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Abstract The mechanical properties of plasma-sprayed thermal barrier coating

(TBC) play a vital role in governing their lifetime and performance. This work

investigated the microstructural and mechanical properties of TBC with high tem-

perature treatment at 1 400◦C by scanning electron microscopy and indentation.

We calculated elastic modulus and hardness through the application of Weibull

statistics analysis. The results indicate that the microstructure of ceramic coat-

ing will change continuously at high temperature, and accordingly the porosity

decreases due to the grain growths and crack closes. In addition, the elastic mod-

ulus and hardness nonlinearly go up with the heat treatment time and go down

with increasing porosity. This demonstrates that the microstructural evolution

and porosity of TBC are caused by high temperature treatment, and as a result its

mechanical properties are influenced.
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Thermal barrier coating systems (TBCs) are widely used in industrial gas-turbine engines to

provide lubrication and thermal insulation for combustor engine components from the hot gas

stream. However, the premature spallation-failure of TBC will expose the metallic substrate to

the dangerous hot gases, which has impaired the use and shortened the lifetime of TBCs. The pro-

gressively changing mechanical properties of TBC lead to the misfit stress among the multilayer

structures, which is one of the main factors responsible for the failures of TBCs.1 Therefore, a

better interpreting of the complex changes in the properties and structure is required for improve-

ments in TBCs.

There are substantial researches on the mechanical properties of TBCs. Since 1990s, the me-

chanical behavior of TBCs at room temperature had been investigated using various test methods,

including bending,2 resonant frequency,3 and indentation.4 The mechanical properties of TBC

exposed to high temperature were also studied. Qi et al.5 investigated the elastic modulus of

1 050◦C isothermal ceramic coatings using indentation technique. Guo and Kagawa6 measured

the ceramic coatings and thermally growth oxide after 1 150◦C high temperature exposure to an

oxidizing atmosphere. Choi et al.7 measured the mechanical behavior for plasma-sprayed thermal

barrier coatings. The specimens were first heated at 800◦C and 1 316◦C for a period of time, and

then the mechanical properties of specimens were tested at room temperature.
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In this work, TBC specimens were fabricated with w(yttria) = 8% partially stabilized zirconia

powder deposition on the Ni-based superalloy substrate. The free-standing ceramic coatings were

obtained after the specimens were corroded in aqua regia for about an hour. The final specimen

size is 60 mm × 10 mm × 1 mm (length × width × thickness). Then the specimens were put

into a high temperature furnace for 1 400◦C isothermal cycling treatment. The heating rate was

600◦C per hour, while the cooling rate was about 200◦C per hour, namely the specimens all had a

heating and cooling experience in addition to the heat preservation time.

Figure 1 illustrates the scanning electron microscopy (SEM) diagrams of ceramic coating for

different heat treatment time. Figure 1(a) shows the corrugated morphology of the as-received

plasma-sprayed ceramic coating. The molten ceramic particles bond together during the coating

building-up and the cracks are irregular with width less than 0.4 μm. The cracks will shrink or

partially close due to the growth of small grains or recrystallization as a result of the sintering

of coatings when exposed to the high temperature environment for a period of time. After heat

treatment of 10 h, the surface becomes compact, fine, and close.

(a)  As-received (b) 2 h (c) 10 h

Fig. 1. SEM diagrams of ceramic coating for different heat treatment times.

The porosities and densities were tested in accordance with the ASTM C20-00.8 Figure 2

shows the curve of porosity versus heat treatment time. Each data point was obtained from the

average of three specimens. The porosity of as-received coating is about 8.5%. The porosity

decreases quickly with the heat treatment time in the beginning 5 h, and decreases slowly after-

wards. The porosity with 20 h heat treatment time is about 5.8%. The results can be attributed to

the microstructural changes including the grain growths and crack closes.

The variations of hardness and elastic modulus of specimens with heat treatment times were

evaluated using indentation method according to the load–displacement or P–h curve. According

to the Oliver and Pharr method9 for a Berkovich indenter, the formulas are

H = Pmax/A, (1)

Er =
√
πS/(2β

√
A), (2)

in which H denotes the hardness, Pmax is the maximum load, and A represents the contact area

which is determined as A = 24.56h2
c. hc = hmax − εPmax/S is the contact depth, where ε = 0.75,

hmax denotes the maximum depth, and S = dP/dh is the contact stiffness. β is a constant depend-

ing on the indenter’s geometry (β = 1.034 in the Berkovich case). Er denotes the reduced Young’s
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Fig. 2. The relation between porosity and heat treatment time.

modulus, which can be determined by 1/Er = (1−υ2)/E +(1−υ2
i )/Ei, with υ and E being the

Poisson’s ratio and Young’s modulus for the measured sample, and υi and Ei are Poisson’s ratio

and Young’s modulus of the diamond indenter. Poisson’s ratio is set to 0.25 for the measured

sample and 0.07 for diamond indenter during this study, and Ei is set to 1 141 GPa. The indenta-

tion tests were carried out with the surface approach velocity being 10 nm/s, the maximum depth

limit being 2 000 nm, and the holding time being 10 s, respectively.10 The indented points can

be randomly selected on the specimen surface with an optical microscopy. The size of triangle

indentation was over 10 μm with 2 000 nm depth.

It is timesaving and simple to operate using the indentation technique for elastic modulus esti-

mation of materials. However, the measured results are likely to be influenced by the microstruc-

ture since the indentation response is a combination of the indented material and structure.11

Therefore, the Weibull distribution function (WDF) was used for data analysis to reduce errors.12

The two-parameter WDF provides the probability f for a given parameter x as

f = 1− exp(−(x/χ0)
k), x � 0, (3)

where k is the Weibull modulus representing the scatter of data. The probability of i-th data can

be arranged in ascending order, f (x) = (i−0.5)/N. Equation (3) can be rewritten as

ln(ln(1/(1− f ))) = k(lnx− ln χ0), x � 0. (4)

The parameters of k and χ0 can be obtained by linear fitting of ln(ln(1/(1− f ))) and lnx. And

the characteristic value (χ0) will be used as the final hardness (H0) or elastic modulus (E0) of the

ceramic coating.

Figure 3 shows the Weibull distribution of some tested results on the as-received samples and

those after different heat treatment times with test number N = 20. The hardness (H0) and elastic

modulus (E0) can be obtained by linear fitting and calculation of the characteristic value (χ0).

The upper curve in Fig. 4 shows the relation between elastic modulus and heat treatment time. As

can be seen from the graph, the elastic modulus of as-received plasma-sprayed coating is about

82.1 GPa. The value increases rapidly as the heat treatment time increases at the beginning of

5 h and increases slowly after 5 h. The elastic modulus reaches nearly 180 GPa when the heat
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treatment time is 20 h. In addition, the lower curve in Fig. 4 shows the relation between hardness

and heat treatment time, which has a similar trend with the upper curve. The hardness increases

quickly with heat treatment time in the beginning 5 h and slightly rises later. This trend agrees

with the results reported in the literature.6
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Fig. 3. Linear fitting of Weibull distribution according to the indentation test results.
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Fig. 4. Effect of heat treatment time on elastic modulus and hardness.

The mechanical properties and porosity are also studied. As shown in Fig. 5, the upper curve

indicates the relation between elastic modulus and porosity, while the lower curve illustrates the

relation between hardness and porosity. It can be seen from the curves that there is a sharp in-

crease of hardness and elastic modulus when porosity decreases as for the as-received ceramic

coating. The results may be caused by the sudden closure of long cracks and shape modification

of pores after a short period time of high temperature treatment.13 Furthermore, the additional part

of the curves witnesses a steady increase of elastic modulus and hardness with decreasing poros-

ity, which shows a relatively linear relation.14 This phenomenon implies that high temperature

treatment affects the elastic modulus and hardness of porous ceramic coating mainly by changing

its porosity, and the effect of high temperature treatment on the elastic modulus and hardness of

dense material can be ignored after a certain period of treatment time.

In conclusion, the present work presents an investigation of microstructural and mechanical
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Fig. 5. Effect of porosity on elastic modulus and hardness.

properties on TBC with high temperature treatment at 1 400◦C. The micro scale diagrams show

that the microstructure of ceramic coating will continuously change due to the grain growths and

crack closes at high temperature, and accordingly the porosity decreases with the heat treatment

time. In addition, the elastic modulus and hardness increase nonlinearly with the heat treatment

time and decrease with increasing porosity. This indicates that high temperature treatment affects

the elastic modulus and hardness of porous ceramic coating mainly by changing its porosity,

and microstructures have a significant influence on the mechanical properties of thermal barrier

coating.
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