =
ψ0 cos(ωvt + δ),

Bφ = z0
∂ Bz

∂l
sin (ωvt + δ), z0 = ψ0ω

(b)
c R0

ωv
= ψ0 R0√

n
, (16)

where l is the trajectory length and ω
(b)
c = v0/R0 is the cy-

clotron frequency into bending sections. Evidently,
∫

Bφ dl =
z0 B0 sin (ωvt + δ).

To estimate the correction, we can suppose that (∂ Bz)/(∂l) ≈
B0/b. The length of the considered trajectory segment at the mag-
net edge is b. Calculations can be simplified if we present the
angular velocity of the spin precession in the form

ωa = a0ez + a2 sin (ωvt + δ)eφ,

a2 = −eB0

m
· (a + 1)ψ0 R0√

nγ b
(17)

and suppose that a0 ≈ −eB0a/(2m) = const. This is nothing but an
estimate because the vertical magnetic field strongly varies within
the considered trajectory segment.

To calculate the correction, we can use the results presented in
Ref. [5]. The corrected local angular frequency is given by

ω
(l)
z = a0

[
1 − a2

2

4(ω2
v − a2

0)

]
. (18)

The correction to the average angular velocity of the spin pre-
cession caused by the longitudinal magnetic field is equal to

δΩ
(a)

l = ω
(a)
z (2πρ − b/2) + ω

(l)
z b

(2πρ − b/2) + b + (2L − b/2)
− Ω(a)

= −Ω(a) a2
2

2[4ω2
v − (ω

(a)
z )2]

· b

2πρ

≈ −Ω(a) (a + 1)2ψ2
0 R0

4πn(4n − a2γ 2)b
, (19)

where ω
(a)
z and Ω(a) are given by Eqs. (2) and (4), respectively.

Eq. (19) defines only the correction for one segment of the
beam trajectory. To obtain the total correction, we should take into
account the Maxwell equation

∮
B · dl = 0. If the g − 2 precession

did not take place, the total effect of the longitudinal magnetic
field would vanish. However, the total correction is nonzero owing
to a non-commutativity of rotations and is provided by the spin
component orthogonal to the beam polarization at the beginning
of a beam turn. Therefore, the total correction, �Ω

(a)

l , can be ob-

tained with the multiplication of δΩ
(a)

l by the additional factor:

�Ω
(a)

l ∼ F · δΩ(a)

l ,

F =
{

ω
(a)
z /ω

(b)
c = aγ when aγ < 1, (20)
1 when aγ � 1.
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The quantity b is usually of the order of the magnet gap. If
we substitute the parameters of the BNL E821 experiment into
Eqs. (19), (20), we obtain |�Ω

(a)

l /Ω(a)| ∼ 1 ppm for both muons
and protons.

To measure the total correction with an absolute accuracy of
0.01 ppm, one should determine the magnetic field parameters
with a relative accuracy of 10−3–10−2. Since the field of magnets
is well known, extra measurements may be unnecessary. When
the muon beam momentum is significantly decreased as compared
with the BNL E821 experiment (see Ref. [7]), the correction for the
muons becomes an order of magnitude less. For low-momentum
beams, one can suppress the vertical betatron oscillations and ad-
ditionally reduce the corrections for both the muons and protons.

In the proposed experiment, the correction for the vertical beta-
tron oscillations (pitch correction) [9] (see also Ref. [5]) should also
be taken into account. Known formulas [5,9] give the order of mag-
nitude of this correction (∼ 0.1–1 ppm). The pitch correction can
also be reduced with a suppression of the vertical betatron oscilla-
tions for low-momentum beams. Specific calculations should allow
for a noncontinuity and a nonuniformity of the magnetic field.

In any case, all the corrections can be determined with an ac-
curacy of 0.01 ppm or even better.

5. Discussion and summary

The stabilization and monitoring the magnetic field is an impor-
tant and rather difficult problem. To stabilize the magnetic field in
a few minutes needed for measuring the proton spin precession
frequency, superconducting magnets can be used. It is more diffi-
cult to avoid a change of the magnetic field when switching from
muon to proton storage. However, such a change can be properly
determined. The average magnetic field can be calculated if the
beam momentum and the average radius or frequency of the beam
orbit are known. A change of the average magnetic field brings a
corresponding change of the average radius and frequency of the
beam orbit. Therefore, measuring the frequencies [10] or positions
of the muon and proton beam orbits allows to determine the shift
of the average magnetic field. The average proton momentum is
defined by the RF cavities. In addition to the muon measurements,
proton beams before and/or after muon runs can be used. The use
of these methods should provide a determination of the shift of
the average magnetic field with a relative accuracy of 0.1 ppm or
even better. As a result, the muon and proton measurements can
be related with a high precision.

The methods of measurement of the g − 2 precession in the
proposed experiment and the Farley’s one are very similar. The
important advantage of a noncontinuous nonuniform ring versus
a noncontinuous uniform one is a possibility to avoid much shim-
ming needed for creating the uniform magnetic field. Shimming is
even more difficult for the noncontinuous uniform ring than for a
continuous uniform one because of the fringe field. We expect that
the proposed experiment can be carried out with one of existing
rings.
The systematical errors considered above do not prevent to
measure the muon g − 2 factor with a high precision. The sum
of all systematical errors considered in the manuscript causes
less systematic uncertainty than that in the planned E969 exper-
iment [3]. While there are many other systematical errors, we
expect that the precision of the proposed experiment may be ap-
proximately the same or better than that of the planned E969
experiment.

A more detailed theoretical analysis should be based on the ma-
trix method. The use of the matrix method is necessary for further
theoretical investigations. However, any theoretical analysis is not
sufficient to calculate the spin dynamics in specific g −2 rings with
a needed accuracy. Nevertheless, necessary calculations can be car-
ried out with spin tracking.

Since the theoretical predictions and the experimental data do
not agree, performing new experiments based on different ring lat-
tices is necessary. Such experiments will be very important even if
they will not provide better precision as compared with the usual
g − 2 experiments [2,3].

In this work, we propose the new experiment to measure the
muon g − 2 factor. The developed experiment does not require
much shimming. This experiment could provide an independent
experimental result with different systematics and the advantages
mentioned in the Farley’s paper [4].
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