JOURNAL OF ALGEBRA 83, 502-509 (1983)

High Subgroups of Primary Abelian Groups of Length $\omega + n$

DOYLE CUTLER

Department of Mathematics, University of California, Davis, California 95616

Communicated by I. N. Herstein

Received April 12, 1982

Let α be a limit ordinal, n a positive integer and A an abelian p-group of length $\alpha + n$. We give a characterization of those subgroups of $A/p^{\alpha}A$ that are images of $p^{\alpha+i}$ -high subgroups of A. Using this we show that the study of abelian p-groups of length $\omega + n$ having all high subgroups isomorphic is equivalent to the study of groups G of length ω having a specified set of pure dense subgroups isomorphic. This set of pure dense subgroups of G is determined by a dense subgroup P of $G[p^n]$ modulo a maximal p^{n-1} -bounded summand of G. For each positive integer n we give an example of a p-group A such that all the high subgroups of A are isomorphic.

For a primary abelian group A, a high subgroup H of A is a subgroup maximal with respect to $H \cap p^{\omega}A = \{0\}$. Let $\eta: A \to A/p^{\omega}A$ be the natural homomorphism. Then η maps every high subgroup of A isomorphically onto a pure dense subgroup of $A/p^{\omega}A$. Hence the study of the set of high subgroups of A reduces to the study of a specified set of pure dense subgroups of a group $(A/p^{\omega}A)$ with no elements of infinite height. To make this reduction of the problem satisfactory one needs reasonable necessary and sufficient conditions for a set of pure dense subgroups of a group A under a homomorphism φ from A onto G with ker $\varphi = p^{\omega}A$. One would also like to reclaim A from G and information about G.

Call an abelian p-group A an IH-group (isomorphic highs) if all of its high subgroups are isomorphic. Until recently (see [2] and [7]), the only IHgroups known were \sum -groups, i.e., groups for which the high subgroups are direct sums of cyclic groups (see [6]). Accomplishing the above program would reduce the problem of determining the class of IH-groups to the problem of determining those p-groups with no elements of infinite height having a specified set of pure dense subgroups isomorphic. The techniques in [2], [7] and [8], relevant to the problem in question, essentially use this reduction. In this paper we shall give a satisfactory reduction for p-groups A of length $\omega + n$. Hence we will reduce the study of IH-groups of length $\omega + n$ to the study of groups with no elements of infinite height having a *specified* set of pure dense subgroups isomorphic. Using this reduction we will show, for each integer $n \ge 2$, the extence (and actually the means of constructing) a p-group A with the property that all the high subgroups of A are isomorphic but not all the high subgroups of $A/p^{\omega+n}A$ are isomorphic.

We will actually consider abelian p-groups A of length $\alpha + n$, α a limit ordinal, and characterize those pure dense (in the α -topology) subgroups of $A/p^{\alpha}A$ that are images of $p^{\alpha+i}$ -high subgroups of A under the natural homomorphism. We will show that the map $A \to (A/p^{\alpha}A, A[p^n]/p^{\alpha}A)$ is a one-to-one correspondence between the class of isomorphism classes of pgroups of length $\alpha + n$ and the class of equivalence classes of pairs (G, P), where G is a p-group of length α and P is a subgroup of $G[p^n]$ that contains a maximal p^{n-1} -bounded summand of G and is dense in the α -topology with $P[p] \neq G[p]$.

In this paper all groups will be additively written abelian p-groups, p a fixed but arbitrarily prime. For a group A, $A[p^n] = \{x \in A : p^n x = 0\}$ is the p^n -socle of A. By the socle of A we mean the p-socle of A. If α is an ordinal $p^{\alpha}G = p(p^{\beta}G)$ if $\alpha = \beta + 1$, and $p^{\alpha}G = \bigcap_{\beta \in \alpha} p^{\beta}G$ if α is a limit ordinal. The length of a reduced p-group A is the least ordinal λ such that $p^{\lambda}A = \{0\}$. The height of an element $x \in A$ is the ordinal α such that $x \in p^{\alpha}A - p^{\alpha+1}A$. A subgroup H of A is said to be p^{α} -high in A if H is maximal with respect to $H \cap p^{\alpha}A = \{0\}$. Thus high means p^{ω} -high. The α -topology on a group A is the linear topology on A having $\{p^{\beta}A\}_{\beta \in \alpha}$ as a base for the neighborhoods of $\{0\}$. If no mention is made of the topology we shall mean the ω -topology. My notation and terminology will in general be the same as that used in [3].

1. THE PROPOSITION AND OTHER PRELIMINARIES

Let A be a p-group of length $\alpha + n$, α a limit ordinal. Let $\eta: A \to A/p^{\alpha}A$. For i = 0, 1, ..., n - 1 we will determine which subgroups of $A/p^{\alpha}A$ are images of $p^{\alpha+i}$ -high subgroups of A. In particular, if $p^{\alpha}A$ is homogeneous (i.e., $p^{\alpha}A = \bigoplus Z(p^n)$) and H is a p^{α} -high subgroup of A, then the set of pure subgroups of $A/p^{\alpha}A$ supported by $\eta(H[p^n])$ is the image of the set of p^{α} -high subgroups of A. We will need the following lemma which is Lemma 1.1 in [1].

LEMMA 1. Let A be a reduced p-group, α a limit ordinal and H a $p^{\alpha+n}$ high subgroup of A, n a nonnegative integer. Then $A[p^s] = H[p^s] \oplus K[p^s]$ for $s \leq n+1$ and K any complementary summand of a maximal p^n -bounded summand of $p^{\alpha}A$. In the following proposition we shall assume that the maximal p^{n-1} bounded summand of our group A is zero in order to make the statement simpler. The simplest way to remove this restriction is to demand that K_0 contain the image of a maximal p^{n-1} -bounded summand of A. But this does not suit our purpose here.

PROPOSITION 2. Let A be a p-group of length $\alpha + n$, α a limit ordinal and n a positive integer, such that the maximal p^{n-1} -bounded summand of A is zero. Let $\eta: A \to A/p^{\alpha}A$ be the natural homomorphism. Let $K_0 \subseteq K_1 \subseteq \cdots \subseteq K_{n-1}$ be a chain of pure subgroups of $A/p^{\alpha}A$ with the property that $\eta(A[p^n]) = \sum_{i=0}^{n-1} K_i[p^{n-i}]$. Then there exists a chain of subgroups $H_0 \subseteq H_1 \subseteq \cdots \subseteq H_{n-1}$ in A such that for n = 0, 1, ..., n-1,

(1) H_i is $p^{\alpha+i}$ -high in A and

$$(2) \quad \eta(H_i) = K_i.$$

Proof. The proof will be by induction on *n* where $\alpha + n$ is the length of *A*. If n = 1 then $\eta(A[p]) = K_0[p]$. We will show that $p^{\alpha}A$ is a summand of $L = \eta^{-1}(K_0)$. Note that $p^{\alpha}A \subseteq A[p]$. Since $p^{\alpha}A$ is bounded we only need to show that $p^{\alpha}A$ is pure in *L*. Let $x \in L$ such that $px \in p^{\alpha}A$. Then $\eta(x) \in K_0[p]$. Thus there exists $y \in A[p]$ such that $\eta(y) = \eta(x)$. Hence $y - x = z \in p^{\alpha}A$ and px = p(y - z) = 0. Therefore $p^{\alpha}A$ is pure in *L* and hence a summand of *L*. Write $L = H_0 \oplus p^{\alpha}A$. Then $\eta|H_0$ is an isomorphism from H_0 onto K_0 . Moreover, H_0 is pure in *A* since η preserves heights less than α , $\eta(H_0) = K_0$ and K_0 is pure in $A/p^{\alpha}A$. Also $A[p] = H_0[p] \oplus p^{\alpha}A$ and the purity of H_0 in *A* implies that H_0 is p^{α} -high in *A*. (The proof for the case n = 1 is essentially the same as that in Corollary 5 of [9].)

Assume that the result is true for groups of length $\alpha + n - 1$. Let A be a group of length $\alpha + n$, and let $K_0 \subseteq K_1 \subseteq \cdots \subseteq K_n$ be a chain of pure subgroups of $A/p^{\alpha}A$ satisfying the hypothesis of the proposition. Decompose $p^{\alpha}A = \bigoplus_{i=1}^{n} A_i$, where $A_i = \bigoplus Z(p^i)$. We will first show that A_n is a pure subgroup (and hence a summand) of $\eta^{-1}(K_{n-1})$. To this end first note that, by Lemma 1, any $p^{\alpha+n-1}$ -high subgroup M of A satisfies $A[p^n] = M[p^n] \bigoplus A_n$ and hence $\eta(A[p^n]) = \eta(M[p^n])$. Also note that to show the purity of A_n we need only show that if $x \in \eta^{-1}(K_{n-1})$ with $p^r x \in A_n$ then $p^r x \in p^r A_n$. We will induct on r. If $x \in \eta^{-1}(K_{n-1})$ such that $px \in A_n$ then $\eta(x) \in K_{n-1}[p] = \eta(M[p])$. Hence $x \in A[p^n]$. Thus $p^n x = 0$ which implies that $px \in pA_n$. Let r be a positive integer such that $1 < r \leq n$. Assume that if $x \in \eta^{-1}(K_{n-1})$ such that $p^r x \in p^m A_n$. Let $x \in \eta^{-1}(K_{n-1})$ such that $p^r x \in A_n$. Since $p^{r-1}(px) \in A_n$ we may choose $y \in A_n$ such that $p^{r-1}y = p^r x$. Thus $px - y \in A[p^{r-1}] = M[p^{r-1}]$. Let

 $u \in M[r]$ such that pu = s. Then $px - pu = t + y \in A_n$. Since $u \in M[p^r]$ with $r \leq n$ we have $u \in \eta^{-1}(K_{n-1})$. Thus there exists $w \in A_n$ such that pw = p(x-u). Hence $p^rw = p^rx$ since $p^ru = 0$. Note that if r = n then $p^rx \in A_n$ implies that $p^rx = 0$. If r > n we come to the same conclusion. Thus A_n is a summand of $\eta^{-1}(K_{n-1})$.

Decompose $\eta^{-1}(K_{n-1}) = H_{n-1} \oplus A_n$. We will show that H_{n-1} is $p^{\alpha+n-1}$. high in A. Since $p^{\alpha+n-1}A = p^{n-1}A_n$ and $A[p^n] = H_{n-1}[p^n] \oplus A_n$ this follows easily if we can show that H_{n-1} is pure in A. In order to show that H_{n-1} is pure in A, let $L = H_{n-1} \cap p^{\alpha}A$. Note that $p^{\alpha}A = L \oplus A_n$ and $\ker(\eta \mid H_{n-1}) = L$. We will first show that $L \subseteq p^{\omega}(H_{n-1})$. Let $x \in L$ such that the height of x in A is $\alpha + k$ ($0 \le k < n-1$). If M is a $p^{\alpha+n-1}$ -high subgroup of A containing L then for every positive integer m > 0 there exists $y \in M[p^n]$ such that $h_A(y) \ge m$ and $p^{k+1}y = x$. Since $M[p^n] \subseteq \eta^{-1}(K_{n-1})$, we may write y = z + g with $z \in H_{n-1}[p^n]$ and $g \in A_n$. Thus $p^{k+1}(z+g) = x$. Hence $p^{k+1}z - x = -p^{k+1}g \in H_{n-1} \cap A_n = \{0\}$. Thus $p^{k+1}z = x$ and $h_A(z) \ge m$. Assume k = n-2. Since $\eta(H_{n-1}) = K_{n-1}$ and K_{n-1} is pure in $A/p^{\alpha}A$ there exists $u \in H_{n-1}$ such that $p^{m}u = z + t$ with $t \in L$. Thus $p^{m+n-1}u = p^{n+1}z + p^{n-1}t = x$. Hence x has infinite height in H_{n-1} . That is to say the elements in L of height $\alpha + n - 2$ in A have infinite height in H_{n-1} . Assume that we have shown that the elements in L of height greater than $\alpha + k$ in A have infinite height in H_{n-1} where $0 \le k < n-2$. Let $x \in L$ with $h_A(x) = \alpha + k$. Let m be a positive integer and $z \in H_{n-1}$ with $h_A(z) \ge m$ and $p^{k+1}z = x$ (as above). Let $u \in H_{n-1}$ such that $p^m u - z = t \in L$ (this follows from the purity of K_{n-1} and the fact that $\eta(H_{n-1}) = K_{n-1}$ with kernel L). Then $p^{m+k+1}u = p^{k+1}z + p^{k+1}t = x + p^{k+1}t$. But $h_A(p^{k+1}t) \ge$ $\alpha + k + 1$ and hence $p^{k+1}t$ has infinite height in H_{n-1} . Thus x has infinite height in H_{n-1} .

Next suppose that $x \in H_{n-1}$ such that the height of x in A is $\langle \alpha$. Suppose that $p^m u = x$ for some $u \in A$ and positive integer m. Then the height of $\eta(x)$ is $\geq m$ and hence by the purity of K_{n-1} there exists $y \in H_{n-1}$ such that $p^m \eta(y) = \eta(x)$. Thus $p^m y - x = t \in L$. Thus x has height $\geq m$ in H_{n-1} since t has infinite height in H_{n-1} . Therefore H_{n-1} is pure in A. Since $A[p] = H_{n-1}[p] \oplus A_n[p]$ and H_{n-1} is pure in A we can conclude that H_{n-1} is $p^{\alpha+n-1}$ -high in A.

We will now obtain the rest of the chain. Note that $\eta(H_{n-1}[p^{n-1}]) = \sum_{i=0}^{n-2} K_i[p^{n-i-1}]$. To see this, observe that $\eta(p(H_{n-1}[p^n])) = p \sum_{i=0}^{n-1} K_i[p^{n-i}] = \sum_{i=0}^{n-2} p K_i[p^{n-i}] = \sum_{i=1}^{n-2} K_i[p^{n-i-1}]$. Hence by the induction hypothesis there exists a chain $H_0 \subseteq H_1 \subseteq \cdots \subseteq H_{n-2}$ of subgroups of H_{n-1} such that for i = 0, 1, ..., n-2, H_i is $p^{\alpha+i}$ -high in H_{n-1} and $\eta(H_i) = K_i$.

COROLLARY 3. Let A be a p-group of length $\alpha + n$, α a limit ordinal and n a positive integer, such that the maximal p^{n-1} -bounded summand of A is

{0}. Let $\eta: A \to A/p^{\alpha}A$ be the natural homomorphism. Then a pure subgroup K of $A/p^{\alpha}A$ is the image of a p^{α} -high subgroup of A if and only if $\eta(A \mid p^n) = K[p^n] \oplus P$ with $p^{n-1}P = \{0\}$.

Proof. It is easy to show that K is dense in $A/p^{\alpha}A$. Decompose $P = \bigoplus_{i=0}^{n-1} P_i$ with $P_i = \bigoplus Z(p^{n-i})$. Choose a chain of pure subgroups $K = K_0 \subseteq K_1 \subseteq \cdots \subseteq K_{n-1}$ of $A/p^{\alpha}A$ such that $K_i[p^{n-i}] = K_i[p^{n-i}] \oplus P_i$. Then $\eta(A[p^n]) = \sum_{n=0}^{n-1} K_i[p^{n-i}]$. Hence the result follows from the proposition.

Let A be a p-group. Decompose $A = P \oplus A'$, where P is a pⁿ-bounded summand of A. Then A is an IH-group if and only if A' is an IH-group. Thus in studying IH-groups we may restrict our attention (without loss of generality) to those p-groups whose maximal pⁿ-bounded summand is zero (for some fixed n).

COROLLARY 4. Let A be a p-group of length $\omega + n$, n a positive integer, such that the maximal p^{n-1} -bounded summand of A is $\{0\}$. Let $\eta: A \to A/p^{\omega}A$ be the natural homomorphism. Then A is an IH-group if and only if all the pure subgroups K of $A/p^{\omega}A$ such that $\eta(A[p^n]) = K[p^n] \oplus P$ with $p^{n-1}P = 0$ are isomorphic.

2. A Construction of Elongations and the Main Theorem

We will need the following construction of a group A which, in the terminology of [10], is an α -elongation of a p-group G of length α by a bound group B. That is to say $A/p^{\alpha}A \cong G$ and $p^{\alpha}A \cong B$. This construction is a special case of Remark 1.15 in [1]. Let α be a limit ordinal and G a p-group of length α . Let $K_0 \subseteq K_1 \subseteq \cdots \subseteq K_i \subseteq \cdots \subseteq K_n = G$ be a chain of pure subgroups of G that are dense in G with respect to the α -topology. Let $B = \bigoplus_{i=0}^{n} B_i$, where $B_i = \bigoplus_{A_i} Z(p^i)$ with $|A_i| = \operatorname{rank} K_i/K_{i-1}$. Let D_i be the divisible hull of B_i and $D = \bigoplus_{i=1}^{n} D_i$. Let $\sigma: G \to G/K_0$ be the natural homomorphism and $\tau: D \to \bigoplus_{i=1}^{n} D_i/B_i$ be the homomorphism such that $\tau \mid D_i = p^i$. Let φ be an isomorphism from G/K_0 onto $\bigoplus_{i=1}^{n} D_i/B_i$ such that $\varphi(K_i/K_0) = \bigoplus_{j=1}^{i} D_j/B_j$, i = 1, 2, ..., n. Let $A = \{(x, y) \in G \oplus D: \varphi \sigma(x) = \tau(y)\}$. Then A is an α -elongation of G by B. It is straightforward to show that $H_i = \{(x, y) \in A \mid x \in K_i \text{ and } y \in \bigoplus_{j=1}^{i} D_j\}$ is a $p^{\alpha+i}$ -high subgroup of A, i = 0, 1, ..., n-1. Also, if π is the projection of A onto G then ker $\pi = \bigoplus_{i=1}^{n} B_i$ and $\pi H_i = K_i$ for i = 0, 1, ..., n-1 (ker $\pi = p^{\alpha}A$).

Next let G' be a p-group of length α , α a limit ordinal. Let n be a positive integer and P a maximal p^{n-1} -bounded summand of G'. Decompose $G' = P \oplus G$. Let S be a dense subgroup of $G[p^n]$ with $S[p] \neq G[p]$. Decompose $S = \bigoplus_{n=0}^{n-1} S_i$, where $S_i = \bigoplus Z[p^{n-i}]$. Choose a chain of pure

subgroups $K_0 \subseteq K_1 \subseteq \cdots \subseteq K_{n-1}$ of G such that $K_i[p^{n-i}] = \bigoplus_{j=0}^i S_j[p^{n-i}]$. Using the above construction we can construct a group A of length $\alpha + n$ with a chain of $p^{\alpha+i}$ -high subgroups $H_0 \subseteq H_1 \subseteq \cdots \subseteq H_{n-1}$ such that $A/p^{\alpha}A \cong G$ under an isomorphism φ such that $\varphi(H_i + p^{\alpha}A)/p^{\alpha}A = K_i$, i = 0, 1, ..., n - 1. By Theorem 1.7 in [1], A is determined up to isomorphism by $K_0 \subseteq K_1 \subset \cdots \subset K_{n-1} \subseteq G$. Hence for $\alpha = \omega$ the study of IH-groups of length $\omega + n$ is reduced to the study of groups of length ω having a prescribed set of pure subgroups isomorphic. This of course has a natural generalization to groups of length α .

We will now formalize what we have said in the following theorems. We will need several definitions before stating the theorems. Let α be a limit ordinal and n a positive integer. For i = 1, 2, let G_i be a p-group of length α and P_i a subgroup of $G_i[p^n]$ containing a maximal p^{n-1} -bounded summand of G and dense in the α -topology. We will say that (G_1, P_1) and (G_2, P_2) are equivalent if there is an isomorphism ψ from G_1 onto G_2 such that $\psi(P_1) = P_2$. In the case $\alpha = \omega$, such a pair (G, P) is said to be of *IH*-type if given any two pure dense subgroups H_1 and H_2 of G such that $P = H_1[p^n] \oplus Q_1 = H_2[p^n] \oplus Q_2$ with $p^{n-1}Q_1 = \{0\}$ and $p^{n-1}Q_2 = \{0\}$, we have H_1 and H_2 isomorphic.

THEOREM 5. Let α be a limit ordinal and n a positive integer. Let $\mathscr{G}_{\alpha,n}$ be the class of equivalence classes of pairs (G, P), where G is a p-group of length α and P is a subgroup of $G[p^n]$ containing a maximal p^{n-1} -bounded summand of G and dense in the α -topology with $P[p] \neq G[p]$. Let $\mathscr{A}_{\alpha+n}$ be the class of isomorphism classes of p-groups of length $\alpha + n$. Then the map $\varphi: \mathscr{A}_{\alpha+n} \to \mathscr{G}_{\alpha,n}: A \to (A/p^{\alpha}A, A[p^n]/p^{\alpha}A)$ is one-to-one and onto.

Proof. The construction of elongations given above shows that the map is onto. Theorem 1.7 of [1], together with Proposition 2, shows that φ is one-to-one (this also follows from [6]).

THEOREM 6. Let $\hat{\mathscr{A}}_{\omega+n}$ be the subclass of $\mathscr{A}_{\omega+n}$ of IH-groups. Let $\hat{\mathscr{G}}_{\omega,n}$ be the subclass of $\mathscr{G}_{\omega,n}$ of IH-types. Then $\varphi \mid \hat{\mathscr{A}}_{\omega+n}$ is onto $\hat{\mathscr{G}}_{\omega,n}$.

Proof. This follows from Theorem 5, Proposition 2, and the construction of elongations given above.

3. Examples

For each integer $n \ge 2$ we will give an example of a *p*-group *G* of length ω with a dense subgroup *P* of $G[p^n]$ such that all the pure subgroups *K* of *G* such that $K[p^n] = P$ are isomorphic but not all the pure subgroups *L* of *G* such that $L[p^{n-1}] = P[p^{n-1}]$ are isomorphic. Using the construction of elongations given above we can construct an example of a group *A* of length

 $\omega + n$ having all its high subgroups isomorphic, but $A/p^{\omega + n - 1}A$ does not have all of its high subgroups isomorphic.

Let $B = \bigoplus_{n=1}^{\infty} Z(p^n)$ and \overline{B} be its torsion completion. Let H_1 be a pure dense subgroup of \overline{B} containing B such that \overline{B}/H_1 has rank 1. Let H_2 be a pure subgroup of \overline{B} containing B such that $H_1[p^{n-1}] = H_2[p^{n-1}]$ but no pure subgroup of \overline{B} supported by $H_1[p^n]$ is isomorphic to any pure subgroup of \overline{B} supported by $H_2[p^n]$. (One can construct such an H_2 using only a slight generalization of part of the proof of Theorem 66.4 in [3].) Note also that there can be no isomorphism from $H_1[p^n]$ onto $H_2[p^n]$ that preserves heights in \overline{B} . (To prove this one can use the same argument as that at the bottom of page 469 in [2].) Let $0 \to K \to F \to \overline{B} \to 0$ be a pure exact sequence with F a direct sum of cyclic p-groups. Let $G = F/K[p^n]$. Then G is a $p^{\omega+n}$ -projective p-group such that $G[p^n] = S[p^n] \oplus \overline{B}[p^n]$ with $S = K/K[p^n]$ and $B[p^n]$ identified with $F[p^n]/K[p^n]$. (By \oplus we mean direct as a valuated group.) Note that $G/\overline{B}[p^n]$ is a direct sum of cyclic groups. Let $\varphi: G \to G/S \equiv \overline{B}$, where φ is natural and G/S is identified with \overline{B} . Let $A_1 = \varphi^{-1}(H_1)$ and $A_2 = \varphi^{-1}(H_2)$. Note that $A_1[p^{n-1}] = A_2[p^{n-1}]$ since $H_1[p^{n-1}] = H_2[p^{n-1}].$

We will show that A_1 is not isomorphic to A_2 . To see this, suppose not and let $\rho: A_1 \rightarrow A_2$ be an isomorphism. Now for i = 1, 2, $A_i[p^n] = S[p^n] \oplus P_i$, where $P_i = H_i[p^n]$ and A_i/P_i is a direct sum of cyclic groups. Thus it follows from [4] that $A_2/(\rho P_1 \cap P_2)$ is a direct sum of cyclics. Let $\eta: A_2 \to A_2/(\rho P_1 \cap P_2)$ be natural. Since $\eta | P_2 | p |$ is height nondecreasing and the image of η is a direct sum of cyclic groups we have $P_2[p] = T \oplus \ker(\eta | P_2[p])$, where T supports a pure direct sum of cyclic groups in A₂ (see Lemma 1 in [5]). Since \overline{B}/H_1 has finite rank, the elements of T must have bounded height. Hence there is an integer n_1 such that $(p^{n_1}H_2)[p] \subseteq \rho P_1 \cap P_2$. Decompose $H_2 = S_1 \oplus H'_2$, where S_1 is a maximal p^{n_1} -bounded summand of H_2 . Let $P'_2 = H'_2[p^n]$. Note that $P'_2 \subseteq P_2$. $\eta': A_1/P_2'[p] \rightarrow A_1/(\rho P_1 \cap P_2): a + P_2'[p] \rightarrow \eta(a).$ Now Define since $\eta' | (P'_2/P'_2[p])[p]$ is height nondecreasing and the image of η' is a direct sum of cyclic groups we have $(P'_2/P'_2[p])[p] = T' \oplus \ker \eta' | (P'_2/P'_2[p])[p],$ where as above T supports a pure direct sum of cyclic groups in $A_2/P_2'[p]$. Again we can conclude that the elements of T' have bounded height. Thus there is an integer n_2 such that $(p^{n_2}(H'_2/H'_2|p] \subseteq (\rho P_1 \cap P_2)/H'_2|p]$. Hence there is an integer n'_2 such that $(p^{n_2}H'_2)[p^2] \subseteq \rho P_1 \cap P_2$. Continuing in this manner we can find an integer m such that $p^m H_2[p^n] \subseteq \rho P_1 \cap P_2$. By the same arguments we may assume that m has been chosen such that $p^m H_1[p^n] \subseteq P_1 \cap \rho^{-1} P_2$. Since η and η^{-1} preserve heights we must have $\eta(p^m H_1[p^n]) \subseteq p^m H_2[p^n]$ and $\eta^{-1}(p^m H_2[p^n]) \subseteq p^m H_1[p^n]$. Thus η is a height-preserving isomorphism from $p^m H_1[p^n]$ onto $p^m H_2[p^n]$. Thus η can be extended to a height-preserving isomorphism from $H_1[p^n]$ onto $H_2[p^n]$. This contradicts our choice of $H_2[p^n]$. Thus A_1 and A_2 are not isomorphic.

Next recall that every subgroup of a $p^{\omega+n}$ -projective group is $p^{\omega+n}$ -projective. Thus by [4] every pure subgroup of G supported by $A_1|p^n|$ is isomorphic to A_1 .

References

- 1. D. O. CUTLER. On the structure of primary abelian groups of countable Ulm type, Trans. Amer. Math. Soc. 152 (1970), 503-518.
- D. O. CUTLER, Primary abelian groups having all high subgroups isomorphic, Proc. Amer. Math. Soc. 83 (1981), 467-470.
- 3. L. FUCHS, "Infinite Abelian Groups," Vols. 1 and 2, Academic Press, New York, 1970 and 1973.
- 4. L. FUCHS, On the $p^{\omega+n}$ -projective abelian *p*-groups, *Publ. Math. Debrecen* 23 (1976), 309-313.
- 5. L. FUCHS AND J. M. IRWIN, On $p^{\omega+1}$ -projective p-groups, Proc. London Math. Soc. 3 (1975), 459-470.
- 6. L. FUCHS AND L. SALCE. Abelian p-groups of not limit length, Comment. Math. Univ. St. Paul. 26 (1977), 25-33.
- 7. J. M. IRWIN, R. M. CELLARS, AND T. SNABB, A functorial generalization of Ulm's theorem, *Comment. Math. Univ. St. Paul.* 27 (1978), 155-177.
- J. M. IRWIN AND E. A. WALKER. On N-high subgroups of abelian groups, Pacific J. Math. 11 (1961), 1363-1374.
- 9. F. RICHMAN, Extensions of p-bounded groups, Arch. Math. 21 (1970), 449-454.
- R. B. WARFIELD, JR., The uniqueness of elongations of abelian groups, *Pacific J. Math.* 52 (1974), 289-304.