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Intrahepatic angiogenesis and sinusoidal remodeling in chronic
liver disease: New targets for the treatment of portal hypertension?
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Portal hypertension accounts for the majority of morbidity and in sinusoid resistance have been identified to include a mechanic

mortality that is encountered in patients with cirrhosis. Portal
hypertension is initiated in large part through increases in intra-
hepatic vascular resistance. Fibrosis, regenerative nodule forma-
tion, and intrahepatic vasoconstriction are classical mechanisms
that account for increased intrahepatic vascular resistance in cir-
rhosis. Recent data suggest that intrahepatic angiogenesis and
sinusoidal remodeling could also be involved in sinusoidal resis-
tance, fibrosis, and portal hypertension. While angiogenesis is
defined as the formation of new vessels deriving from existing
ones, sinusoidal remodeling in its pathological form associated
with cirrhosis is characterized by increased mural coverage of
vessels by contractile HSC. Most attention on the mechanisms
of these processes has focused on the liver sinusoidal endothelial
cell (SEC), the hepatic stellate cell (HSC), and the paracrine signal-
ing pathways between these two cell types. Interventions that
target these vascular structural changes have beneficial effects
on portal hypertension and fibrosis in some animal studies which
has stimulated interest for pursuing parallel studies in humans
with portal hypertension.
� 2010 European Association for the Study of the Liver. Published
by Elsevier B.V. All rights reserved.
Mechanisms of portal hypertension

Portal hypertension is a major complication of cirrhosis, repre-
senting a leading cause of death or cause for liver transplantation.
While portal hypertension affects multiple organs and vascular
beds, its pathogenesis in large part originates from increases in
intrahepatic vascular resistance and is further perpetuated by
changes in the systemic circulation that culminate in an
increased portal inflow; this has been reviewed in detail else-
where [1]. In particular, mechanisms responsible for the increase
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factor which is a direct consequence of fibrosis deposition and a
dynamic component related to endothelial dysfunction, deficient
intrahepatic nitric oxide (NO) production, increased vasoconstric-
tor production, and other factors that promote increased contrac-
tion of hepatic stellate cells (HSCs) [2–7]. While vascular
structural changes are well established pathological hallmarks
of chronic cirrhosis [8,9] some recent data suggest that these
structural changes could be reversible and could also be major
determinants in resistance and pressure regulation. Vascular
structural changes within the intrahepatic circulation that have
received attention more recently include angiogenesis and sinu-
soidal remodeling. Angiogenesis is a dynamic process leading to
the formation of new vessels from pre-existing blood vessels
[10,11]. Angiogenesis occurs in almost all organs and is a critical
step in a number of physiological and pathological conditions
associated with tissue damage, wound healing, and remodeling.
On the other hand, vascular remodeling occurs in a tissue in a dis-
ease context specific manner and is characterized broadly by
changes in vessel structure [10]. In liver, vascular remodeling
occurs within the hepatic sinusoids in cirrhosis as typified by
increased density of contractile HSC wrapped around sinusoidal
endothelial cells (SEC) that have lost a number of their special-
ized features (i.e., fenestrae, etc.) and has been referred to as
pathological sinusoidal remodeling. This review will highlight
recent findings on the relationship between angiogenesis, sinu-
soidal remodeling, and portal hypertension in terms of mechanis-
tic links and the potential to intervene in these processes for
therapeutic benefit in cirrhosis and portal hypertension.
Angiogenesis in the cirrhotic liver

The pathological role of SEC in cirrhosis and portal hypertension
has been exemplified by studies showing impaired generation of
vasoactive molecules such as eNOS-derived NO that contribute to
endothelial dysfunction and an increased intrahepatic resistance
as reviewed elsewhere [5]. However, evidence is now emerging
for an important role of the SEC in liver angiogenesis. Angiogen-
esis is a dynamic process leading to the formation of new vessels
from pre-existing blood vessels, by sprouting or intussusception,
then lumen formation and eventually stabilization of nascent
vessels [10]. In addition to this traditional angiogenic mechanism,
new vessels may also develop through a process referred to as
post-natal vasculogenesis whereby bone marrow derived endo-
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thelial progenitor cells are recruited to sites of active vessel for-
mation, integrate into the vascular wall, and promote vascular
extension [11]. Angiogenesis can occur in physiological condi-
tions, like liver regeneration, or in pathological settings like cir-
rhosis (Fig. 1) and tumor angiogenesis.

In cirrhosis, it is postulated that angiogenesis may be stimu-
lated by tissue hypoxia. Hypoxia stimulates production of vascu-
lar endothelial growth factor (VEGF) which is one of the most
important angiogenic growth factors, through a canonical path-
way that involves the transcription factor HIF1a [12]. Although
VEGF production is the most prominent from hepatocytes, HSC
may also produce angiogenic molecules (discussed below), and
recent studies have also identified an important autocrine VEGF
signaling loop within endothelial cells themselves [13]. The
mechanism of hypoxia in the cirrhotic liver has been studied
extensively at the level of the hepatocytes with a focus on meta-
bolic changes but could also occur in response to structural
changes in the sinusoids including basement membrane deposi-
tion and loss of SEC fenestrae (also referred to as ‘‘capillariza-
tion”), which in turn could lead to impaired oxygen diffusion
from the sinusoids to the parenchyma. It is likely that capillariza-
tion of sinusoids has different origins and spatial dynamics in dif-
ferent forms of chronic liver disease and is probably just one
component of the broader sinusoidal changes that are occurring
in chronic liver disease due to over-availability of angiogenic fac-
tors that accompany the chronic wound-healing process.

Although SEC are the most recognized cell type that partici-
pate in angiogenesis, recent advances suggest that pericytes such
as HSC are also major contributors to angiogenesis. This may
occur through direct and indirect mechanisms. Direct mecha-
nisms include the ability of HSC to stabilize the new vessels
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Fig. 1. Angiogenesis in cirrhosis and portal hypertension. Normal architecture
of sinusoidal vessels is shown (left panel) with normal flow from portal venules,
through sinusoids, into central veins (left box). The sinusoidal vascular network in
the cirrhotic liver undergoes profound changes, with an increased number of
sinusoidal vessels (angiogenesis) of varying diameter and flow pattern, organized
into micronodules and macronodules (right panel). While angiogenesis has been
proposed to increase fibrosis, these new vessels could also theoretically serve as
portal pressure reducing intrahepatic shunts (right box).
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and provide durability to the vessels that cannot be achieved
by SEC alone in the absence of mural cells such as HSC [14]. On
the other hand, indirect mechanisms are also likely to be impor-
tant and include the ability of HSC to secrete angiogenic mole-
cules that recruit and stimulate SEC thereby promoting a ‘‘pro-
angiogenic sinusoidal matrix” [10]. For example, recent studies
show that activated HSC secrete VEGF and angiopoietin-1, the
molecules that promote angiogenesis [15–17]. In response, SEC
synthesize PDGF and TGF-b, thereby stimulating HSC migration
and recruitment to vessels [10]. Therefore, pericytes may contrib-
ute to angiogenesis through multiple mechanisms.

What is the relationship between liver angiogenesis and portal
hypertension? In the liver, angiogenesis is postulated to contribute
to portal hypertension by promoting fibrogenesis. Indeed, angio-
genesis and fibrosis develop in parallel in a number of organ beds
including the kidney and the lung [10]. Angiogenesis appears to
be a typical feature of liver fibrosis as well. For example, neovascu-
lature and overexpression of pro-angiogenic molecules have been
detected in liver biopsies of patients with chronic viral infection,
primary biliary cirrhosis and auto-immune hepatitis [18,19].
Moreover, in human liver samples, angiogenesis directly correlates
with the degree of hepatic fibrosis [15]. Similar findings were
observed in animal studies using complementary models of liver
fibrosis where fibrogenesis and angiogenesis develop in parallel
during progression towards cirrhosis [15,20]. Furthermore, phar-
macologic interventions that inhibit angiogenesis, especially use
of receptor tyrosine kinase inhibitors such as Sorafenib or Suniti-
nib, decrease hepatic fibrosis [20–22]. Nevertheless, these specific
agents may also inhibit PDGF receptor beta (PDGFR-b) which is an
effector, not only for HSC angiogenesis but also a factor that influ-
ences other aspects of the HSC activation process. However, the
drugs that specifically inhibit angiogenesis by targeting molecules
not involved in HSCs fibrogenic pathway, like VEGF receptor type 2
(VEGFR2) or Tie2, also induce a decrease in hepatic fibrosis [15,23],
providing further evidence for the importance of angiogenesis in
the process of fibrogenesis.

What may be the rationale by which angiogenesis promotes
fibrosis? Some have postulated parallels between fibrosis and liver
tumors whereby metabolically active cells (tumor cells in the case
of HCC and active HSC in the case of cirrhosis) require adequate
blood flow and nutrition to maintain their metabolically active
state and that local tissue hypoxia within the scar may be driving
angiogenic factor release [22,24]. Another possibility, which is
not mutually exclusive is that angiogenic SEC and activated HSC
release growth factors that promote the function of one and the
other. Furthermore, pro-angiogenic cytokines secreted by acti-
vated HSCs may have a pro-fibrogenic effect [16,17,23,25]. Lastly,
inflammation may be a process that links angiogenesis and fibrosis
since angiogenesis may provide access for inflammatory cell infil-
trates that are thought to promote fibrogenesis over chronic time-
frames [26]. However, a greater understanding is required
pertaining to the relationship of these processes.

While these data suggest that angiogenesis may be a requisite
step that promotes fibrogenesis, it is possible that vascular
changes occur in a passive manner, secondary to fibrosis. Further-
more, there is some evidence that an inhibition of angiogenesis
can even worsen fibrosis [27–29]. For example, in a recent study
performed in two complementary models of cirrhosis, the admin-
istration of Cilengitide, an inhibitor of the vitronectin receptor
integrin abv3 that plays an important role in liver angiogenesis,
promoted hepatic fibrosis and inflammation despite its anti-
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Fig. 2. Pathological sinusoidal remodeling in cirrhosis and portal hypertension. HSC align themselves around the sinusoidal lumen in order to induce contraction of the
sinusoids. While in normal physiologic conditions, HSC contractility and coverage of sinusoids is sparse, in cirrhosis, increased numbers of HSC with increased cellular
projections, wrap more effectively around sinusoids thereby contributing to a high-resistance, constricted sinusoidal vessel. At the cellular level, a number of growth factor
molecules contribute to this process through autocrine and paracrine signaling between HSC and SEC. A number of these molecules are depicted along with their proposed
role in paracrine function.
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angiogenic effects [30]. It is possible that the disparate effects of
anti-angiogenic drugs on fibrogenesis could be explained by their
different targets. Nevertheless, this recent finding suggests a note
of caution for the use of potent anti-angiogenic molecules in
fibrosis and portal hypertension. This is particularly important
since one could envision that angiogenesis induced blood flow
could theoretically be important for the tissue repair that may
be requisite in recovery from liver injury and cirrhosis or alterna-
tively could provide a means for portal pressure decompressing
shunt formation (Fig. 1).
Pathological sinusoidal remodeling in cirrhosis and portal
hypertension

Activated HSC are probably the most pro-fibrogenic cells in the
liver. However, in parallel to this important role, HSC also make
an important contribution to the vascular structural changes in
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cirrhosis. For example, in addition to their supportive role in
angiogenesis which was discussed above, HSC also play a domi-
nant role in sinusoidal vessel structural changes in cirrhosis, a
process referred to as pathological sinusoidal remodeling. Prior
work has highlighted the role of sinusoidal vasoconstriction in
the genesis of portal hypertension, where HSC operate as contrac-
tile machinery in response to vasoconstrictors such as endothelin
and also relax in response to vasodilators such as NO [5,31].
Building on this concept, recent studies suggest that the mural
coverage of sinusoidal vessels is enhanced by HSC in cirrhosis,
and that because of the contractile nature of HSC, this process
of ‘‘pathological sinusoidal remodeling” contributes further to a
high-resistance, constricted sinusoidal vessel [14]. Indeed, HSC
have the ability to align themselves in an effective way around
the vessel lumen in order to achieve these structural changes
[14]. This sinusoidal remodeling requires the recruitment of
‘‘angiogenic” stellate cells to the vascular wall or the activation
of local HSC with extension of tentacle-like structures that encir-
0 vol. 53 j 976–980
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cle the vessel lumen and adjacent SEC (Fig. 2). These long pro-
cesses and their close juxtaposition with SEC ideally position
them for paracrine signaling with SEC [10] that promotes vaso-
constriction and continued sinusoidal structural changes.

A number of growth factors, signaling pathways mediate HSCs
proliferation, migration, motility and recruitment to vessels in the
process of sinusoidal remodeling, including platelet-derived
growth factor (PDGF)/PDGF receptor and VEGF/VEGF receptor
[10,17]. Although these ligands are technically growth factors, they
maintain important chemotactic properties and highlight the
important role that other chemotactic molecules and guidance/
repulsion molecules play in the process of HSC recruitment and
motility including ephrin family proteins and more traditional che-
mokine pathways [14,32]. Nonetheless, PDGF may be the most crit-
ical of these molecules based not only on work in the liver but also
in broader studies examining the mechanisms of pericyte recruit-
ment to vessels [14,33]. The activation of PDGFR triggers the down-
stream propagation of signals that include Raf-1, MEK, and
extracellular-signal regulated kinase (ERK), which trigger a prolif-
erative response while downstream phosphatidylinositol 3-kinase
(PI 3-K) is thought to predominate for chemotaxis [34]. Recent
studies show that a molecule more characterized for axonal guid-
ance, termed, neuropilin-1 also contributes importantly to PDGFR
chemotactic responses [35]. Interestingly, the inhibition of the
PDGF signaling pathway by the receptor tyrosine-kinase inhibitor
Imatinib reduced portal pressure in an animal model of cirrhosis
through effects on sinusoidal remodeling and impaired HSC cover-
age of sinusoids with less consequential effects on fibrogenesis
[14,36]. This is an important point because one may have predicted
that HSC mass would correlate directly with the degree of fibrosis.
However, it is becoming increasingly recognized that there are het-
erogeneous subpopulations of myofibroblasts in the liver, includ-
ing those derived from HSC, periportal fibroblasts; bone marrow-
derived cells and the epithelial-to-mesenchymal transition [37].
Thus, it is probable that all myofibroblasts do not have identical
angiogenic capacities and indeed it has been suggested recently
in a proteomic analysis that HSC may display more angiogenic fea-
tures than portal myofibroblasts [38]. In total, these findings high-
light the role of pathological sinusoidal remodeling in the process
of increased intrahepatic vascular resistance and portal hyperten-
sion and in turn also highlight the possibility that targeting HSC
motility and reversion of pathological remodeling could have ther-
apeutic benefits.

In addition to the HSC driven sinusoidal remodeling that is
described above, other forms of vascular remodeling are also
occurring within the cirrhotic liver. Even within the sinusoids,
not only HSC participate in sinusoidal remodeling since SEC
which lose their fenestra, become associated with a basement
membrane, and undergo a number of other phenotypic changes
which seem to go hand-in-hand with ‘‘endothelial dysfunction”
and probably contribute to enhanced HSC activation, prolifera-
tion, migration, and sinusoidal coverage as suggested in recent
studies [39–41]. Thus, HSC activation is promoted not only by
changes in extracellular matrix, inflammatory cytokines, and oxi-
dative stress, but also secondary to changes in SEC phenotype. For
example, recent studies in aggregate suggest that functional
endothelium with an adequate NO generation (perhaps due to
proper shear stress) could participate in maintaining HSC in a
quiescent state but that deficient NO generation that is associated
with cirrhosis allows unchecked HSC activation [39,41,42]. Vas-
cular remodeling also occurs outside the sinusoids in cirrhosis.
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For example, in their pioneering studies, Rappaport and co-work-
ers showed that the development of a scar in the cirrhotic liver
was invariably accompanied by an intense vascular proliferation
including the presence of ‘‘scar vessels” [9]. Indeed, it has been
proposed that substantive vascular structural changes may limit
potential efficiencies of anti-fibrotic therapies suggesting a clini-
cal prognostic relevance to such vascular changes [43].
Are angiogenesis and sinusoidal remodeling therapeutic
targets in humans?

As angiogenesis and sinusoidal remodeling may promote portal
hypertension through multiple mechanisms discussed above,
investigators have administered anti-angiogenic drugs in animal
models of cirrhosis with the aim of decreasing portal hyperten-
sion. The previously discussed beneficial effects of Imatinib in
portal hypertension is one example [14]. Moreover, Sorafenib, a
multitarget receptor tyrosine kinase inhibitor approved in the
treatment of unresectable hepatocellular carcinoma, has shown
beneficial effects in a model of secondary bile duct ligation-
induced cirrhosis [21,22] that is independent of its beneficial
effects of decreasing splanchnic neovascularization and portosys-
temic collateral circulation, (another important site of angiogen-
esis with therapeutic implications but which is not explored in
this review) [21,22]. Indeed, Sorafenib treatment induced a
decrease of portal hypertension, as well as a reduction in intrahe-
patic fibrosis, intrahepatic inflammatory infiltrate, and intrahe-
patic neovascularization [22]. Moreover, the administration of
another anti-angiogenic drug, i.e., Sunitinib, a multitarget recep-
tor tyrosine kinase inhibitor, in a carbon tetrachloride rat model
of cirrhosis, also resulted in a decrease in portal pressure, along
with a decrease in inflammatory infiltrate, angiogenesis, and
HSC activation/matrix deposition [20]. Therefore, small molecule
inhibitors of receptor tyrosine kinases that target the growth fac-
tor pathways leading to angiogenesis and sinusoidal remodeling
(i.e., VEGF, PDGF, Ang-1) are capable of lowering PHT, probably
through a dual and converging anti-fibrogenic and anti-angio-
genic role of action that affects both HSC and SEC.

However, the story could be more complex. If lowering angio-
genesis in animal models of pre-hepatic portal hypertension
decreases portal pressure by decreasing splanchnic neovasculari-
zation and venous collaterals, one might question whether
decreasing intrahepatic collaterals may be detrimental, since these
vessels could theoretically act as portal hypertension decompress-
ing shunts. Furthermore, the beneficial role of angiogenesis in tis-
sue regeneration and repair should not be underestimated. Lastly,
as discussed earlier, some anti-angiogenic interventions provide
evidence for the detrimental effects in preclinical models [27–30].

In conclusion, angiogenesis and sinusoidal remodeling in liver
occur concurrently with fibrosis and portal hypertension and a
number of experimental evidence support a causative role for
these vascular changes in the genesis of fibrosis and portal hyper-
tension in animal models. However, animal models do not always
faithfully recapitulate the human state (as exemplified by the dis-
parate results of TNFa inhibition in rodent as compared to human
alcoholic liver disease [44–46]. Clearly we need to pursue human
investigations with all proper safety measures in place. A good
starting point may be a more in-depth analysis of the effects of
Sorafenib on portal pressure and fibrosis in non-tumorous fibro-
tic tissues obtained in previously completed clinical studies [47].
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Undoubtedly, new studies in angiogenesis, fibrosis, and portal
hypertension will be forthcoming and will clarify our clinical
options in humans with advanced liver disease.
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