# A Remark Concerning Embeddability of Rings in Fields 

Abraifam A. Klein<br>Department of Mathematics, Yale University, Nezv Haven, Connecticut 06520<br>Communicated by P. M. Cohn<br>Received October 5, 1970

In previous papers [1] and [2], we have dealt with the following necessary conditions for embedding rings into fields:
$N_{m}$ : If a matrix $C$ of order $m$ is nilpotent then $C^{m}=0$.
The result obtained in [1] led us to the question whether the set of conditions $N_{m}, m=1,2, \ldots$ is sufficient for an integral domain to be embeddable in a field. This question is reasonable also since these conditions arc quasiidentities, and it is known [3] that the class of rings embeddable in fields can be characterized as the class of integral domains satisfying certain quasiidentities; i.e., universal formulae of the form $A_{1} \wedge \cdots \wedge A_{1}=B$ (also called Horn sentences), where $A_{i}, B$ are equations.

Our object is to show that the conditions $N_{m}, m=1,2, \ldots$, are stronger than one might have thought, and the results we shall derive, lead us to the conjecture* that they are sufficient for embeddability.

We shall consider two other sets of necessary conditions for embedding rings into fields which seem to be stronger, and we shall prove that they are equivalent to the set of conditions $N_{m}, m=1,2 \ldots$. One of these sets of conditions was suggested to the author by Professor Amitsur. He asked whether the following property on the product of square matrices of order $m$ over an integral domain is stronger than $N_{m}$ :
> $P_{m}$ : If the product of $k$ permutable matrices, $k>m$, is zero, then there exist $m$ of these matrices having zero product.

It is easy to show that $P_{m}$ is necessary for embedding in a field. Also it is clear that $P_{m}$ implies $N_{m}$ in any ring. At a first glance, $P_{m}$ seems to be stronger than $N_{m}$ and it is really stronger for arbitrary rings. For instance, any direct. product of at least two fields clearly satisfies all the conditions $N_{m}$. However,

[^0]it does not satisfy any of the conditions $P_{m}$ since it can be proved that a ring with 1 which satisfies $P_{m}$ also satisfies $P_{n}$ for $n=1, \ldots, m \ldots 1$. In particular, it satisfies $P_{1}$ and a ring which satisfies $P_{1}$ is an integral domain. One can also show directly, by an example, that $P_{m}$ does not hold in a direct product of at least two ficlds. We shall sec that for integral domains $N_{m}$ implies $P_{m}$.

The other set of conditions was suggested by Professor Bergman. To define these conditions, we first need another definition. Let $R$ be a ring with 1 and $R^{m}$ the right $R$-module of rows of length $m$ over $R$.

Definition. A submodule $U$ of $R^{m}$ is called closed if it is the intersection of the kernels of a family of linear functionals on $R^{r a}$.

The condition defined by Bergman is:
$C_{m}$ : The length $k$ of any chain of nonzero closed submodules of $R^{m}$ : $U_{1} \subsetneq U_{2} \subsetneq \cdots \subsetneq U_{k}$ is $\leqslant m$.

It can be proved directly that $C_{m}$ is necessary for embedding in a field. Also, $N_{m}$ is the condition $C_{m}$ restricted to chains of a special form and $C_{m}$ seems to be much stronger than $N_{m}$. We shall soon see that $C_{m}$ seems to be even stronger than $P_{m}$ and this will, in particular, show that a ring satisfying $C_{m n}$ is necessarily an integral domain.

We shall identify the set of all linear functionals $\operatorname{hom}_{R}\left(R^{m}, R\right)$ with the left $R$-module of rows of length $m$ over $R$. The identification is made such that if $x=\left(x_{1}, \ldots, x_{m}\right) \in R^{m}$ and $g$ is a linear functional identified with $\left(a_{1}, \ldots, a_{m}\right)$, then $g(x)=\sum_{i=1}^{m} a_{i} x_{i}$. We shall also identify $\operatorname{hom}_{R}\left(R^{m}, R^{r x}\right)$ with the ring of $m \times m$ matrices $R_{m}$ acting on the left, and this clearly shows that if $f$ is an $R$-endomorphism of $R^{m}$, then ker $f$ is the intersection of the kernels of $m$ linear functionals, and hence it is a closed submodule of $R^{m}$. U'sing this identification, the definition of $P_{m}$ for rings with 1 can be given as above with "endomorphisms" replacing "matrices".

Now, we shall show that $C_{m}$ implies $P_{m}$. By induction on $k, k>m$, it follows that it is enough to prove $P_{m}$ for $k=m+1$. Let $f_{1}, \ldots, f_{m+1}$ be permutable endomorphisms having zero product. If $P_{m}$ is not satisfied, then $\prod_{j \neq i} f_{j} \neq 0$ and the following is a chain of $m+1$ nonzero closed submodules of $R^{m}$ :

$$
\operatorname{ker} f_{1} \subsetneq \operatorname{ker}\left(f_{1} f_{2}\right) \subsetneq \cdots \subsetneq \operatorname{ker}\left(f_{1} \cdots f_{m+1}\right)=R^{m}
$$

This shows that if $C_{m}$ holds, then $P_{m}$ also holds, and we have one part of our result which is

Theorem. For integral domains with 1 and for each $m>1$, the conditions $N_{m}, P_{m}$ and $C_{m}$ are equivaleni.

Proof. We have proved that $C_{m}$ implies $P_{m}$ and it is trivial that $P_{m}$ implies $N_{m}$. It remains to prove that $N_{m}$ implies $C_{m}$. For $m=1$, the result is clear, since $C_{1}$ holds in any integral domain with 1 . Let $m \geqslant 2$ and assume that $R$ does not satisfy $C_{m}$. Thus, there exists a chain of more than $m$ nonzero closed submodules of $R^{m}$. Let $U_{1}, \ldots, U_{m}$ be the first $m$ elements of this chain; so we have

$$
U_{1} \subsetneq U_{2} \subsetneq \cdots \subsetneq U_{m} \subsetneq R^{m}
$$

Considering the definition of a closed submodile, it is clear that if $U$ is closed and $Z(U)$ is the set of all linear functionals annihilating $U^{T}$, then $U=$ $\bigcap_{g \in Z(C)} \operatorname{ker} g$. Hence, for the elements of our chain we have $U_{i}=\bigcap_{g \in Z\left(U_{i}\right)}$ ker $g$, $i=1, \ldots, m$. Since $U_{i} \neq U_{i+1}$, it follows that $Z\left(U_{i}\right) \neq Z\left(U_{i+1}\right)$. Also $Z\left(U_{i+1}\right) \supseteq Z\left(U_{i}\right)$; hence we have

$$
Z\left(U_{1}\right) \supseteqq Z\left(U_{2}\right) \supseteq \cdots \supsetneq Z\left(U_{+n}\right) \supseteqq\{0\} .
$$

Now, choose $0 \neq x_{1} \in U_{1}$ and $x_{i} \in U_{i}-U_{i-1}, i=2, \ldots, m$. Choose also $0 \neq g_{m} \in Z\left(U_{m}\right)$ and $g_{i-1} \in Z\left(U_{i-1}\right)$ such that $g_{i-1}\left(x_{i}\right) \neq 0, i=2, \ldots, m$. Let $x_{k}=\left(x_{1 k}, \ldots, x_{m k}\right), k=1, \ldots, m$, and let $g_{i}$ be identified with ( $a_{i 1}, \ldots, a_{i n}$ ), $i=1, \ldots, m$. Define the following two $m \times m$ matrices: $A=\left(a_{i j}\right)$ and $X=\left(x_{j k}\right)$. By the choice of $g_{1}, \ldots, g_{m}$ and $x_{1}, \ldots, x_{m}$ it follows that

$$
A X-\left(g_{i}\left(x_{k}\right)\right)=\left(\begin{array}{ccccc}
0 & g_{1}\left(x_{2}\right) & & & \\
& 0 & g_{2}\left(x_{3}\right) & & \\
& & \ddots & \ddots & * \\
& & \ddots & \ddots & \\
& 0 & & 0 & g_{m-1}\left(x_{m}\right) \\
& & & & 0
\end{array}\right)
$$

From this we obtain that $(A X)^{m}=0$, hence $(X A)^{m_{+1}}=0$. Also $g_{i-1}\left(x_{i}\right) \neq 0$ for $i=2, \ldots, m$ and since $x_{1} \neq 0$ and $g_{m} \neq 0$, there exist $p$ and $q$ such that $x_{1 g} \neq 0$ and $a_{m q} \neq 0$. The matrix $(A X)^{m-1}$ has $g_{1}\left(x_{2}\right) \cdots g_{m-1}\left(x_{m}\right)$ in its $(1, m)$ place and zeros elsewhere. This implies that the $(p, q)$ entry of $(X, A)^{m}=$ $X(A X)^{m-1} A$ is $x_{1 p} g_{1}\left(x_{2}\right) \cdots g_{m-1}\left(x_{m}\right) a_{m j}$ and it is $\neq 0$, since all the terms are $\neq 0$ and $R$ is an integral domain. Thus, we have that the $m \times m$ matrix $X A$ is nilpotent and $(X A)^{m} \neq 0$. This shows that $C_{m}$ holds whenever $N_{m}$ holds and the result of the theorem follows.

An immediate corollary of the theorem is
Corollary 1. For integral domains with 1 the conditions $\bigcap_{m=1}^{\infty} N_{m}$, $\bigcap_{m=1}^{\infty} P_{m}$ and $\bigcap_{n=1}^{\infty} C_{m}$ are equivalent.

Another interesting corollary is:

Corollary 2. If $R$ is an integral domain with 1 satisfying $N_{m}$, then each nonzevo closed submodule of $R^{m}$ is the intersection of the kernels of less than $m$ linear functionals.

We have seen that the kernel of an $R$-endomorphism of $R^{m}$ is closed. Corollary 2 shows that each closed submodule of $R^{m}$ is the kernel of one endomorphism. Thus, for integral domains with 1, we have that in the presence of $N_{m}$ the set of closed submodules of $R^{m}$ coincides with the set of the kernels of the $R$-endomorphisms of $R^{m}$.

We conclude with the following remark. The condition $C_{m}$ is easily seen to be equivalent to the following condition on matrices: Any chain of nonzero right (or left) annihilators in the ring $R_{m}$ has length $\leqslant m$. This condition applies also to rings without 1 . Let us use the same notation $C_{m}$ for this condition defined for arbitrary rings. Following the proof of our theorcm one can prove that the conditions $N_{m}, P_{m}$ and $C_{m}$ are equivalent for arbitrary integral domains.

## References

1. A. A. Klein, Necessary conditions for embedding tings into fields, Trans. Amer. Math. Soc. 137 (1969), 141-151.
2. A. A. Klein, Matrix rings of finite degree of nilpotency, Pacific J. Math. 36 (1971), 387-391.
3. A. Robinson, A note on embedding problems, Fund. Math. 50 (1962), 455-461.

[^0]:    * Added in proof: A counterexample to this conjecture has been found by G. M. Bergman.

