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a b s t r a c t

Let S5 denote the symmetric group on 5 letters, and let Ŝ5 denote a non-trivial double
cover of S5 whose Sylow 2-subgroups are generalized quaternion groups. We determine
the universal deformation rings R(S5, V ) and R(Ŝ5, V ) of each mod 2 representation V of S5
that belongs to the principal 2-modular block of S5 and whose stable endomorphism ring
is given by scalars when it is inflated to Ŝ5. We show that for these V , a question raised by
the first author and Chinburg concerning the relation of the universal deformation ring of
V to the Sylow 2-subgroups of S5 and Ŝ5, respectively, has an affirmative answer.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Let k be an algebraically closed field of characteristic p > 0 and letW = W (k) be the ring of infinite Witt vectors over k.
Let G be a finite group, and suppose V is a finitely generated kG-module. It was proved in [5] that if the stable endomorphism
ring EndkG(V ) is one-dimensional over k then V has a universal deformation ring R(G, V ). The ring R(G, V ) is universal
with respect to deformations of V over complete local commutative Noetherian rings with residue field k (for details, see
Section 2). In [2–7], the isomorphism types of R(G, V ) have been determined for V belonging to cyclic blocks, respectively
to various tame blocks with dihedral defect groups. In the present paper, we will consider the principal 2-modular blocks of
the symmetric group S5 and one of its double covers Ŝ5 whose Sylow 2-subgroups are generalized quaternion groups. One
of the main goals is to investigate how the universal deformation rings change when inflating modules from S5 to Ŝ5. The
key tools used to determine the universal deformation rings in all the above cases have been the results from modular and
ordinary representation theory due to Brauer, Erdmann [13], Linckelmann [19], Carlson–Thévenaz [9], and others.

The main motivation for studying universal deformation rings for finite groups is that this case helps one understand
ring theoretic properties of universal deformation rings for profinite groups Γ . The latter have become an important tool
in number theory, in particular if Γ is a profinite Galois group (see e.g. [10] and its references). In [12], de Smit and Lenstra
showed that ifΓ is an arbitrary profinite group and V is a finite-dimensional vector space over kwith a continuousΓ -action
which has a universal deformation ring R(Γ , V ), then R(Γ , V ) is the inverse limit of the universal deformation rings R(G, V )
when G ranges over all finite discrete quotients of Γ through which the Γ -action on V factors. Thus to answer questions
about the ring structure of R(Γ , V ), it is natural to first consider the case when Γ = G is finite.

Suppose now that the characteristic of k is 2 and that S5 and Ŝ5 are as above. The Sylow 2-subgroups of S5 are dihedral
groups of order 8, whereas the Sylow 2-subgroups of Ŝ5 are generalized quaternion groups of order 16. The center Z of Ŝ5 has
2 elements and Ŝ5/Z ∼= S5. Since Z acts trivially on the simple kŜ5-modules, they are all inflated from simple kS5-modules.
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Moreover, the simple modules belonging to the principal block of kŜ5 are inflated from the simple kS5-modules belonging
to the principal block of kS5. There are precisely two isomorphism classes of simple kS5-modules belonging to the principal
block of kS5. They are represented by the trivial simple module T0 and a 4-dimensional simple module T1.

Our main result is as follows, whereW [Z/2] denotes the group ring overW of the cyclic group Z/2.

Theorem 1.1. Let B (resp. B̂) be the principal block of kS5 (resp. kŜ5). Let V be an indecomposable kS5-module belonging to B,
and denote its inflation to kŜ5 also by V , so V belongs to both B and B̂.

(a) Then EndkŜ5
(V ) ∼= k if and only if EndkS5(V ) ∼= k. Moreover, we have EndkS5(V ) ∼= k if and only if V is either isomorphic to

T0 or a uniserial kS5-module whose radical series length is at most 3 and which is a submodule or a quotient module of the
projective kS5-cover of T1.

(b) Suppose EndkS5(V ) ∼= k.
(i) If V ∼= T0, then R(S5, V ) ∼= W [Z/2] ∼= R(Ŝ5, V ).
(ii) If V ∼= T1, then R(S5, V ) ∼= k and R(Ŝ5, V ) ∼= W.
(iii) If the radical series length of V is 2, then R(S5, V ) ∼= W [Z/2] ∼= R(Ŝ5, V ).
(iv) If the radical series length of V is 3, then R(S5, V ) ∼= W [[t]]/(t2, 2t) and R(Ŝ5, V ) ∼= W [[t]]/(t3 − 2t).

In particular, the universal deformation rings R(Ŝ5, V ) are all complete intersection rings, whereas for V as in part (iv),
R(S5, V ) is not a complete intersection. Note that for all cases (i)–(iv), R(S5, V ) (resp. R(Ŝ5, V )) is isomorphic to a subquotient
ring ofWD8 (resp.WQ16) when D8 is a dihedral group of order 8 (resp. Q16 is a generalized quaternion group of order 16). In
particular, this gives a positive answer in these cases to a question raised by the first author and Chinburg in [5, Question 1.1]
whether the universal deformation ring of a representation of a finite groupwhose stable endomorphism ring is isomorphic
to k is always isomorphic to a subquotient ring of the group ring over W of a defect group of the modular block associated
to the representation.

This paper is organized as follows. In Section 2, we give some background on universal deformation rings. In Section 3,
we state properties of the principal 2-modular block B (resp. B̂) of S5 (resp. Ŝ5) and prove part (a) of Theorem 1.1. In Section 4,
we determine the universal deformation rings of the B-modules whose endomorphism rings are isomorphic to k and of their
inflations to B̂ and prove part (b) of Theorem 1.1. In the Appendix, we list the ordinary and the 2-modular character table
of Ŝ5.

This paper is based on the Ph.D. thesis of the second author under the supervision of the first author [15]. We would like
to thank the referee for helpful comments.

2. Preliminaries

Let k be an algebraically closed field of characteristic p > 0, let W be the ring of infinite Witt vectors over k and let F be
the fraction field of W . Let C be the category of all complete local commutative Noetherian rings with residue field k. The
morphisms in C are continuousW -algebra homomorphisms which induce the identity map on k.

Suppose G is a finite group and V is a finitely generated kG-module. A lift of V over an object R in C is a finitely generated
RG-moduleM which is free over R together with a kG-module isomorphsim φ : k ⊗R M → V . Two lifts (M, φ) and (M ′, φ′)
of V over R are isomorphic if there is an RG-module isomorphism f : M → M ′ such that φ′

◦ (k⊗R f ) = φ. The isomorphism
class of a lift of V over R is called a deformation of V over R, and the set of such deformations is denoted by DefG(V , R). The
deformation functor FV : C → Sets is defined to be the covariant functor which sends an object R in C to DefG(V , R).

If there exists an object R(G, V ) in C and a lift (U(G, V ), φU) of V over R(G, V ) such that for each R in C and for
each lift (M, φ) of V over R there is a unique morphism α : R(G, V ) → R in C such that (M, φ) is isomorphic to
(R ⊗R(G,V ),α U(G, V ), φU), then R(G, V ) is called the universal deformation ring of V and the isomorphism class of the lift
(U(G, V ), φU) is called the universal deformation of V . In other words, R(G, V ) represents the functor FV in the sense that
FV is naturally isomorphic to HomC(R(G, V ),−). For more information on deformation rings see [12,20].

Suppose V has a universal deformation ring R(G, V ) and a universal lift (U(G, V ), φU) over R(G, V ) that represents the
universal deformation of V . Then we call R = R(G, V )/p R(G, V ) the universal mod p deformation ring of V and we call
the isomorphism class of the lift (R ⊗R(G,V ) U(G, V ), φU) the universal mod p deformation of V . Note that R represents the
restriction of the deformation functor FV to the full subcategory of C of objects that are k-algebras.

The following two results were proved in [5]. Here Ω denotes the syzygy, or Heller, operator for kG (see for example
[1, Section 20]).

Proposition 2.1 ([5, Prop. 2.1]). Suppose V is a finitely generated kG-module whose stable endomorphism ring EndkG(V ) is
isomorphic to k. Then V has a universal deformation ring R(G, V ).

Lemma 2.2 ([5, Cor. 2.5]). Let V be a finitely generated kG-module with EndkG(V ) ∼= k. Then EndkG(Ω(V )) ∼= k, and R(G, V )
and R(G,Ω(V )) are isomorphic.
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ϕ0 ϕ1

χ1
χ2
χ3
χ4
χ5


1 0
1 0
1 1
1 1
2 1




resp.

ϕ0 ϕ1

ψ1
ψ2
ψ3
ψ4
ψ5
ψ6
ψ7
ψ8



1 0
1 0
1 1
1 1
0 1
2 1
2 1
2 1




.

Fig. 1. The decomposition matrix for B (resp. for B̂).

0 1
Q = •α ::

β //
•

γ
oo

Ic = ⟨βγ , α2
− c(γ βα)2, (γ βα)2 − (αγ β)2⟩,

Îd = ⟨γ βγ − αγ (βαγ )3, βγ β − βα(γ βα)3, α2
− γ β(αγβ)3 − d(αγ β)4, βα2

⟩.

Fig. 2. The algebrasΛc = kQ/Ic (c ∈ {0, 1}) and Λ̂d = kQ/Îd (d ∈ k).

3. The principal 2-modular blocks of S5 and Ŝ5

Let k be an algebraically closed field of characteristic 2, let W be the ring of infinite Witt vectors over k and let F be the
fraction field ofW .

Let B (resp. B̂) be the principal block of kS5 (resp. of kŜ5). Then the defect groups of B (resp. of B̂) are dihedral groups of
order 8 (resp. generalized quaternion groups of order 16). Looking at the ordinary and the 2-modular character table of Ŝ5
(see the Appendix), we see that the decomposition matrix for B (resp. for B̂) is as in Fig. 1.

Remark 3.1. The field F is a splitting field for S5. It follows from the ordinary character table of Ŝ5 in Fig. 5 and from
[14, Thm. A] that the Schur indices of all irreducible characters of Ŝ5 with respect to F are 1. Hence the characters
ψ1, ψ2, . . . , ψ6 (resp.ψ7, ψ8) correspond to irreducible representations of Ŝ5 which are realizable over F (resp. over F(

√
2)).

Moreover,ψ7, ψ8 are conjugate under the action of the Galois group of F(
√
2) over F . Hence the characters of the irreducible

representations of Ŝ5 over F which belong to B̂ are

ψ1, ψ2, . . . , ψ5, ψ6, ψ7 + ψ8.

If V6 (resp. V78) is the F Ŝ5-module whose character is ψ6 (resp. ψ7 + ψ8), then EndF Ŝ5
(V6) ∼= F and EndF Ŝ5

(V78) ∼= F(
√
2).

Using the decomposition matrices in Fig. 1, it follows from [13, p. 294 and p. 303] that there exist c ∈ {0, 1} and d ∈ k
such that B (resp. B̂) is Morita equivalent to Λc = kQ/Ic (resp. Λ̂d = kQ/Îd) as described in Fig. 2. For the vertices 0, 1 in
Q , the radical series of the corresponding projective indecomposable Λc-modules P0, P1 and the corresponding projective
indecomposable Λ̂d-modules P̂0, P̂1 are described in Fig. 3.

Remark 3.2. Let z be the non-trivial central element in Ŝ5 and let Z = ⟨z⟩ be the center of Ŝ5. In the following, we identify
S5 with Ŝ5/Z . Let π : kŜ5 → kS5 be the natural projection given by π(g) = gZ for all g ∈ Ŝ5. Since Z acts trivially on the
simple kŜ5-modules, we can identify the simple kS5-modules with the simple kŜ5-modules. This implies that the restriction
of π to B̂ gives a surjective k-algebra homomorphism πB : B̂ → B. In particular, if V is a kS5-module belonging to B, then
its inflation to kŜ5 via π belongs to B̂. Let ê be a sum of orthogonal primitive idempotents in B̂ such that êB̂ê is basic and
Morita equivalent to B̂, and let e = πB(ê). Then eBe is basic and Morita equivalent to B, and the restriction of πB to êB̂ê gives
a surjective k-algebra homomorphism πe : êB̂ê → eBe.

If c, d are such that B is Morita equivalent to Λc and B̂ is Morita equivalent to Λ̂d, let Λ = Λc and Λ̂ = Λ̂d. Then
êB̂ê ∼= Λ̂ and eBe ∼= Λ, and πe induces a surjective k-algebra homomorphism πΛ : Λ̂ → Λ. It follows from the description
of the projective indecomposable Λ-modules P0, P1 and the projective indecomposable Λ̂-modules P̂0, P̂1 in Fig. 3 that
Λ ⊗Λ̂,πΛ

P̂i ∼= Pi for i ∈ {0, 1}. In other words, the simple Λ̂-module P̂i/rad(P̂i) is isomorphic to the inflation via πΛ of
the simpleΛ-module Pi/rad(Pi) for i ∈ {0, 1}.

Let S0 = P0/rad(P0) and S1 = P1/rad(P1). Then S0 corresponds to the trivial simple kS5-module T0, and S1 corresponds to
the 4-dimensional simple kS5-module T1 which is inflated from either one of the two 2-dimensional simple kA5-modules.



526 F.M. Bleher, J.B. Froelich / Journal of Pure and Applied Algebra 215 (2011) 523–530

P0 =

0
0 1
1 0
0 0
0 1
1 0

0

, P1 =

1
0
0
1
0
0
1

; P̂0 =

0
0

&&
&&
&&
&&
&&
&&
&&
&&
&&
&&
&&
&&
&&

1
1 0

��
��
��
��
��
��
��
��
��
��
��
�0 0

0 1
1 0
0 0
0 1
1 0
0 0
0 1
1 0

0

, P̂1 =

1
0

��
��
��
��
��
�� 0

1
0
0

1

&&
&&
&&
&&
&&
&&

1
0
0
1
0

0
1

.

Fig. 3. The projective indecomposableΛc -modules P0, P1 and the projective indecomposable Λ̂d-modules P̂0, P̂1 .

The inflation of T0 (resp. T1) to kŜ5 via π corresponds to the inflation of S0 (resp. S1) to Λ̂ via πΛ. In particular, the former
inflations are simple kŜ5-modules, which we again denote by T0 and T1, and the latter inflations are simple Λ̂-modules,
which we again denote by S0 and S1.

We are now ready to prove part (a) of Theorem 1.1. We assume the above notation.

Proof of Part (a) of Theorem 1.1. Let V be an indecomposable kS5-module belonging to B, and denote its inflation to kŜ5
also by V . By Higman’s criterion (see [16, Thm. 1]), the kŜ5-module endomorphisms of V that factor through projective
kŜ5-modules are precisely those in the image of the trace map TrŜ51 : Endk(V ) → EndkŜ5

(V ), where TrŜ51 (ψ)(v) =
∑

g∈Ŝ5
g ψ(g−1v) for all ψ ∈ Endk(V ) and all v ∈ V . Because Z acts trivially on V , TrZ1 is multiplication by 2. Hence TrZ1 is zero,

which implies that TrŜ51 = TrŜ5Z ◦ TrZ1 is also zero. It follows that EndkŜ5
(V ) ∼= EndkS5(V ). In particular, EndkŜ5

(V ) ∼= k if and
only if EndkS5(V ) ∼= k.

Suppose now that EndkS5(V ) ∼= k. Then V corresponds under the Morita equivalence between B and Λ to an indecom-
posable Λ-module M whose endomorphism ring is isomorphic to k. It follows from the description of the projective inde-
composable Λ-modules P0 and P1 in Fig. 3 that M cannot be projective. Therefore, M is inflated from an indecomposable
Λ/soc(Λ)-module whose endomorphism ring is isomorphic to k. SinceΛ/soc(Λ) is a string algebra, all its indecomposable
modules can be described using strings and bands (see for example [8]). It follows that a complete list of isomorphism classes
of Λ-modules whose endomorphism rings are isomorphic to k is given by the following 6 uniserial Λ-modules which are
uniquely determined, up to isomorphism, by their descending radical series:

S0, S1,
0
1 ,

1
0 ,

0
0
1
,

1
0
0
. (3.1)

This completes the proof of part (a) of Theorem 1.1. �

Remark 3.3. Since Ext1
Λ̂
(S0, S1) ∼= k ∼= Ext1

Λ̂
(S1, S0), there is up to isomorphism a unique uniserial Λ̂-module with descend-

ing composition factors (S0, S1) (resp. (S1, S0)), which we denote by M01 (resp. M10). It follows that the inflations via πΛ of
the two-dimensionalΛ-modules in the list (3.1) are isomorphic toM01 or M10.

Because Ext1
Λ̂
(S0,M01) ∼= k ∼= Ext1

Λ̂
(M10, S0), there is up to isomorphism a unique uniserial Λ̂-module with descending

composition factors (S0, S0, S1) (resp. (S1, S0, S0)), which we denote byM001 (resp.M100). It follows that the inflations via πΛ
of the three-dimensionalΛ-modules in the list (3.1) are isomorphic toM001 or M100.

4. Universal deformation rings

In this sectionwe prove part (b) of Theorem1.1.We assume the notation from Section 3. In particular, k is an algebraically
closed field of characteristic 2, and B (resp. B̂) is the principal block of kS5 (resp. of kŜ5). We need the following lemma.

Lemma 4.1. Suppose Λ, Λ̂ and πΛ are as in Remark 3.2. Let M be one of the two uniserial Λ̂-modules M001 or M100 defined in
Remark 3.3. Then Ext2

Λ̂
(M,M) ∼= k.
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Ω2
Λ̂
(M001) =

1
0

''
''
''
''
''
''
''
''
''
''
''
'
0
1
0
0
1
0 1
0 0
1 0 1
0 1

0

and Ω−2
Λ̂
(M100) =

0
1 0

1 0

**
**

**
**

**
**

**
**

**
**

**
**

1
0 0
1 0

1
0
0
1
0
0
1

.

Fig. 4. The syzygiesΩ2
Λ̂
(M001) andΩ−2

Λ̂
(M100).

Proof. It follows from the description of the projective indecomposable Λ̂-modules in Fig. 3 thatΩ2
Λ̂
(M001) andΩ−2

Λ̂
(M100)

can be described as in Fig. 4. This implies that

HomΛ̂(Ω
2
Λ̂
(M001),M001) ∼= k2 and HomΛ̂(M100,Ω

−2
Λ̂
(M100)) ∼= k2.

Since in both cases there is a one-dimensional subspace of these Hom spaces consisting of homomorphisms factoring
through P̂0, we obtain

Ext2
Λ̂
(M001,M001) ∼= HomΛ̂(Ω

2
Λ̂
(M001),M001) ∼= k

and

Ext2
Λ̂
(M100,M100) ∼= HomΛ̂(M100,Ω

−2
Λ̂
(M100)) ∼= k. �

Proof of Part (b) of Theorem 1.1. We go through the four different cases in the statement of the theorem.
Case (i). Since the maximal abelian 2-quotient group of both S5 and Ŝ5 is a cyclic group of order 2, it follows e.g. from
[20, Section 1.4] that R(S5, T0) ∼= W [Z/2] ∼= R(Ŝ5, T0).
Case (ii). Let E be one of the two non-isomorphic 2-dimensional simple kA5-modules, where A5 denotes the alternating
group on 5 letters which is a subgroup of S5. Then T1 is isomorphic to the induction IndS5

A5
E. It follows from the description

of the projective indecomposableΛ-modules (resp. Λ̂-modules) in Fig. 3 that Ext1kS5(T1, T1) = 0 = Ext1
kŜ5
(T1, T1). Hence by

[4, Prop. 2.1.3] and by [2, Lemma 3.5(c)], we have R(S5, T1) ∼= k. Since it can be seen from the decomposition matrix for B̂ in
Fig. 1 that T1 when viewed as a kŜ5-module has a lift overW , we have R(Ŝ5, T1) ∼= W .

Case (iii). Suppose V ∈


T0
T1
,
T1
T0


. It follows from the description of the projective indecomposableΛ-modules in Fig. 3 that

Ext1kS5(V , V )
∼= HomB(ΩB(V ), V ) ∼= k

where ΩB denotes the syzygy in the category of finitely generated B-modules. Moreover, there is a non-split short exact
sequence of kS5-modules 0 → V → U → V → 0 where

U =

T0
T0 T1

T1
if V =

T0
T1

, and U =

T1
T0 T1
T0

if V =
T1
T0

. (4.2)

Let C be the cyclic subgroup of S5 of order 2 generated by the transposition (1, 2). Since T1 ∼= IndS5
A5
E, it follows that ResS5C T1

is a projective kC-module, and hence isomorphic to kC ⊕ kC . Moreover, if T00 is the uniserial kS5-module T00 =
T0
T0

then

ResS5C T00 cannot be trivial since ResS5A5T00 is trivial. Hence ResS5C T00 ∼= kC . This means that

ResS5C V ∼= k ⊕ (kC)2, and ResS5C U ∼= (kC)5.

Thus ResS5C V is a kC-module whose stable endomorphism ring is isomorphic to k and whose universal deformation ring
is R(C, ResS5C V ) ∼= W [Z/2]. Let (UV ,C , φU,C ) be a universal lift of ResS5C V over W [Z/2], and let (UV , φU) be a universal
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lift of V over R(S5, V ). Then there exists a unique W -algebra homomorphism σ : W [Z/2] → R(S5, V ) in C such that
(ResS5C UV , Res

S5
C φU) is isomorphic to (R(S5, V ) ⊗W [Z/2],σ UV ,C , φU,C ). To prove that σ is surjective, consider all morphisms

ρ : R(S5, V ) → k[ϵ]/(ϵ2). Since ResS5C U ∼= (kC)5 for the kS5-module U from (4.2), ResS5C U defines a non-trivial lift of ResS5C V
over k[ϵ]/(ϵ2). Because U defines a non-trivial lift of V over k[ϵ]/(ϵ2) and because Ext1kS5(V , V )

∼= k, this implies that as
ρ ranges over the morphisms R(S5, V ) → k[ϵ]/(ϵ2), ρ ◦ σ ranges over the morphisms W [Z/2] → k[ϵ]/(ϵ2). Hence σ is
surjective. It follows from the decomposition matrix for B in Fig. 1 and [11, Prop. (23.7)] that V has two non-isomorphic
lifts over W whose F-characters are χ3 and χ4, respectively. Thus there are two distinct morphisms R(S5, V ) → W in C,
which implies that Spec(R(S5, V )) contains both points of the generic fiber of Spec(W [Z/2]). Since the Zariski closure of
these points is all of Spec(W [Z/2]), it follows that R(S5, V ) is isomorphic toW [Z/2].

Viewing V as a kŜ5-module by inflation, it follows from the description of the projective indecomposable Λ̂-modules in
Fig. 3 that

Ext1
kŜ5
(V , V ) ∼= HomB̂(ΩB̂(V ), V ) ∼= k

where ΩB̂ denotes the syzygy in the category of finitely generated B̂-modules. Moreover, the module U from (4.2) when
viewed as a kŜ5-module by inflation defines a non-trivial lift (U, ν) of V over k[ϵ]/(ϵ2)when viewed as a kŜ5-module. Hence
there exists a surjective k-algebra homomorphism

τ : R(Ŝ5, V )/2R(Ŝ5, V ) → k[t]/(t2)

corresponding to (U, ν). We now show that τ is a k-algebra isomorphism. Suppose this is false. Then there exists a surjective
k-algebra homomorphism τ1 : R(Ŝ5, V )/2R(Ŝ5, V ) → k[t]/(t3) such that δ ◦ τ1 = τ where δ : k[t]/(t3) → k[t]/(t2) is the
natural projection. Let (U1, ν1) be a lift of V over k[t]/(t3) relative to τ1. Then k[t]/(t2) ⊗k[t]/(t3),δ U1 ∼= U and t2U1 ∼= V .
Thus we have a short exact sequence of k[t]/(t3) Ŝ5-modules

0 → t2U1 → U1 → U → 0. (4.3)

Since Ext1
kŜ5
(U, V ) = 0, the sequence (4.3) splits as a sequence of kŜ5-modules. Thus U1 ∼= V ⊕ U as kŜ5-modules.

Since V and U are kS5-modules, U1 is inflated from a kS5-module. Because there is no lift of V over k[t]/(t3) when V is
viewed as a kS5-module, this implies that U1 does not exist. Hence τ is a k-algebra isomorphism and R(Ŝ5, V )/2R(Ŝ5, V ) ∼=

k[t]/(t2) ∼= R(S5, V )/2R(S5, V ). Since R(S5, V ) is aW -algebra quotient of R(Ŝ5, V )which is free as aW -module, this implies
that R(Ŝ5, V ) ∼= R(S5, V ) ∼= W [Z/2].

Case (iv). Suppose V ∈

T0
T0
T1
,

T1
T0
T0


. It follows from the description of the projective indecomposable modules in Fig. 3 that

Ext1kS5(V , V )
∼= k ∼= Ext1

kŜ5
(V , V ).

Moreover, we see from Fig. 3 that there is a uniserial kS5-module X with descending composition factors

(T0, T0, T1, T0, T0, T1) (resp. (T1, T0, T0, T1, T0, T0))

such that X defines a lift (X, ξ) of V over k[t]/(t2) when the descending composition factors of V are (T0, T0, T1)
(resp. (T1, T0, T0)). Additionally, there is a uniserial kŜ5-module Y with descending composition factors

(T0, T0, T1, T0, T0, T1, T0, T0, T1) (resp. (T1, T0, T0, T1, T0, T0, T1, T0, T0))

such that Y defines a lift (Y , ζ ) of V over k[t]/(t3)when V is viewed as a kŜ5-module by inflation. Since

Ext1kS5(X, V ) = 0 = Ext1
kŜ5
(Y , V ),

we see that

R(S5, V )/2R(S5, V ) ∼= k[t]/(t2) and R(Ŝ5, V )/2R(Ŝ5, V ) ∼= k[t]/(t3).

Moreover, the isomorphism class of the lift (X, ξ) is the universalmod 2 deformation of V when V is viewed as a kS5-module,
and the isomorphism class of the lift (Y , ζ ) is the universal mod 2 deformation of V when V is viewed as a kŜ5-module.

It follows from the decomposition matrix for B in Fig. 1 that V has a lift over W . Hence by [6, Lemma 2.1], there exist
µ ∈ {0, 1}, m ∈ Z+ and λ ∈ W such that

R(S5, V ) ∼= W [[t]]/(t2 − 2λt, µ2mt).

Since X ∼= Ω i
B(T1) for either i = 1 or i = −1, it follows that X has a universal deformation ring when viewed as

a kS5-module and R(S5, X) ∼= k by the proof of Case (ii) and by Lemma 2.2. If µ = 0 (resp. µ = 1), then R(S5, V )
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class : C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12
order : 1 2 4 3 6 5 10 4 8 8 12 12
length : 1 1 30 20 20 24 24 20 30 30 20 20

ψ1 1 1 1 1 1 1 1 1 1 1 1 1
ψ2 1 1 1 1 1 1 1 −1 −1 −1 −1 −1
ψ3 5 5 1 −1 −1 0 0 1 −1 −1 1 1
ψ4 5 5 1 −1 −1 0 0 −1 1 1 −1 −1
ψ5 4 −4 0 −2 1 −1 1 0 0 0 0 0
ψ6 6 6 −2 0 0 1 1 0 0 0 0 0
ψ7 6 −6 0 0 0 1 −1 0

√
2 −

√
2 0 0

ψ8 6 −6 0 0 0 1 −1 0 −
√
2

√
2 0 0

ψ9 4 4 0 1 1 −1 −1 2 0 0 −1 −1
ψ10 4 4 0 1 1 −1 −1 −2 0 0 1 1
ψ11 4 −4 0 1 −1 −1 1 0 0 0

√
3 −

√
3

ψ12 4 −4 0 1 −1 −1 1 0 0 0 −
√
3

√
3

Fig. 5. The ordinary character table of Ŝ5 .

(resp. (W/2mW ) ⊗W R(S5, V )) is free over W (resp. W/2mW ). This implies that X , when regarded as a kS5-module, has
a lift overW (resp.W/2mW ). Hence µ = 1 andm = 1, and so R(S5, V ) ∼= W [[t]]/(t2 − 2λt, 2t) ∼= W [[t]]/(t2, 2t).

Since Ext2
kŜ5
(V , V ) ∼= k by Lemma 4.1, it follows from [20, Section 1.6] that there exists an element f (t) ∈ W [[t]] such

that R(Ŝ5, V ) ∼= W [[t]]/(f (t)). Since R(Ŝ5, V )/2R(Ŝ5, V ) ∼= k[t]/(t3), it follows by the Weierstrass Preparation Theorem
(see e.g. [18, Thm. IV.9.2]) that f (t) can be taken to be of the form f (t) = t3 + at2 + bt + c for certain a, b, c ∈ 2W .
In particular, R(Ŝ5, V ) is free as a W -module. Let (YW , ζW ) be a universal lift of V over R(Ŝ5, V ) when V is viewed as a
kŜ5-module. Since the isomorphism class of (Y , ζ ) is the universal mod 2 deformation of V as a kŜ5-module, it follows that
YW defines a lift (YW , ω) of Y overW when Y is viewed as a kŜ5-module. If Y/rad(Y ) ∼= T1 then Y is a quotientmodule of the
projective indecomposable kŜ5-module P̂T1 with P̂T1/rad(P̂T1) ∼= T1. Hence YW must be a quotient module of the projective
indecomposable WŜ5-module P̂W

T1
which is a lift of P̂T1 over W , and we define ZW

= YW . If soc(Y ) ∼= T1 then Ω−1(Y ) is a
quotient module of P̂T1 , and by Lemma 2.2,Ω−1(Y ) has a lift (Y ′W , ω′) overW . Hence Y ′W must be a quotient module of P̂W

T1
.

But then the kernel of the surjection P̂W
T1

→ Y ′W is aW -pure submodule of P̂W
T1
, andwe define ZW to be this kernel. Therefore

we have for both cases of Y that ZW defines a lift of Y overW and that ZW is either a quotient module or a submodule of P̂W
T1
.

Thus it follows from the decomposition matrix for B̂ in Fig. 1 that the F-character of ZW is equal to

χZ = ψ6 + (ψ7 + ψ8).

This implies by Remark 3.1 that the endomorphism ring of F ⊗W ZW ∼= V6 ⊕ V78 is isomorphic to F × F(
√
2). Let u be an

element in Ŝ5 of order 8 belonging to the conjugacy class C9 in Fig. 5 and let Ku be its class sum in WŜ5. Because Ku lies in
the center ofWŜ5, multiplication by Ku defines aWŜ5-module endomorphism κu of ZW . Since ZW is free as aW -module, the
endomorphism ring EndWŜ5

(ZW ) embeds naturally into

F ⊗W EndWŜ5
(ZW ) ∼= EndF Ŝ5

(F ⊗W ZW )

∼= EndF Ŝ5
(V6)× EndF Ŝ5

(V78) ∼= F × F(
√
2).

Hence κu corresponds to an element in F × F(
√
2) which we can read off from the ordinary character table of Ŝ5. Namely,

the endomorphism κu in EndWŜ5
(UW ) corresponds to the element

(0, 5
√
2) ∈ F × F(

√
2).

Because (0, 5
√
2) generates a W -subalgebra of F × F(

√
2) which is isomorphic to W [[t]]/(t3 − 2t), it follows that ZW is

a W [[t]]/(t3 − 2t)Ŝ5-module. Taking a k[t]/(t3)-basis {b1, . . . , b6} of Y , we can lift this basis to a subset {c1, . . . , c6} of ZW

which generates ZW as a W [[t]]/(t3 − 2t)-module. Since F ⊗W ZW is a free (F × F(
√
2))-module of rank 6, it follows that

c1, . . . , c6 must be linearly independent over W [[t]]/(t3 − 2t). Thus ZW defines a lift of V over W [[t]]/(t3 − 2t). Since
ZW/2ZW ∼= Y is an indecomposable kŜ5-module,W [[t]]/(t3 − 2t) is a quotient algebra of R(Ŝ5, V ). This implies that we can
take f (t) = t3 − 2t , and hence R(Ŝ5, V ) ∼= W [[t]]/(t3 − 2t). �

Remark 4.2. Suppose G and Ĝ are two finite groups such that the Sylow 2-subgroups of G are dihedral groups of order 8 and
the Sylow 2-subgroups of Ĝ are generalized quaternion groups of order 16 and such that Ĝ is an extension of G by a central
subgroup of order 2. Moreover, assume that there exist c ∈ {0, 1} and d ∈ k such that the principal block B (resp. B̂) of kG
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class : C1 C4 C6
order : 1 3 5

ϕ0 1 1 1
ϕ1 4 −2 −1
ϕ2 4 1 −1

Fig. 6. The 2-modular character table of S5 and Ŝ5 .

(resp. kĜ) is Morita equivalent toΛc (resp. Λ̂d) as in Fig. 2. Many of the arguments in this paper work for this more general
case. However, when computing the universal deformation rings for cases (iii) and (iv) of part (b) of Theorem 1.1, one runs
into the following issues. First, one needs to prove in general that there is an element of order 2 in G that can take the place
of the transposition (1, 2) ∈ S5 when computing the universal deformation ring R(G, V ) in case (iii). Second, one needs to
establish similar facts to the ones in Remark 3.1 for the irreducible representations of Ĝ over F which belong to B̂, including
the values of the ordinary characters on certain conjugacy classes, when computing the universal deformation ring R(Ĝ, V )
in case (iv).
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Appendix. The ordinary and the 2-modular character table of Ŝ5

The ordinary character table of Ŝ5 can be found, for example, in [17, p. 289]. It is then straightforward to determine
the ordinary character table of S5 (see Fig. 5) and also the 2-modular character table of S5 and Ŝ5 (see Fig. 6). The ordinary
characters χ1, . . . , χ4, χ5 of S5 in Fig. 1 correspond to the ordinary characters ψ1, . . . , ψ4, ψ6 of Ŝ5 in Figs. 1 and 5.
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