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ABSTRACT We describe algorithms for solving the Lamm equations for the reaction-diffusion-sedimentation process in
analytical ultracentrifugation, and examine the potential and limitations for fitting experimental data. The theoretical limiting case
of a small, uniformly distributed ligand rapidly reacting with a larger protein in a ‘‘constant bath’’ of the ligand is recapitulated,
which predicts the reaction boundary to sediment with a single sedimentation and diffusion coefficient. As a consequence, it is
possible to express the sedimentation profiles of reacting systems as c(s) distribution of noninteracting Lamm equation
solutions, deconvoluting the effects of diffusion. For rapid reactions, the results are quantitatively consistent with the ‘‘constant
bath’’ approximation, showing c(s) peaks at concentration-dependent positions. For slower reactions, the deconvolution of
diffusion is still partially successful, with c(s) resolving peaks that reflect the populations of sedimenting species. The transition
between c(s) peaks describing reaction boundaries of moderately strong interactions (KD ; 10�6 M) or resolving sedimenting
species was found to occur in a narrow range of dissociation rate constant between 10�3 and 10�4 s�1. The integration of the
c(s) peaks can lead to isotherms of species populations or s-value of the reaction boundary, respectively, which can be used for
the determination of the equilibrium binding constant.

INTRODUCTION

The hydrodynamic separation of protein species after

application of a high gravitational force is a powerful tool

in the study of macromolecules, which provides unique

information for the study of both synthetic and biological

macromolecules in solution (1). The dynamics of the sedi-

mentation process allows the detection of the sedimenting

species or components and their interactions with high

sensitivity, and the characterization by first-principle-based

analysis. When studying protein-protein interactions, sedi-

mentation techniques allow distinguishing multiple sedi-

menting species in free solution while maintaining reversibly

formed complexes in a bath of their components at all times.

This permits the study of self-association as well as hetero-

geneous protein interactions. In particular, the hydrody-

namic resolution of sedimentation velocity can be

advantageous for the characterization of extended mixed

self- and heteroassociations of two or more proteins. The

introduction of modern computational approaches in the last

decades has enabled significant further development of

ultracentrifugation analysis. In particular, it had a large

impact on sedimentation velocity because it allowed the

routine use in the data analysis of the Lamm equation (2), the

partial-differential equation describing the time course of

sedimentation (for example, see (3–11); for general reviews,

see, for example, (12–17); a recent introduction and protocol

for the practical application can be found in (18)).

The analysis of protein interactions by sedimentation

velocity requires unraveling sedimentation, diffusion, and

chemical reaction processes that take place during the ex-

periment. So far, no general method is known that would

reveal both the number of sedimenting species and their

mutual interactions. Instead, two separate approaches exist

for: 1), determining the number of species, based on sedi-

mentation equations for distributions of noninteracting

macromolecules, and 2), for the data analysis incorporating

chemical reactions assuming specific models. A hybrid

approach was recently developed to reveal the number and

composition of sedimenting complexes for heterogeneous

associations from multisignal analysis (19), assuming reac-

tions to be slow on the timescale of sedimentation.

The first approach consists of a family of methods for

calculating sedimentation coefficient distributions, obtained

through extrapolation (the van Holde-Weischet method

(20,21)), transformation of a data subset (the dc/dt approach
to g(s*) (22)), or least-squares boundary modeling proce-

dures (ls-g*(s) (23), c(s) (24), and ck(s) (19)). They differ in

the extent to which diffusion can be deconvoluted from the

sedimentation coefficient distributions, ranging from no

corrections (in g(s*) and ls-g*(s)), corrections for single

species or clearly separating sedimentation boundaries (in

the van Holde-Weischet method), to the approximate decon-

volution for all species using hydrodynamic scaling laws and

a single weight-average frictional ratio (c(s) and ck(s)). Of
particular interest for this article is the c(s) method, as the
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deconvolution of diffusion and sedimentation is achieved

through a detailed analysis of the sedimentation velocity

boundary shapes, leading to a very high hydrodynamic

resolution.

All sedimentation coefficient distributions have the advan-

tage that no prior knowledge on the number of sedimenting

species or their mode of interaction is required. Because they

are based on equations for noninteracting species, however,

they will exhibit specific characteristic features if chemical

reactions on the timescale of sedimentation modulate the

evolution of concentration profiles in the experiment. For

example, in the presence of fast reactions, all the differential

sedimentation coefficient distributions g(s*), ls-g*(s), c(s),
and ck(s) will exhibit peaks at positions that do not nec-

essarily reflect the sedimentation coefficient of the molecular

species, but are governed instead by chemical interconver-

sion of the species as described in theory by Gilbert and

Jenkins (25,26). This can be diagnosed best in series of ex-

periments at different concentrations of the protein mixture.

In this article, we examine these characteristic features of c(s)
in the presence of chemical reactions on different timescales.

The second approach for the analysis, explicitly modeling

the chemical reactions, can be taken once a model for the

species and their interactions has been established or hypo-

thesized. As is well known, the differential sedimentation

coefficient distributions can be integrated to give weight-

average sedimentation coefficients, and the isotherms result-

ing from experiments at different loading composition can be

fitted with different interaction models (27). Although very

powerful, this technique extracts only thermodynamic

information from the different populations of species at

different loading concentrations. A more comprehensive

approach is to model the sedimentation velocity data directly

with the partial differential equation for the sedimentation/

diffusion/reaction process, which is a system of coupled

Lamm equations (28). This approach was developed by

Cann and Goad (29), Cox (6), Claverie (30), and others, and

related algorithms are currently implemented for the

modeling of experimental data in software programs

including BPCFIT (5,8), SEDANAL (11), and SEDFIT

and SEDPHAT (9,31). This article describes new algorithms

for solving the Lamm equation for reacting systems, and

provides examples for the direct global modeling of

sedimentation velocity data obtained at different loading

composition and detection signals. An important question to

be explored is the limit of information that can be extracted

from experimental sedimentation velocity data.

The hypothetical ideal case of the sedimentation of a large

component in a constant bath of a fast reacting small ligand

was introduced previously by Krauss et al. (32) and Urbanke

and colleagues et al. (33,34). The sedimentation/diffusion/

reaction equations of this theoretical limiting case can be

analytically solvedandonearrives at characteristic sedimenta-

tion and diffusion coefficients of the sedimenting system.

This can be exploited for the thermodynamic analysis of the

binding isotherm (32), which is alternate to and may in some

cases be more advantageous than the study of weight-average

s-values. The limits of validity of this ideal model for

interactions of dissimilar-sized proteins are analyzed with the

help of numerical Lamm equation solutions. This special case

can also provide a useful background for understanding the

characteristic features of c(s) for fast reactive systems, which

will be further explored in the accompanying article (35) on

the comparison of c(s) distributions with the asymptotic

boundary shapes predicted by Gilbert-Jenkins theory (26).

THEORY

The Lamm equation for a system of reacting components can be written as
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where ck(r,t) denotes the concentration of solute k at radius r and time t, Jk,tr
denotes the transport flux of solute k, v denotes the angular velocity of the

rotor, sk and Dk denote the sedimentation and diffusion coefficients of the

solute, and qk denote the local chemical reaction rates, respectively (36).

Sedimentation in a constant bath of ligand

The following recapitulates the theory described earlier by Krauss et al. (32)

and Urbanke and colleagues (33,34). We consider a system of two

components A and B that react and come to an instantaneous equilibrium

with a complex, denoted C. The evolution of the system is given by
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where a, b, and c denote the local species concentrations and q the reaction

fluxes, respectively, which obey mass conservation and mass action law

qa ¼ qb ¼ �qc;

c ¼ Kab: (3)

Guided by the assumption that A is very small such that it sediments

much slower and high diffusion would rapidly diminish any concentration

gradients, we examine the case in which B and C are in a region of negligible

concentration gradient of free A for all times. Although strictly this situation

would be difficult to realize for infinitely fast interactions, it is a highly

interesting limiting case. (The relationships of this model with Gilbert-

Jenkins theory will be discussed below.) With @a=@r ¼ 0, from mass action

law Eq. 3 follows that the spatial derivatives of B and C are proportional,

@c=@r ¼ Ka@b=@r. In the hypothetical region of constant A, the migrating

species are B and C, and their evolution is

@b
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r
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r

@
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ðr2bÞ1 qb 1 qc: (4)

If we sum over the concentration of the migrating species B and C,

denoted as b ¼ b1c, we find @b=@r ¼ ð11KaÞ@b=@r and, because the
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reaction fluxes cancel, we obtain the conventional Lamm equation of a single

noninteracting species
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with weight-average diffusion and sedimentation coefficients

D
� ¼ Db 1KaDc

11Ka
; s

� ¼ sb 1Kasc
11Ka

: (6)

Therefore, we conclude that where the concentration gradient of the

smaller species A is negligible, the species B and the complex C sediment

jointly like a single ideal species. In this limiting case, the system has two

characteristic sedimentation and diffusion coefficients, which should be

visible in a slower boundary migrating with s and D of component A, and

a faster boundary migrating in the plateau region of free A with s and D
following the weight average of B and C. It can be shown that this holds true

also more generally for interactions with multiple binding sites of A on B

(33,34). Using finite element solutions of the system of Lamm equations we

will study under which conditions this is a realistic limiting case (see below).

In particular, we deviate from the original assumption of a small ligand, to

test the predictions of this limiting case for interactions between moderately

large proteins.

Finite element solution

The discretization of Eq. 1 can be based on the elements

Piðr; tÞ ¼
ðr � ri�1Þ=ðri � ri�1Þ ri�1 # r# ri

ðri11 � rÞ=ðri11 � riÞ ri , r# ri11

0 else

8><
>:

for i ¼ 2; . . . ;N � 1 and

P1ðr; tÞ ¼
ðr2 � rÞ=ðr2 � r1Þ r1 # r# r2

0 else

�

PNðr; tÞ ¼
ðr � rN�1Þ=ðrN � rN�1Þ rN�1 # r# rN

0 else
;

�
(7)

with an underlying grid of radial points r1. . .rN that may be equidistant and

constant in time (30), or logarithmically spaced grid with a time dependence

like sedimenting point particles (9). The grid starts at the meniscus (r1 ¼ m)

and ends at the bottom (rN ¼ b) of the solution column. For simplicity,

a static grid will be assumed in the following. The first step to obtain a matrix

equation for the propagation is the multiplication of Eq. 1 with all elements

Pi and integration in radial coordinates

Z b

m
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Integration by parts of the right-hand side leads to
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where it was used that the sedimentation fluxes J disappear at the beginning

and end of the solution column (30) (see below). With the approximations

ckðr; tÞ ¼ +
j
ck;jðtÞPjðrÞ and analogous qkðr; tÞ ¼ +

j
qk;jðtÞPjðrÞ, we arrive

at a matrix equation

+
j

dck;j
dt

Bji 1 ck;jA
ðkÞ
ji

� �
¼ +

j

qk;jBji

AðkÞ
ji ¼ sv

2Að2Þ
ji � DAð1Þ

ji ; (10)

with the standard tridiagonal matrices A(1), A(2), and B from pairwise

integrals of the elements Pi (6,9,30). Modifications can be applied for

semiinfinite solution columns (see below). With the vector notation c~k and

q~k for the concentration and reaction flux coefficients of species k, this can be

simplified to

B
d

dt
c~k ¼ �AðkÞ

c~k 1Bq~k: (11)

The evolution in time is calculated by separately evaluating both terms of

Eq. 11, corresponding to sequential spatial migration and chemical reaction

fluxes. This separationwas introduced previously in the numerical simulation

of transport processes of reacting systems (as reviewed by Cox andDale (6)).

Because very large concentration gradients may be generated during the

simulation, it is important to carefully consider the time steps and the

propagation scheme to ensure precision and avoid numerical instabilities.

For nonreacting systems, we have introduced previously an adaptive time

increment and applied the second-order Crank-Nicholson scheme (37), in

which the propagation is not based on the coefficients in the beginning of the

time step, but on the average during the step (38). This is applied to calculate

an estimated spatial propagation (denoted c~kðt2Þs1) from time t1 to time t2,

according to

c~kðt2Þs1 ¼ ð2B� DtAðkÞÞ�1ð2B1DtAðkÞÞc~kðt1Þ; (12)

(with Dt ¼ t2 � t1), which can be used to generate an initial estimate of the

concentration change Dtq~k caused by the chemical conversion during this

time step (see below), leading to a new predicted concentration

c~kðt2Þsr1 ¼ c~kðt2Þsr1 1Dtq~kðc~kðt1Þ; c~kðt2Þs1Þ: (13)

At this point, a correction can be applied that takes into account that the

reaction takes place during the time step and already contributes to

sedimentation,

c~kðt2Þs2 ¼ c~kðt2Þs1 �
1

2
Dt

2B�1 AðkÞ
q~kðc~kðt1Þ; c~kðt2Þs1Þ

� �
;

(14)

which can be used, in turn, for a better prediction of the reaction rates

q~kðc~kðt1Þ; c~kðt2Þs2Þ.
For the numerical evaluation of the chemical reaction, different

approaches were taken dependent on the model of an instantaneous

equilibrium (for reactions much faster than the timescale of sedimentation),

or that of intermediate, finite reaction kinetics. For instantaneous equilibria,

at each radius the concentration was completely relaxed to the equilibrium

concentrations~§ for given local composition

Dtq~kðc~kðt1Þ; c~kðt2ÞÞ ¼~§ðc~kðt2ÞÞ � c~kðt1Þ; (15)

where~§ was calculated based on the laws of mass action and mass

conservation. (The resulting nonlinear equation system can be solved very

efficiently using the Van Wijngaarden-Dekker-Brent root-finding algorithm

(38), taking advantage of the continuity of the component concentrations for

neighboring radial points, and in combination with analytical expressions for

limiting cases of the interaction isotherm.) For finite reaction kinetics, the

concentration change Dtq~k was calculated directly from a linear approxi-

mation of the rate equations. The linear approximation of the rate equations

seems satisfactory, as any requirement for higher precision would indicate

an incompatibility with the precision of the predicted spatial migration, in

particular in the absence of a corrector step Eq. 14. However, to ensure that

this does not introduce significant errors, the time step Dt was limited so that
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at each radius the fractional change in concentration from both sedi-

mentation and reaction does not exceed

Dtq~k , dc~kðt1Þ; c~kðt2Þs1 � c~kðt1Þ, ec~kðt1Þ; (16)

at all radii for which c~kðt1Þ is above a threshold value. As a result, for fast

reactions the reaction itself is limiting the numerical step size, and for slow

reactions the sedimentation is limiting. This algorithm was implemented for

a static grid, for conventional finite and semiinfinite solution columns (see

below), and with and without the correction steps of Eqs. 13 and 14 .

A numerical integration of the Lamm equation with chemical reactions

using the Euler method of discretization has been developed by one of us

(C.U.) before (5) and is available in the program BPCFIT (8). We simulated

the case of an A 1 B ¼ C system with KD ¼ 10�7M, koff ¼5 10�4 s�1,

0.2 mM B and 0.5 mM A as loading concentrations and sedimentation

constants SA ¼ 6 S, SB ¼ 9 S, and SC ¼ 12 S. Both BPCFIT and SEDPHAT

based on the algorithm described above yielded virtually indistinguishable

time-dependent concentration profiles, thus proving the correct implemen-

tation of the algorithms.

Solving the Lamm equation for a semiinfinite cell

In the finite element solution above, it was used that the transport fluxes

disappear at the beginning and end of the solution column. In more detail,

integration by parts of Eq. 8 leads to

Z b

m

@c

@t
PiðrÞr dr ¼�

Z b

m

rJ
@PiðrÞ
@r

dr1

Z b

m

qkPiðrÞdr
� Piðb; tÞbJðbÞ1Piðm; tÞmJðmÞ; (17)

where conventionally the boundary conditions are used that the ends of the

solution column are impermeable to the solute, i.e., JðbÞ ¼ JðmÞ ¼ 0 at all

times (30). A numerically more favorable Lamm equation solution is

possible for a permeable wall at the bottom of the solution column

(JðbÞ 6¼ 0; JðmÞ ¼ 0). This is equivalent to the limiting case of a solution

column that does not possess a bottom and extends to infinity (but it starts

and behaves as usual at the meniscus). Physically, this provides a correct

description of the macromolecular behavior for those regions of the solution

column that are not affected by back-diffusion from the bottom. This region

can be easily discerned from visual inspection of the experimental

sedimentation data, and for species of high molar mass at high angular

velocity—a situation typical for sedimentation velocity experiments of

proteins.10 kDa—the region unaffected by back-diffusion comprises most

of the data. In fact, the region of back-diffusion is routinely excluded from

the data analysis because of the difficulty of reliable data acquisition and

modeling in the steep concentration gradients close to the bottom, and

because of possible pelleting of the material. As a consequence, it can be

very useful to avoid the most time-consuming and potentially instable

numerical computation of the accumulation at the bottom by using the

boundary condition of a permeable bottom.

For a permeable bottom, Eq. 17 shows that extra terms only occur for row

N, because from Eq. 7 it can be seen that Piðb; tÞ ¼ 0 for i 6¼ N and

PNðb; tÞ ¼ 1. After discretization of c(r,t) as linear combination of the

elements Pk, and evaluation of the extra flux term by Eq. 1, we find
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b� rN�1
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: (18)

It follows that the permeable bottom can be implemented by simple

modification of three elements of the sedimentation and diffusion matrices

Að2�Þ
N;N ¼ Að2Þ

N;N � b
2

Að1�Þ
N�1;N ¼ Að1Þ

N�1;N 1 b=ðb� rN�1Þ
Að1�Þ

N;N ¼ Að1Þ
N;N � b=ðb� rN�1Þ: (19)

By eliminating the steep concentration gradients at the bottom of the cell,

the numerical solution of the Lamm equation with chemical reaction is con-

siderably more stable and efficient.

The sedimentation coefficient distribution c(s) of
noninteracting diffusing species

In this section, we briefly recapitulate the model of a differential distribution

of noninteracting diffusing species (24). The signal a(r,t) from the sedi-

mentation process of an unknownmixture is approximated as a superposition

aðr; tÞ ffi
Z smax

smin

cðsÞx1ðs;F; r; tÞds; (20)

where c(s) denotes the differential sedimentation coefficient distribution in

units of the observed signal. x1(s,F,r,t) denotes the solution of the Lamm Eq.

1 in the absence of a reaction, at unit concentration and with sedimentation

coefficient s and a hydrodynamic frictional ratio F ¼ ( f/f0) that scales the

diffusion coefficients to the sedimentation coefficients according to

DðsÞ ¼
ffiffiffi
2

p

18p
kTs�1=2ðhFÞ�3=2ðð1� �vvrÞ=�vvÞ1=2; (21)

(with h and r the solvent viscosity and density, respectively, and �vv the

partial-specific volume of the macromolecules). Exploiting that the frictional

ratio is not a strongly shape-dependent quantity, F is approximated by

a constant weight average value Fw for the complete distribution, where the

value of Fw is adjusted during least-squares fit of Eq. 20 (39). In most cases,

the c(s) distribution is calculated using maximum entropy regularization

(40), which results in the most parsimonious distribution c(s) that fits that

data with a quality statistically indistinguishable from the overall best fit, and

using algebraic elimination of the typical time-invariant and radial-invariant

noise components (41,42).

Recently, an extension to multicomponent sedimentation coefficient

distributions ck(s) was introduced, which can be calculated from globally

modeling multiple signals l acquired during the sedimentation process

alðr; tÞ ffi +
K

k¼1

ekl

Z smax

smin

ckðsÞx1ðs;Fk;w; r; tÞds

l ¼ 1 . . .L; K#L; detðeklÞ 6¼ 0; (22)

provided that each component k contributes in a characteristic way to the

signal l according to a predetermined extinction coefficient (or molar signal

increment) matrix ekl (19). It is assumed that the signal increments are

constant, implying the absence of hyper and hypochromicity, which can be

independently verified in a spectrophotometer. The number of signals L in

current commercial instrumentation is up to four, which in theory could be

used to distinguish the same number of spectrally different protein

components K; ck(s) reflects the sedimentation coefficient distribution of

each component in molar units, and as shown by Balbo et al. (19), this can

permit the determination of the stoichiometry of protein complexes.

RESULTS

Modeling sedimentation profiles of reacting
systems with Lamm equations

The finite element algorithms were implemented for instanta-

neous and finite kinetics for heterogeneous association
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models with a single site and two sites, and for several

single-step and two-step self-association models. Because

there are no general analytical solutions to the sedimenting

reaction/diffusion system, it is important to study the

accuracy of the simulation for known special cases. We

tested the precision by several known criteria: i), mass

conservation was obeyed at all times separately for both

components; ii), the limiting case of noninteracting species

was correctly approached for cA � KD, cA � KD, and koff ,
10�6/s; iii), with sedimentation parameters of A and B

identical, the rapid equilibrium model was equivalent to an

instantaneous single-component self-association model

computed with concentration-dependent sedimentation and

diffusion coefficients (43) (after consideration of statistical

factors); iv), with sedimentation parameters of A and B

identical, the kinetic heteroassociation models gave results

consistent with the kinetic self-association models; v),

models with fast reaction kinetics calculated via rate

equations approached the same distributions as those from

models calculated with instantaneous local chemical equi-

librium using mass action law (for example, for species with

s-values of 7 and 10 S sedimenting at 50,000 rpm, this limit

was attained for koff . 0.03/s); vi), sedimentation equilib-

rium distributions consistent with thermodynamic analytical

solution were obtained; vii), the isotherm of weight-average

sedimentation coefficients (from the analysis of sedimenta-

tion data by integration of the c(s) distribution (31)) was

consistent with binding constants and s-values; and viii), the

two-site models in case of strong negative cooperativity

approached the single-site models (considering statistical

factors). Using realistic parameters for average-sized pro-

teins, the root-mean-square (rms) errors in these cases were

found to be in the order of 10�3 or better, which is below the

experimental error of data acquisition. ix), For the special

case of instantaneous reactions of species in the limit of very

small diffusion coefficients, the boundary profiles were

consistent with those predicted by Gilbert-Jenkins theory

(35,26 ). x), Finally, for conditions of partially reaction-

controlled sedimentation of dissimilar-sized proteins, for

which no special case or approximate solution exists, the

predicted profiles from SEDPHAT were compared to those

obtained with the independently implemented software

BPCFIT (8). Excellent agreement was observed, supporting

the correctness of the Lamm equation solution. We observed

limitations in the numerical stability of the approach

described here for cases where the component concentrations

were significantly higher than the equilibrium dissociation

constant, a case that can be adequately modeled with po-

pulations of noninteracting species. Further, numerical oscil-

lations and error amplification were encountered for cases

where very steep concentration gradients were generated.

This was not always improved using the predictor-corrector

scheme of Eqs. 14 and 15. However, this problem was absent

when using the model for the spatial propagation in a

semiinfinite solution column. This solution seems useful

because experimentally the data acquisition in the region of

steep back-diffusion is very problematic and the data are

usually excluded (except for studies including only small

species).

To test if the finite element model is suitable to describe

experimental data, we globally fitted the sedimentation

profiles obtained from a natural killer cell receptor Ly49C

(31 kDa) interacting with MHC molecules H-2Kb (45 kDa)

sedimenting at 50,000 rpm. As reported earlier, both the

crystal structure and the solution interaction isotherm from

the weight-average sedimentation coefficient distributions

showed a 2:1 stoichiometry (44). Consistent with this, the

shapes of the sedimentation profiles could be fitted very well

globally over a large range of loading concentrations with

a two-site binding model with equivalent and noninteracting

sites and rapid reaction kinetics (Fig. 1). The best fit was

found with a macroscopic KD for site 1 of 1.7 mM, koff ¼ 0.1

s�1, sAB ¼ 4.96 S, and sABB ¼ 6.11 S, with a root-mean-

square deviation (RMSD) of 0.0117 fringes. Convergence of

the fit with the algorithm described above was practical with

both Simplex and Levenberg-Marquardt methods, taking

a few seconds on a 3-GHz PC per global simulation for the

10 data sets in the absence of back-diffusion.

Next, we examined how much detailed information on the

interaction is contained in the sedimentation velocity

profiles. With an incorrect model for a single site interaction,

a 2.0-fold higher RMSD was obtained, in conjunction with

an unreasonably high value for the s-value of the 1:1 com-

plex (sAB ¼ 5.87 S). The ability to identify the correct sedi-

mentation model should be expected because the isotherm of

weight-average s-values as a function of loading composi-

tion already contains this information. However, a subtle but

potentially important difference is that in this analysis the

precise loading concentrations are floating parameters to be

determined in the fit from the boundary shape, only con-

straining that the receptor concentration is the same by

design of the experiment. In contrast, the koff value was not
found very well determined by the data; a fit with koff ¼
0.0023/s produced an RMSD of 0.0118 fringes, only slightly

higher than the best fit. However, when koff was constrained
to 10�5/s, the best-fit RMSD increased significantly to

0.0183 fringes, suggesting that for the given interaction set

the approximate order of magnitude of the reaction kinetics

may be discerned, but not the detailed rate constant.

The source of this limitation resides in the correlation of

the sedimentation parameters and is due the small differences

in the Lamm equation solutions for different koff values in

this range. This can be demonstrated by comparing sim-

ulated Lamm equation solutions in the absence of noise and

radial-dependent and time-dependent baseline offsets. Noise-

free data were simulated with the best-fit parameters of Fig. 1

for the complete set of 10 experiments at different loading

concentrations, assuming a koff value of 0.1/s. When koff was
fixed to the incorrect value of 0.001/s, a global fit with

experimentally insignificant adjustments of the meniscus
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position and an only 5% change in KD was found with

a global RMSD of only 0.0044, which is smaller than the

usual experimental noise.

A second experimental example is shown in Fig. 2, the

sedimentation profiles of two peptides derived from the

proline-rich domain of the adaptor protein SLP-76 and

the SH3 domain of the enzyme phospholipase Cg1 (PLC-g),
which play an essential role in signal transduction after

T-cell activation (45). In contrast to the previous example,

the two peptides have significantly different extinction

coefficients (the only aromatic amino acid of the SLP-76

peptide is a single tyrosine), such that the dual signal data

acquisition of absorbance at 280 nm and refractive index can

report on each protein’s sedimentation behavior in the

mixture. This was exploited previously in a multiwavelength

c(s) analysis, which showed the formation of a 1:1 complex

(19). The evolution of the absorbance and interference signal

profiles for a mixture is shown in Fig. 2, A and C, fitted with

a kinetic Lamm equation model for 1:1 complex formation.

It is apparent that the refractive index (RI) signal is

FIGURE 1 Experimental sedimentation profiles of the NK receptor

Ly49C interacting with MHC class I molecules H-2Kb with a 1:2

stoichiometry (44). The data are from the global analysis of 10 separate

experiments with a constant Ly49C concentration (4.97 mM) and variable

MHC concentrations ranging from 1.2 to 28.7 mM. For clarity, only the

experiments at 1.2 mM (A,B), 6.0 mM (C,D), and 28.7 mM (E,F) are shown

(circles), and of those every 10th data point of every 7th (A,B) or 6th (B,C

and E,F) scan, corresponding to time intervals of 1020 and 1130 s,

respectively. For experimental details, see Dam et al. (44). The data were

fitted with a two-step association model for noncooperative equivalent sites

superimposed to a model for the redistribution of buffer salts and systematic

baseline offsets. Best-fit distributions are shown as solid lines, with the

macroscopic KD for site 1 of 1.7 mM, and the off-rate constant of koff ¼ 0.1

s�1. Overall rms deviation was 0.012 fringes, with the distribution of

residuals indicated in panels B, D, and E.

FIGURE 2 Analysis of the interaction of peptides derived from the

adaptor protein SLP-76 (11.7 kDa, 0.60 S) and PLC-g (7.4 kDa, 0.75 S)

which form complexes with 1:1 stoichiometry. SLP-76 contains only one

tyrosine and no tryptophan residues, allowing its spectral discrimination

from PLC-g. Panels A and C show absorbance and interference profiles of

a mixture (65 mM PLC-g with 25 mM SLP-76) time intervals of 2500 s, at

a rotor speed of 59,000 rpm and a temperature of 4�C (for clarity, only every

10th (A) or 20th (C) data point is shown). The interference optical data are

superimposed by the sedimentation of a small buffer component (likely

predominantly optically unmatched NaCl) which can be modeled well as

discrete species at 0.055 S, as well as systematic baseline offsets accounted

for by algebraic noise decomposition (41). Molar mass values were kept

fixed at the values predicted from amino acid sequence, and extinction and

sedimentation coefficients of free peptides were determined in prior ex-

periments, but loading concentrations were fitting parameters. The residuals

in panels B andD are from the fit with sAB¼ 1.05 S, KD¼ 10 mM and koff¼
10�5/s, with an RMSD of 0.0137.
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superimposed by signal gradients from a low molecular

weight component, likely buffer salts that sediment well

below the range of s-values of interest, and are included in

the model as an extra discrete species. Interestingly, in this

multiwavelength analysis of a single experiment with each

protein’s buoyant molar mass, extinction coefficients and

sedimentation coefficients determined separately, the bind-

ing constants appear already well determined. In a series of

fits constraining the koff value, KD was found consistently

;10 mM. The reaction kinetics was not very well de-

termined, with RMSD of 0.0155 signal units (O.D. or

fringes) for an instantaneous reaction, 0.0150 for koff ¼
10�4/s, and 0.0137 for koff , 10�5/s, and the best-fit value of

0.0136 for koff ¼ 1.6 3 10�6/s, although a slow reaction

would be consistent with an expected large conformational

change required for binding (46).

After verifying that the sedimentation profiles of interact-

ing systems predicted by the algorithm above is consistent

with theory and experiment, we examine next the character-

istic shapes displayed by the sedimentation boundaries of

rapidly reversible systems.

Constant bath approximation as two
noninteracting species

A well-known feature frequently found in the sedimentation

of interacting two-component systems with dissimilar size

and rapid kinetics is a characteristic bimodal boundary (see

Figs. 1, 3, and 4), consistent with the predictions by Gilbert

and Jenkins for the diffusion-free sedimentation of in-

stantaneously reacting proteins (26). In the following we

consider first mixtures with excess of the smaller component

(A, 100 kDa) over a larger component (B, 200 kDa) or

equimolar A and B. In this case, some of the free population

of A sediments slower and forms the slow boundary, but

a fraction of free A cosediments in the fast boundary. The

free population of B, the complex population (AB), and

a fraction of free A essentially cosediment in the fast

boundary. This pattern was found independent of concen-

trations, except for cA , cB with cB � KD. It is illustrated in

Fig. 3 for equimolar A and B at different loading concen-

trations. In particular at low concentrations (Fig. 3 A) it is
noticeable that the fast-sedimenting fraction of free A is very

small, such that the fast boundary constantly migrates

through regions where the concentration gradient of free A is

relatively small. A quantitative example is highlighted in

Fig. 3 B for equimolar loading concentrations at KD; at the

time point indicated by the bold lines, the boundary of free B

increases from 10 to 90% of the plateau level within the

dashed vertical lines. In the same region, the free A concen-

tration changes only from 76 to 97% of its plateau level.

Although this is a substantial increase, on the other hand, it

should also be noted that the fast boundary is surrounded by

at least 3/4 of the maximal free A throughout. Due to the

mass action law, the gradient of free A causes changes in the

fractional occupation of B amounting only to a range from

30 to 35%.

This suggests that it is not unreasonable even for the

interaction of two large proteins to examine how the sedi-

mentation process relates to the ideal limiting case of sedi-

mentation through a constant bath of the smaller component.

The theoretical prediction is that, besides the boundary of the

small component, the sedimentation exhibits a reaction

boundary with a single sedimentation and diffusion co-

efficient that is characteristic for the reacting system. In Fig.

4, this prediction is tested by attempting a fit to the model of

two noninteracting species, one corresponding to free A and

one for the reacting system. As is visible in the small re-

siduals in Fig. 4, this model can give an excellent description

of the data. Similar fit qualities were found at other com-

binations of loading concentrations (data not shown). As

predicted, the slower boundary sediments with a sedimenta-

FIGURE 3 Theoretical distributions of free and complex species during

the sedimentation of an interacting system A 1 B 4 AB in the limit of

instantaneous reaction. Total concentrations of components A and B were

equimolar at 0.1-fold KD (A), KD (B), and 10-fold KD (C). The profiles were

calculated for a component A with 100 kDa and 7 S (red), component B with

200 kDa and 10 S (blue), forming a complex with 13 S (black).
Sedimentation was simulated at a rotor speed of 50,000 rpm, and the

profiles from time points 300, 1500, and 3000 s are superimposed. The

vertical dashed lines in panel B indicate the radial range that covers 10–90%

of the boundary of free B, and at the same time 76–97% of free A at 3000 s

(indicated by bold lines).
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tion coefficient very close to that of free A (7.02 S compared

with 7.00 S underlying this simulation), and with a diffusion

coefficient slightly higher than that of free A (;12% higher,

corresponding to an apparent molar mass of 88 kDa instead

of 100 kDa). Similarly, the faster boundary migrates with an

s-value of 11.15 S, which is very close to the weight-average
s-value of 11.14 S predicted theoretically for this mixture

(inserting the equilibrated loading concentrations into Eq. 6),

but exhibits a 17% higher diffusion coefficient.

We examined the agreement of the sedimentation

coefficients obtained from noninteracting species fits with

those predicted by the constant bath theory over a range of

concentrations (Fig. 5). The small s-value remains nearly

constant at the value of free A, and the high s-value coincides
very well with the isotherm predicted by Eq. 6. Further, we

observed that the isotherm for the weight-average s-value of
the reaction boundary predicted from Gilbert-Jenkins theory

(35) is virtually superimposing that of Eq. 6. Therefore, we

conclude that the constant bath approximation does indeed

describe the essential features of the sedimentation process,

and that the deviations mainly translate into excess boundary

spreading. Although Fig. 5 is a direct comparison (without

fitting) of the theoretically predicted isotherm Eq. 6 and the

values obtained from a noninteracting species fit, it is

obvious that modeling the latter with Eq. 6 should provide an

excellent estimate of the association constant, for example,

when using a dilution series with equimolar mixtures.

A concentration regime where these considerations do not

hold true is that of molar excess of the larger component at

concentrations far above KD. In this limit, the two char-

acteristic sedimentation and diffusion coefficients will reflect

those of B and the complex AB, and the concentration grad-

ients of A comigrating with the boundary AB will be large.

For example, with A at threefold and B fivefold KD, respec-

tively, the change of relative concentration of A in the fast

boundary are .50%. In summary, as is illustrated in Figs.

3–5, the constant bath approximation is applicable for the

equimolar case, and for molar excess of A over B, but not for

molar excess of B over A.

Sedimentation coefficient distributions c(s) of
reactive systems

Next, we examined the application of the sedimentation

coefficient distribution c(s) to the sedimentation of reacting

systems (Fig. 6). From the considerations above it is not

surprising that for fast reactions, it shows two peaks, and that

the quality of fit is very good. In contrast to the conventional

interpretation of c(s) peaks to reflect the sedimentation of

different species, for fast-reacting systems they reflect the

characteristic sedimentation coefficients of the sedimenting

system. For example, for equimolar mixtures in Fig. 6 A, the

FIGURE 4 Total absorbance profiles for the simulated sedimentation of

the system A1 B4 AB in the limit of instantaneous reaction, as indicated

in panel B of Fig. 3, at equimolar concentrations cA ¼ cB ¼ KD (black solid
lines), assuming extinction coefficients of 100,000 for components A and B.

Shown are the theoretically predicted distributions without noise. The

profiles are fitted to a model with two noninteracting species, as suggested

by Eq. 5 for an ideal sedimentation/reaction process in a constant bath of A

(red dashed lines). The best fit was found with parameters M*1 ¼ 88 kDa,

s*1 ¼ 7.02 S for the slow boundary, andM*2 ¼ 198 kDa, and s*2 ¼ 11.15 S

for the fast boundary, respectively, with an rms deviation of 0.0043 O.D.

FIGURE 5 Isotherm of the best-fit sedimentation coefficients for the slow

and fast boundary components. The sedimentation process was simulated for

the system A1 B4 AB in the limit of instantaneous reaction (as described

in Fig. 3), using equimolar concentrations of the components A and B. The

calculated concentration profiles were fitted with a model for two

noninteracting species, as shown in Fig. 4. The resulting sedimentation

coefficients of the slow (h) and fast (d) boundary are plotted versus loading

concentration (in units of KD). For comparison, the solid line shows the

isotherm Eq. 6 theoretically expected in the ideal limit of sedimentation

a constant bath of the slow component. The dashed blue line shows the

isotherm calculated by Gilbert-Jenkins theory as described in Dam and

Schuck (35).
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peak at the smaller s-value remains constant at the

sedimentation coefficient of the smaller component, whereas

the second peak shows a concentration dependence. The

integration of the faster peak gives the s-value of the reaction
boundary, and nonlinear regression with the isotherm

predicted by Eq. 6 leads to the correct KD value with

a precision better than 2%. Similar results are obtained for

a titration series of a constant amount of B with varying A

(Fig. 6 B), and even for a titration series of constant A with

varying B (Fig. 6 C). Although we found the constant bath

approximation to poorly describe the sedimentation for cB�

KD at molar excess of B, which produces bimodal c(s)
(dotted and dashed-dotted lines in Fig. 6 C), the isotherm

analysis is surprisingly robust and still gives reasonable

estimates of KD if the s-value of the complex is constrained.

We compared the error estimates of the analysis with the

isotherm Eq. 6 and the conventional analysis of the weight-

average s-value. In the titration of constant B with varying A

(Fig. 6 B), if the s-value of the complex sAB is treated as an

unknown in the analysis of the isotherm, the error estimates

for sAB were found fourfold smaller as compared to the

conventional isotherm analysis of the overall weight-average

s-value (data not shown), and error estimates for KD were

threefold better. A global analysis led only slight further

improvement.

The boundary shapes are interpreted in the c(s) method as

if originating from noninteracting species, with a relationship

D(s) scaled via a single average frictional ratio. As described
above, the sedimentation boundary in most configurations

does fit the predicted two noninteracting species sedimen-

tation very well. As a consequence, the deconvolution of

diffusion in the c(s) should work properly if applied to these

reaction boundaries. The deviations from the ‘‘constant

bath’’ sedimentation causes that the boundary components

have larger apparent diffusion coefficients. In the c(s)
method, we found that this can translate into smaller f/fo
values than would be expected from the known hydrody-

namic shapes of the components. Therefore, besides the

obvious concentration dependence of c(s) at different

loading concentrations, too low f/fo values can therefore be

taken as an indication of the presence of a reaction on the

timescale of sedimentation. A second, more subtle effect of

deviations from the ‘‘constant bath reaction’’ is that the

peaks appear slightly broader and/or asymmetric. For

example, the fast peak indicated by the dotted line in Fig.

6 A would suggest a bimodal peak and the presence of

a second, slightly smaller component. Similarly, we found

that intermediate peaks in trace concentrations can occur. For

reaction boundaries, therefore, whereas the c(s) method

correctly describes the characteristic s-values of the system

and can be combined with a quantitative analysis of the

isotherms of the fast component s-value, the shape of c(s)
cannot be interpreted to the same level of detail as is possible

with noninteracting mixtures.

Next, we studied slower reactions. The parameter gov-

erning the sedimentation pattern is the chemical off-rate

constant koff. For koff . 0.01/s, at rotor speeds that can be

experimentally achieved, we observed sedimentation bound-

aries nearly identical to those of instantaneous reactions. For

slow reactions with koff, 10�5 s, the limit of stable reactions

on the timescale of sedimentation was approached (rms

deviation , 0.1%). In between, the sedimentation profiles

gradually transform from a bimodal boundary with the

characteristic s-values described above for fast reactions, to

a trimodal boundary reflecting the s-values of the populated
species for slow reactions. Insofar as the boundary shape is

FIGURE 6 Sedimentation coefficient distributions c(s) of noninteracting

species calculated from the sedimentation profiles of the reacting system A

1 B 4 AB in the limit of instantaneous reaction (Fig. 3). The c(s)
distributions are normalized to unit area, and calculated for concentration

series of 0.1-fold (solid line), 0.3-fold (long dashed line), onefold (short

dashed line), threefold (dashed-dotted line), and 10-fold (dotted line) KD,

respectively. Panel A shows the distributions for equimolar concentrations,

panel B with a constant larger component at KD titrated by the smaller

component, and panel C vice versa with a constant smaller component at KD

titrated by the larger component. The insets show the best-fit isotherms of

Eq. 6 (lines) to the weight-average s-value of the fast boundary component

determined by integrating the c(s) distribution between 9 and 13 S (symbols),

resulting in binding constants within 3% of the correct KD underlying the

simulation.
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reflected in the apparent sedimentation coefficient distribu-

tions ls-g*(s), the transition is shown in the dotted lines in

Fig. 7 (for equimolar concentration equal to KD). At high

reaction rates, the fast boundary component exhibits the

single peak expected for fast reactions (black dotted line is

based on instantaneous reaction), which splits up into two

fast peaks (10 and 13 S) for slow reactions (magenta dotted
line for koff ¼ 10�5/s). The results of the sedimentation

coefficient distribution c(s) are shown in Fig. 7 as solid lines.
The peaks are sharper because of the deconvolution of

diffusion. With decreasing reaction rate constant they also

display the transition where the reaction boundary (black
bold line) splits up into two sharp peaks (magenta bold line)
reflecting the separate populations of B and AB. The

intermediate kinetics with rate constants of 10�3–10�4/s is of

particular interest because it is far from the special cases

mimicking noninteracting species. In this regime, the

boundary shapes deviate most from those of noninteracting

species (due to the similarity of the fast reaction boundary

with a discrete species; see above), and, as a consequence,

the deconvolution of the boundary shapes in terms of

diffusion as implemented in the c(s) approach appears most

problematic. We found for koff ; 10�3/s the c(s) distribu-
tions are close to those of the fast reactions, at koff ; 3–6 3
10�4/s a bimodal pattern sets in (long dashed green and cyan
lines), and at koff ; 10�4/s the species peaks are already

baseline separated, although the correct s-values are not yet
established. This shows that despite the influence of the

reaction kinetics on the boundary shape, the diffusional

deconvolution is still partially effective.

This transition and the resulting c(s) distributions were

studied in more detail. Fig. 8 shows the sedimentation

coefficient distributions for koff ¼ 1 3 10�3/s, 4 3 10�4/s,

and 13 10�4/s the effect of different loading concentrations

(equimolar). At koff ¼ 10�3/s (panel A) the boundaries are

still similar to the fast reaction limit shown in Fig. 6 A in that

they show a single reaction boundary at low concentration,

which tends to split up only at higher concentrations. The

isotherm of the weight-average s-value of the fast boundary
component can still be modeled well with the ‘‘constant

bath’’ approximation (inset in Fig. 8 A), leading to an

underestimate of KD by 21%. At koff ¼ 4 3 10�4/s, the

reaction is already slow enough for species populations to be

discerned by c(s). Correspondingly, the reaction boundary

FIGURE 7 Sedimentation coefficient distributions from the simulated

sedimentation of the interacting systemA1B4ABwith different reaction

rate constants, at equimolar concentrations equal to KD. Shown are c(s)

distributions of diffusing species with maximum entropy regularization

(solid and dashed lines, left ordinate) and for comparison, the apparent

sedimentation coefficient distributions ls-g*(s) (dotted lines). Reaction rate

constants are: log10(koff) ¼ �5 (magenta), �4 (light green), �3 (red), �3.5

(dashed cyan), �3.2 (dashed green), �2 (blue), and instantaneous (black).

Sedimentation parameters are as those in Fig. 3.

FIGURE 8 Sedimentation coefficient distributions c(s) at different

concentrations for the transition from a single fast reaction boundary

component to a split, species dominated boundary shape. Sedimentation

conditions are as described in Fig. 3, and concentrations are as indicated in

Fig. 6 ranging from 0.1-fold (solid line) to 10-fold KD (dotted line). Reaction

rate constants are log10(koff) ¼ �3 (A), �3.4 (B), and �4 (C). The insets are

analysis of the isotherms of the reaction boundary with a constant bath

model (A and B; symbols are values from integration of c(s) from 8.5 to 14 S,

solid line is best-fit isotherm with Eq. 6), and the isotherms of the partial

populations of the individual species (determined by integration of c(s) from

5.5 to 8.5 (n), 8.5–11.6 (n), and 11.6–14 S (s), respectively) (B and C).
Modeling the isotherms led to estimates for the equilibrium dissociation

constants of 0.79KD (A), 0.85 KD (B; population isotherm), and 1.13 KD (C).
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cannot be modeled very well with a single s- and D-value
(data not shown). Integration of both peaks with s . 8.5 S

and data analysis with Eq. 6 results in an underestimate of KD

by 32%. The relative peak areas of the free A, free B, and

complex peaks can be modeled well with the isotherm of

partial concentrations determined by mass action law and

mass balance, which describes the species populations in the

limit of an initially equilibrated mixture that does not react

during the sedimentation. This resulted in an underestimate

of KD by 15%. Finally, at koff ¼ 10�4/s the species

boundaries appear already fully separated in c(s); c(s) peaks
for each species appear approximately at constant position.

Again, this separation is not observed for the ls � g*(s)
distribution, which means the resolution of species can

be attributed entirely to the diffusional deconvolution. The

partial populations from integration of c(s) peaks also can be
well described with the species population isotherms,

leading to an overestimate of KD by 13%. These results

confirm that the diffusional deconvolution applied in the c(s)
analysis is partially effective even for reaction-controlled

boundaries. They appear to be quantitatively reasonably

precise in the average s-value of the fast boundary com-

ponent when no peaks can be discerned, and even in the

partial species concentrations when peaks can be distin-

guished. However, the exact peak positions should not be

interpreted as they do not reflect either the true s-values of
the sedimenting species, or a characteristic s-value of the

reacting system.

The deconvolution of diffusion from reaction boundar-

ies is further studied in the application to the interaction of

small proteins. Fig. 9 shows the c(s) profiles for a fast re-

action (koff¼ 0.01/s; panel A) and a slow reaction (koff¼ 33
10�5/s;panelB) of a 25-kDa, 2.5-Sprotein binding to a40-kDa,
3.5-S protein forming a 5-S complex. As indicated by the

ls-g*(s) curves shown with offset, for both situations the

shape of the sedimentation boundary is governed by

diffusion and does not allow species or reaction boundaries

to be discerned. For the fast reaction, the c(s) analysis

results in curves showing an undisturbed peak at 2.5 S and

a concentration-dependent reaction boundary, which can be

modeled well with the isotherm Eq. 6 (with a best-fit KD

1.01-fold of that underlying the simulations). An exception

is the curve at the lowest concentration, for which the

signal/noise ratio is too low and the regularization causes

a single peak (which was omitted in the isotherm analysis).

This situation is very similar to that obtained for larger

species (Fig. 6 A). For the slow reaction, again, at the

lowest concentrations c(s) does not result in resolved peaks

for each species, but at the higher concentrations the

species peaks with concentration-dependent heights are

obtained, analogous to Fig. 8 C. For both the slow and fast

reaction, in addition to the requirement of higher signal/

noise ratio, resolving the boundaries was found only

possible if sedimentation data were included from long

observation times spanning the complete migration of the

slowest boundary through the experimentally accessible

radial observation range.

DISCUSSION

Goal of this work was to develop new theoretical tools for

the study of protein interactions by sedimentation velocity.

We have first derived improved algorithms to compute

Lamm equation solutions of interacting systems, which can

be fitted to experimental sedimentation data. Subsequently,

this was used to examine the ‘‘constant bath’’ approximation

of sedimentation of a rapidly interacting system with

a vanishing concentration gradient of one component. A

result of this limiting case is that the reaction boundary

exhibits a single diffusion coefficient. This provided the

background for the study of c(s) distributions, in particular,

FIGURE 9 Shown are c(s) distributions from a system of two reversibly

associating small proteins. Sedimentation was simulated for a protein of

25 kDa, 2.5 S binding to a 40 kDa, 3.5-S species forming a 5-S complex with

KD ¼ 3 mM. Data were simulated for an interference optical experiment at

50,000 rpm with typical signal/noise ratio, with 60 scans over a time interval

of 5 h. Concentrations were 0.3 (solid line), 1 (long dashed line), 3 (short

dashed line), 10 (dashed-dotted line), and 30 mM (dotted line) equimolar.

Distributions were calculated with maximum entropy regularization with P

¼ 0.7. (A) Fast reaction with koff ¼ 0.01/s. The inset shows as circles the

weight-average s-value of the fast boundary component from integration of

c(s) (except for the lowest concentration, where a second boundary

component could not be discerned). The solid line in the inset is the best-

fit constant bath isotherm Eq. 6, resulting in a KD estimate of 3.4 mM and

complex s-value of 5.06 S. (B) Slow reaction with koff ¼ 3 3 10�5/s. For

comparison, results from the ls � g*(s) are shown as thin lines, offset by 1.5

fringes/s. All distributions are normalized to have equal area.
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to understand why the property of c(s) of deconvoluting

diffusion remains successful in the presence of fast reactions.

Finally, we have examined the result of c(s) analyses applied
to sedimentation boundaries of systems with finite reaction

rates, and characterized the transition of c(s) peaks from

reporting reaction boundaries to species populations. For

both cases, robust isotherm models were derived. The case of

rapidly reacting systems will be further explored in the

accompanying article (35), which compares c(s) with the

asymptotic boundary profiles from Gilbert-Jenkins theory

(26) and derives more detailed isotherms for height and

s-values of both the undisturbed and the reaction boundary

computed by c(s).
Solving the Lamm equation for reactive system has

a long tradition, both for simulation of boundary shapes and

for modeling of data (4–6,8,11,30,31,43,47–50). We have

developed an algorithm with adaptive time-step control,

and a predictor-corrector scheme in which the reaction and

migration fluxes are coupled. Because the sharp concentra-

tion gradients close to the bottom of the cell can create

numerical instabilities (exacerbating those observed for

single component Lamm equation solutions (51)), we have

derived finite element Lamm equation solutions for a semi-

infinite cell. Usually, the back-diffusion is excluded from the

fitted sedimentation data because of potential aggregation or

phase transitions at the high local concentration at the surface

of the centerpiece, which would affect the concentration

distribution in the back-diffusion range. As a consequence,

likewise, the effect of this solution boundary does not need to

be included in the Lamm equation solution. Back-diffusion

may not be excluded when studying small proteins where

this is a significant feature of the sedimentation profiles.

However, in this case the concentration gradients at the

bottom of the cell are much smaller. For this reason, in the

implementation in SEDPHAT back-diffusion can be option-

ally excluded (dependent on the experimental data), which

can lead to significantly increased stability and efficiency of

the Lamm equation solution for large proteins.

The calculated sedimentation profiles (assuming typical

experimental conditions) show a dependence on the reaction

rate constant in the range from koff ¼ 10�2/s to ;10�5/s,

with koff ¼ 10�2/s close to the ideal case of an instantaneous

reaction, and koff ¼ 10�5/s close to a stable reaction. This is

consistent with previous findings (52,53). The shape of the

sedimentation profiles will depend on both the on-rate

constant kon and the dissociation rate constant koff, as the

reaction will be governed by the relaxation constant krel ¼
koff 1 kon(ca 1 cb). This dependence is expressed in this

work as a dependence on protein concentrations relative to

the equilibrium constant KD ¼ koff/kon, i.e., the fractional

equilibrium population of the different species, which

permits the concentration-dependent sedimentation behavior

in this work to be categorized according to the dissociation

rate constant koff. Nevertheless, it should be noted that

reassociation can readily occur during the sedimentation

velocity experiment, because the faster sedimenting com-

plexes are maintained throughout in a bath of the slower

sedimenting free components.

Although the Lamm equation solutions can be used to

globally model experimental data and to estimate kinetic rate

constants, as illustrated in Fig. 1, we found that the rate

constant is not always very well determined by the data. For

small proteins that exhibit high diffusional spread, the

difference between sedimentation profiles calculated for fast

or slow reactions in the global model can be on the order of

the noise of the data acquisition. This can be more pro-

blematic if the reaction scheme is not conclusively estab-

lished and alternate sedimentation models are considered

(such as monomer-dimer-tetramer versus monomer-tetramer

associations, data not shown). In this case, independent

information from other methods on either the reaction

scheme or the kinetic timescale may be required. In this

regard, it might be considered that many or even most

physiologically relevant protein interactions with affinities in

the micromolar range have a fast kinetics (high koff) on the

timescale of sedimentation. However, there are also many

examples of complexes with low koff and relatively low kon:
Complex formation in vivo may be driven by local con-

centrations of reactants, dissociation may be dependent on

cofactors, or the interactions may be accompanied by

conformational changes and require activation energy. In

practice, a useful qualitative indicator for the presence a slow

reaction can be the ability to separate the complexes by size-

exclusion chromatography.

Fig. 2 is an example of exploiting multisignal detection,

taking advantage of differences in the extinction coefficients

of the binding partners by simultaneous acquisition of in-

terference optical refractive index data and absorbance data

at 280 or 250 nm. For many proteins, this approach may

not require extrinsic labeling (19). It was shown recently

how multisignal detection can facilitate the determination of

complex stoichiometries in the multisignal ck(s) analysis

(19). Multisignal detection provides an additional data

dimension that can be highly advantageous to determine

binding constants, and to discriminate between different

reaction models of heterogeneous interactions.

Although it appears that the modeling of experimental

data with Lamm equation solutions for reactive systems

may be the most comprehensive and rigorous approach to

study protein interactions by sedimentation velocity without

theoretical approximations, the potentially small differences

in the boundary shapes from different reaction rate constants

suggest that it may also be most susceptible to experimental

imperfections. An example of the susceptibility of the

extraction of information from boundary shapes by Lamm

equation modeling to imperfect data can be found in (42),

where the sedimentation profiles from a preparation of

protein potentially exhibiting microheterogeneity from

glycosylation and including small percentages of both

smaller (5%) and larger (8%) molecular weight impurities
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are used as an illustration: When the boundary shapes are

modeled with a single species Lamm equation solution,

a qualitatively wrong molar mass value is obtained (63 kDa),

even though the residuals of the fit are below 0.01 fringes. In

contrast, partially sacrificing the precise information on the

diffusional boundary spread in the c(s) method (by extracting

only a weight-average frictional ratio and assuming

a hydrodynamic scaling law), a sedimentation coefficient

distribution can be obtained that displays the heterogeneity

of the sample, gives a better fit, and leads to a molar mass

estimate of 93 kDa. Although the latter estimate is inherently

less rigorous and less precise due the scaling law

assumptions used in its derivation, this value still allows

correctly to deduce the oligomeric state of the protein,

whereas the estimate from single-species Lamm equation

modeling could not. Although this example is taken from the

analysis of a noninteracting protein, it illustrates the well-

known susceptibility of the boundary shape to heterogeneity

(even at trace levels), which, if unaccounted for, can lead to

substantial errors in the parameters describing the boundary

spread. Similarly, Cann has discussed previously the pro-

found effects of microheterogeneity in the binding constants

on the shape of the sedimentation boundaries (55). Further,

Werner and Schachman have described the influence of

conformational heterogeneity on the shape of the sedimen-

tation boundary (56). As a consequence, if factors are not

recognized, a Lamm equation model that interprets the

boundary shape only in terms of diffusion and reaction

kinetics may arrive at incorrect parameter estimates.

Further, modeling of experimental data with Lamm

equation solutions for reactive systems is computationally

complex and time-consuming, and requires a model for the

interaction and good starting guesses for the parameters to be

established. Therefore, it is important to study robust

alternative approaches, which can extract qualitative kinetic

information, allow quantitative thermodynamic analysis of

binding constants, and characterize the hydrodynamic

parameters of the sedimenting species.

Finite element solutions of the Lamm equation were used

to examine the ‘‘constant bath’’ theory, which was originally

devised for protein-small molecule interactions, and studied

here with the goal to test its predictions for medium-sized

proteins. Although the assumption of a negligible gradient of

the smaller component seems difficult to achieve in theory,

interactions at finite rate constants can be expected to exhibit

smaller gradients than those of instantaneous reactions con-

sidered here (e.g., Fig. 3), and experimental systems where

such gradients were absent have been described (54). The

result of the ‘‘constant bath’’ approximation that the reaction

boundary sediments with a single sedimentation and a single

diffusion coefficient seems to contradict the well-known

predictions by Gilbert-Jenkins theory on the asymptotic

boundary shapes (26). However, it should be noted that both

theories neglect different essential features of the sedimen-

tation process to arrive at analytically tractable and insightful

limiting cases. The ‘‘constant bath’’ theory neglects con-

centration gradients of one species, free A, which if con-

sidered would lead to some heterogeneity in the ratio of

complex AB/B, and as a result lead to some dispersion in the

s-value of the reaction boundary. On the other hand, the most

important simplification of Gilbert-Jenkins theory is the

absence of diffusion, which if considered would diminish

the concentration gradients across the reaction boundary.

Despite the differences in approach, the concentration de-

pendence of the s-value of the reaction boundary shown in

Fig. 5 is virtually identical. Furthermore , that the ‘‘constant

bath’’ theory can be a realistic approximation for the reaction

between dissimilar-sized proteins (with molar masses

differing by twofold or more, and where component A is

far from saturation), is supported by the agreement between

the isotherms of the s-value of the fast boundary components

with Eq. 6.

From the background of the ‘‘constant bath’’ approxima-

tion, it is not surprising that diffusion can be deconvoluted

from the reaction boundaries of rapidly interacting systems

using the c(s) method. It also follows that the c(s) traces have
to be regarded in the context of a family of c(s) curves

obtained at different loading concentrations. Only this can

permit to differentiate between noninteracting and rapidly

interacting species (as demonstrated by Fig. 4). That there

remains a finite gradient of free A across the reaction

boundary translates in diffusion coefficients slightly higher

than predicted by the ‘‘constant bath’’ approximation, and

slightly broader c(s) profiles than would be expected for

noninteracting species. A comparison of these c(s) profiles
with the asymptotic velocity gradients predicted by Gilbert-

Jenkins theory will be made in the accompanying article. The

performance of c(s) extracting peaks corresponding to

reaction boundaries is highlighted in Fig. 9 A, which allows

the diagnostics of the kinetic regime of the reaction, in

contrast to the apparently feature-less diffusion broadened

sedimentation profiles of small species and their correspond-

ing g*(s) curves. It should be noted that for small species, at

low concentrations the resolution of c(s) can be limited by

a low signal/noise ratio of the data, and the regularization

merging neighboring peaks.

The ‘‘constant bath’’ theory opens the possibility for using

the isotherm of the s-value of the reaction boundary Eq. 6 as

an analytical tool. In comparison to the weight-average

s-value, the reaction boundary is closer to the s-value of the
complex, and therefore permits a better estimate of the

s-value of the complex, which is frequently a difficult task.

This confirms the utility of using the concentration de-

pendence of the fast reaction boundary as a quantitative

analysis tool, as reported earlier (32), and demonstrates that

it can be applied also in combination with the high resolution

of the diffusion-deconvoluted sedimentation coefficient

distributions of c(s).
However, it cannot be applied to titrations including

excess of the larger component over the smaller. A global
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analysis of the weight-average and the reaction-boundary

s-value has been implemented in SEDPHAT. (In this context,

it is also interesting to note that the s-value of the reaction

boundary according to Eq. 6 is not dependent on extinction

coefficients or signal increments, whereas the weight (or

signal-average, respectively) is. This topic will be further

explored in comparison with the asymptotic Gilbert-Jenkins

boundaries, from which a more general model for the s-value
of the reaction boundary and additional isotherms for the

height of the undisturbed and the reaction boundary will be

derived (35).

In the limit of slow reactions, the c(s) distribution results in
peaks at positions largely independent of concentration, but

with relative areas reflecting the populations of the individual

sedimenting species. This is equivalent to the absence of

chemical reaction during the sedimentation velocity ex-

periment (except for initial equilibration of species), and

diffusion is deconvoluted as in the conventional case of

noninteracting mixtures (Fig. 9 B). We have implemented in

SEDPHAT isotherm analysis models for species populations,

to conveniently use this information to determine binding

constants. This could be advantageous in comparison with

the analysis of weight-average s-values.
For practical experimental conditions, the transition from

sedimentation governed by the reacting system to sedimen-

tation of individual species was found to occur over a

relatively narrow range of kinetic rate constants, with koff ;
0.0001–0.001/s (Fig. 8). No simplifying theoretical limiting

case exists for sedimentation in this kinetic regime. Using c(s)
for deconvolution of diffusion, we observed the transition

from fast to slow reactions as a reaction boundary that ac-

quires at lower rate constant a bimodal shape (first at the

higher concentrations), which at still lower rate constants

form the species peaks at concentration-independent posi-

tions. It should be noted that at koff ; 0.0001/s, even though

the c(s) peaks corresponding to the complex the s-values of
the peak can be clearly discerned at a virtually concentration-

independent position, they are not sufficiently precise to

permit hydrodynamic modeling of the complex shape. This

would require either lower rate constants or higher fractional

saturation of the complex. Interestingly, however, modeling

the boundaries in this transition regime with the isotherms

derived for the reaction boundary of rapidly reacting systems,

or, where species peaks can be discerned, with the isotherm

for the populations of stable species, does not lead to large

errors. The robustness of these models supports that the un-

derlying concepts for interpreting the boundary shapes, the

deconvolution of diffusion, and the interpretation of the re-

sulting peaks in c(s) still can be applied in this kinetic regime.

We have examined two methods to analyze sedimentation

velocity experiments from interacting systems, the direct

modeling of Lamm equation solutions of reactive systems,

and the c(s) approach to determine the underlying sedimen-

tation coefficient distributions. For physical reasons of the

ultracentrifugation experiment, both are most sensitive to

reaction kinetics in the range of koff ; 0.0001–0.001/s. The

Lamm equation modeling does not require theoretical

approximations but makes assumptions about the reaction

scheme, and requires the absence of unaccounted species

contributing to the broadening of the sedimentation

boundary. Using detailed information on species diffusion

coefficients, the boundary shapes are modeled to obtain

parameter estimates for the kinetic rate constants. In contrast,

the c(s) approach uses the boundary shape information only

to approximately deconvolute the effect of diffusion from the

reaction boundaries, and to extract the underlying sedimen-

tation coefficient distributions. Only order-of-magnitude

estimates of the kinetic rate constants are possible insofar

as they significantly influence the sedimentation coefficient

distribution, but no assumption is necessary regarding the

number of species in solution (and regarding the absence of

microheterogeneity), and the presence of species outside the

range of the interacting proteins will be revealed as part of

the result. The methods are complementary, and whether

a given set of experiments can be interpreted with explicit

Lamm equation solutions of a reactive system, or some

details of boundary shape information should be sacrificed to

account for sample heterogeneity will depend on the

particular system under investigation. It should be noted

that these methods are not exclusive, and a c(s) approach,
because it is easier to apply, can be utilized also as a

preliminary step for the Lamm equation modeling, to dem-

onstrate the suitability of the material for the more rigorous

analysis, develop a model for the interaction scheme, and to

derive starting estimates of the parameters.
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