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Abstract--A mathematical model is developed with an aim to study the transport of interstitial 
fluid in the wall of a constricted artery by taking into account the microrotation of the erythrocytes 
of blood. The movement of the interstitial fluid has been described by the Debye-Brinkman equation. 
Exact solutions are obtained for the displacement of the solid matrix of the porous interstitial space, 
the velocity of the interstitial fluid movement, and the pressure distribution in the constricted arterial 
segment, for large and small consolidation times. Expression for the wall shear stress is also obtained 
for the constricted segment of the artery. Theoretical estimates of the distributions of the axial 
velocity of blood in the stenosed zone, rotational velocity of the erythrocytes, wall shear stress, and 
wall displacement, as well as the pressure and velocity profiles for the interstitial fluid movement, 
have been presented in the form of graphs. © 2001 ELsevier Science Ltd. All rights reserved. 

N O M E N C L A T U R E  

( ~ height of the stencsis u Poisson's ratio 

k a constant v* (1 - 2v)/(1 - v) 

6ij Kronecker delta w angular frequency 

Eij infinitesimal strain tensor pl pressure in porous space 

G, A stiffness constants Pti ~ the pressure gradient Ox# 

h thickness of the normal arterial wall r radial coordinate 

i ~ a characteristic radius of the artery 

I0, I1 modified Beesel functions of the first R* internal radius 

kind t t ime 

K0, K1 modified Bessel functions of the 
second kind Tij composite stress of mixture 

7 consolidation time 
Kp permeability of the matrix 

# viscosity of the interstitial fluid ~'~j contact stress 
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ui displacement vector 

vsi solid velocity 

V/ total velocity 

wi filtration velocity 

x axial distance 

u, v axial and radial velocity of blood 

v o rotational velocity along 0 direction 

U0 

U1 

W 

P~ 

rotational and shear viscosity 

stream function 

mean axial velocity at r --- 0 

porous space solid displacement along 
radial direction 

porous space fluid displacement along 
radial direction 

transmural pressure of blood 

1. I N T R O D U C T I O N  

The deposit of cholesterol on the endothelium and proliferation of connective tissues in an 
arterial wall form plaques which grow inward and restrict the flow of blood through the lumen 
of the artery. Arterial diseases such as this have been quite widespread now-a-days, and hence, 
studies pertaining to their cause and development are receiving intensified at tention of researchers 
from various disciplines. Different aspects of the problem are being investigated from different 
angles. In order to have a bet ter  understanding of the formation, growth, and development of 
stenosis, it is definitely essential tha t  together with studies pertaining to flow characteristics of 
blood and the deformation and stress field generated in the wall, the movement  of the interstitial 
fluid in the porous matr ix  of the arterial wall should be paid due attention. Although in the 
past  there have been some extensive theoretical studies relating to blood flow, as well as wall 
deformations under normal and pathological conditions [1-11], the problem of fluid flow in the 
interstitial space of the arterial wall, as well as the associated problem of t ranspor t  of nutrients 
from blood to the adjacent tissue medium through the pores in the walls of smaller blood vessels 
has received scant attention. Kenyon [12,13] made a theoretical analysis for the t ime-dependent  
filtration of fluids through the walls of soft porous tubes. Following [13], some a t t empt  was made 
to s tudy the interstitial fluid flow [14] by using Darcy's  law to relate the said flow to the pore 
pressure .  However, previous studies such as this suffer from the inherent deficiency tha t  they do 
not account for the no-slip condition on the coarse fibers of the wall tissues. As pointed out by 
Ethier [15], the coarse fibers create velocity gradients within the fine material  due to the fact tha t  
the no-slip condition must be satisfied on the surface of the coarse fibers. These coarse fibers also 
increase the superficial velocity through the fine material due to the effect of area obstruction, 
and also contribute to increasing the overall tortuosity of the mixed material.  All these effects 
produced by the coarse fibers of the wall tissues have an important  bearing on the reduction of 
the permeabil i ty of the wall tissues. 

In order to take care of these obstructions, it is suggested that  studies pertaining to the 
interstitial fluid movement in the porous matr ix  of the arterial wall be carried out by using the 
Debye-Brinkman equation (rather than  Darcy's  law) that  bears the potential  to account for the 
presence of the porous matr ix  by inclusion of a bulk stress term. 

In the present paper, we make an a t tempt  to develop a mathematical  model for the s tudy of 
the interstitial fluid movement in the fibrous medium of a stenosed arterial wall by using the 
Debye-Brinkman equation to describe the transmural  flow. The solid phase of the porous matr ix  
is considered to be elastic while the fluid phase is taken to be incompressible. Under the purview 
of the same model, simultaneously we pay full attention to the flow of blood in the lumen of 
the constricted artery, keeping in view the fact tha t  the flow characteristics of blood contribute 
to the interstitial fluid flow and vice versa. Blood is treated as a non-Newtonian fluid in this 
analysis owing to the fact that  surrounding the constriction shear rate of blood is low [16] and 
experimental  observation that  blood exhibits non-Newtonian behaviour in the low shear-rate 
region [17,18]. Taking cognizance of the observations made by Ariman et al. [19] and [20] tha t  
the erythrocytes of blood have a microrotation at low shear rates, in the mathemat ica l  model 
developed here, blood is considered as a micropolar fluid. 
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The available literature on the movement of interstitial fluid in arterial walls reveals that the 
large pressure gradients are mostly confined to narrow boundary layers and that in large arteries 
the consolidation time, that is the time taken by the boundary layer, or the fluid drainage front 
to extend over the full width of the arterial wall is usually very large. Keeping this in mind, in 
the present study, particular attention is paid to the case of large consolidation time, and the 
results are compared with those for the situation when the consolidation time is small. 

The time-dependence of the pressure and the velocity of the fluid matrix, as well as that of 
the displacement of the solid matrix in the interstitial space has been paid due attention while 
analyzing the mathematical model. The study is carried out for constrictions formed in the 
pathological state of an artery formed by atherosclerotic plaques, as well as constrictions in a 
normal artery formed by some mechanical means. With an aim to illustrate the applicability of 
the mathematical model, the analytical solution of the model is applied to determine theoretical 
estimates of some quantities that describe the flow in the lumen of the artery, as well as various 
quantities depicting the deformation and flow characteristics of the interstitial space of the arterial 
wall, by using typical values of the system parameters. 

2. M A T H E M A T I C A L  M O D E L  O F  B L O O D  F L O W  
I N  T H E  S T E N O S E D  A R T E R Y  

Let us consider an axially symmetric laminar pulsatile flow of blood through a cylindrical 
segment of an artery having a stenosis (Figure 1). The geometry of the stenosis is described 
mathematically as 

R*(x)= a - ~  l + c o s ~ -  x - d -  , d < x < d + L ,  (1) 

a, otherwise, 

where a is the characteristic radius of the artery, d the stenosis height, and L the length of the 
stenosis. 

L 0 kf L r o 1 
- - I  - i - - I  

(a) Atherosclerotic constriction. 

Let us consider the velocity components and pressure in the form 

u=ur(r)ei(wt-klx), v=vx(r)ei(~t-klx), p=Ptl(r)ei(wt-k~x), 
vo = VOl(r)e i(~t-k~x), f~ =~ l ( r ) e  ~(~t-k'x). (2) 

Existing literature shows that the micropolar approach is suitable to treat blood as a fluid suspen- 
sion containing spherical nondeformable particles enabling one to describe the rotational motion 
of red blood cells through a dynamic kinematical variable (microrotational vector). In this ap- 
proach, one is limited in not being able to account for the cell shape and the deformations it 
undergoes during shear flow. However, red cell deformability is not significant at low shear rates 
(the red cells rotate almost like rigid particles). 
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(b) Constriction by mechanical means. 

Figure 1. 

Application of the micropolar continuum theory to a general blood flow problem requires the 
determination of seven unknowns, viz. the pressure p ( X ,  t) ,  the three components of V(X, t), and 
the three components of P(X, t). 

The vectorial forms of these governing field equations are 

(As + 2#s)VV. i f -  (#s + ~ ) V  x V x i f +  2~(V + ~ ) -  Vp+  pF 

( 3 )  

(a +/~ + ~)VV. ~ -  ~V × V × ~ + 2 ~ V  × ff - 4 ~  + pf  = pjb, (4) 

while the equation of continuity is 

O-7 + v '  pV =0 ,  (5) 

where the superimposed dot on the right-hand side of equation (4) denotes material differentia- 
tion; V is velocity, P the microrotation,/~ the body force, [ t h e  body couple vector, j (constant) 
gyration tensor parameter, p the density, and p the pressure, while ),8, #r, #s, a, j3, ~ are different 
material constants. 

Considering the flow to be axisymmetric, we take u0 = 0 and vr = 0 = ux. The analysis will 
be carried out by taking the haematocrits to be neutrally buoyant and assuming that there are 
no body forces or couples. With all these considerations, equations (3)-(5) in the cylindrical 
coordinate system reduce to 

( 0v) Ovo Opt Ov + U~xx + v-~r (6) 
--(~r+~8)~Z--Z~r~--~Z Or = ;  -~ 

( ' ' + ~ r )  ~V + + 2 " ~ \ 0 r  + 0Z = P  ~ 7 + u ~ + v ~  ' (V) 

0ue 
"yV2vo - 2pr~ - 4~rVe = p j  Ot ' (8) 

where 

r 0r r 2 ~ ' ~ ~ " 

On account of no-slip on the endothelium, we write 

u = 0 ,  r = R * ( x ) .  ( 9 )  

Further, since the axial velocity is maximum (= U0, say) on the centerline of the artery, we have 

u = v 0 ,  r = 0.  ( 1 0 )  



Interstitial Fluid Movement 787 

The total flux can then be written as 

foR'(x) fd2~rrudrdO=27r¢o, 

¢0 being the value of the stream function at the wall. 

(11) 

3. M O D E L  O F  T H E  W A T E R  F L U X  I N  T H E  A R T E R I A L  W A L L  

Here, the wall of the artery will be considered to be composed of a mixture of a porous 
incompressible elastic solid matrix and an incompressible liquid [12]. Then, the equation that 
governs the equilibrium of the wall tissues can be taken to be 

Tij,j  -- Tij,j -- Pl,j  = 0, (12) 

Tijj being the stress tensor that depends on the bulk deformation of the matrix, called the 
'contact stress' in the sequel, and Pl the pressure exerted by the interstitial fluid. The following 
equation is taken to describe the flow of the interstitial fluid: 

1 
p l , i : N ( l ~ W i , i i - - - ~ p W i ) .  (13) 

When/3 = 0, the equation reduces to Darcy's law, while for/3 = 1, equation (13) gives rise to the 
Debye-Brinkman equation that was used by Wang et al. [21]; wi is the filtration velocity of the 
interstitial fluid relative to the matrix, and # stands for the viscosity of the fluid in the porous 
space. 

The volume flux conservation equation is given by 

E,i = 0, (14) 

where Vi = wi + vsi and vsi is the solid velocity (averaged macroscopically). The linear ap- 
proximation for the relation between the contact stress Tij and the infinitesimal strain E i j =  
(1/2)(Uij + Uj,i) is given by 

Tij = AEkk6~j + 2GEij. (15) 

We consider a cylindrical polar coordinate system with r as the radial distance and x the axial 
distance. The endothelial layer and the adventitia are, respectively, given by r = R*(x) and 
r = R*(x) + h, h being the thickness of the arterial wall. Equations (12)-(15) can be written as 

op, (o2  low o2 ) . 
Or = #13 \ Or ~ + + - - - w ,  (16) r Or r 2 Ox 2 ,] Kp 

(02171 10U1 U1 ~ G O2U1 Opt + 2G) 
\ 0 r 2  + 7 ~ r  ~ ] +  0z 2 - 0r" 

(17) 

The continuity equation for the bulk material is 

O ( O U t  ) 1 ( _ ~  ) 
~ . ~ + w  + -  + w  =o .  
O r \ O r  r 

(18) 

Because of the continuity of the radial velocity of the wall tissue and the blood, and also of the 
normal stress along the endothelium, we have 

OUl v = --~- + w, 

- P t +  2(., ÷ #r)0~ = (A ÷ 2G)~rl  + A-~, 

r = n*(x), (19) 

r = n*(x). (20) 
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At the endothelium, the interstitial fluid pressure is equal to the transmural pressure, while the 
pressure on the adventitia is zero. These conditions may be described mathematically as 

Pl = Pt, r = R*(x), (21) 

Pl = 0, r = R* (x) + h. (22) 

Considering the adventitia to be traction-free, we write 

OU1 ) U1 O, R*(x) + h. (23) 
( ~ + 2 a ) ~ +  r = ~ =  

4. S O L U T I O N  F O R  T H E  H E M O D Y N A M I C  F L O W  

Implicit in the use of the linearized form of Navier-Stokes equations is the assumption that the 
convective acceleration terms can be ignored with respect to the linear terms. Thus, eliminating p, 
from the linearized version of (6),(7) and then by using (8), we obtain 

(#s + #r)V2~'~l + 1 9  2"---~r2 DIp7 +2#r7 (4p~r +iwj)vO1 = iwl21. (24) 

Operating both sides of this equation by V 2, we find 

2#r ( 4~pr + iwJ) V2v°l 

Introducing nondimensional variables 

?~ = r :~ X ~1 = gtla3 
a a ~0 ' 

(~8 + #~) V4fll + (i0J - 2p~)  V2fZl. P (25) 

p t a  3 voa  3 

/St = ¢01z and 5o = ¢o 

and substituting (24) and (25) into equation (8) and writing the nondimensional quantities with- 
out, we get 

(AnV 4 + B aY 2 + Cn) f~l = 0; (26) 

the expressions for A,,, B,~, and C,~ are given by 

An = (#r + ~8)7, 

Bn = - [(IZs + #r) (4#ra 2 + ija2(#~ + #~)) + (i7c~2(#8 + #~) - 4#2a2)] , 

Ca = [a2(/~s + #r) (4#2a 2 + ija2(#s + #r))] , a s = wpa2 

The biharmonic equation (26) can be rewritten in the form 

(V ~ -  A ~ ) ( V  ~ -  A ~ ) f l l  = 0, 

where 

(#~ + ~r)" 

Aft = -B,~ + x/B 2 - 4AnCn 
2An ' A~22 = 

The solution of (27) is obtained as 

-Bn  - V B  2 - 4AnCn 

MII1 ( A n t )  
~1 = CII(A12r) - ~ - - - - ~ -  , 

All - A12 ) 

where A211 = k 2 + A~21, A22 = k 2 + A~ 2, k = kla. 

2A~ 

(27) 

(2s) 
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Expressing ~i in terms of the stream function ¢ and using (28), we have 

(!02 1o ( ) 
Or 2 r 2 Or + -r -~-~x 2 ~b = CII(A12r) - MIlI(Allr)2 2 • (29) 

• A l l  - A12 

The solution of this equation is given by 

( Crll(A12r) Mlrl l (Al lr)  ) (30) 
¢ = iA~Trll(kr) A~ 2 k 2 + (A121 2 2 

_ _ AI2 ) (All - k 2) 

where A~, C, and My are arbitrary constants. Using the boundary conditions (9)-(11) in their 
nondimensional forms, we have calculated them; their derived expressions are included in Ap- 
pendix I. 

Putting (28) into the linearized version of (8), we get 

2a2 ( CIl(A12r) MlI1(Allr) ) (31) 
1201 = C'II(Bllr) - - 7  "~---'-5~' "'7Y~ /-'7~- , (A12 - Bll ) (A21 B121) 

- -  A12 ) (All - -  

w h e r e  

pa 2 

While C and M1 are already known, C ~ is determined by using the following condition for the 
cell-rotational velocity on the wall of the stenosed arterial segment: 

l d  
r dr (r1201) : O, r = R(x). (32) 

In order to calculate the transmural pressure, we substitute (30) and (31) into the linearized 
version of equation (6) (the expression for v calculated by using the expression for the stream 
function has also been used). Integrating the resulting equation with respect to r and using (2), 
we obtain 

[ ~ f kct2(its q- itr)!°(A12r) -t- itr)i Io(A12r) 
Pt = -#1 L{-c~2(Ps + #r)iXTI°(kr)} + v [ A12 (A122 - k 2) + k(#s A12 

4i#2k Io(A12r) ! M1 f _~2(#s -1- #r)kIo(Allr) 
7A12 (A22 - B121) ~ + All (A~I-- A22) [ (A~I - k 2) 

(33) 

-i(#r'q-#s)kZ°(Allr)q-4iit2r----~kv (A121g°(Allr)}- B121) q- c,  2ik#rZo(Bll)~ "4- K ] e  '(wt-kx) , 

where K is an arbitrary constant. 
The stress tensor for the micropolar fluid is given by Ariman et al. [22], 

a~j = (-lr + AVr,r)Sij + it,. (v~j + vj,~) q- its (vj,~ - e~j,.12r). (34) 

The wall shear stress can then be obtained by using the equation 

{ a x r [ 1 - ( ' ~ )  2] + ( a r r -  ~X,d,J 
r~v= ~ ( '~ )  ~ r 1 - t ' - ' - - 2  ~ , (35) 
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where the expressions for axr and ar~ - axx as calculated from (30) are 

~ r r r  - -  O'~C x 

[{ ( '[1 (A12R) A21II(A11R ) ) }  
(#, + I~,) k2iXTil(kR ) _ CA22 (-~12 ---~) + M, (A21 ' k2 ) f f  x r  = R 2  2 2 

- A12 ) (All - ( 2~r f (-y II(A12R) II(AllR) ) }  + #r C'II(BHR) + ~ - ~  ~ - - - - ~  + M1 
\ (A12 - S l ,  ) (A21 - A22) (A~I - B~I ) 

II(A12R) 
+ ~ k  2 i A ' r I , ( k n ) - C ( ~ _ - - V )  

}] (36) + M1 (A21 _ A22) (All - k 2) 

ik(#~ + #s) [iXTII(kR) _ ~'~A D Io(A12R) 

/ 0 ( A l l R )  II(A12R) 2A'TkRIo( kR ) + C(A~12 _ k2) + 2MIAHR(A2  _ A22)(A2 _ k2 ) 

I~(AllR) ] 
- M ~  ( A 2 1  _ A ~ 2 )  (A121 _ k2  ) e ~(~-kz) .  ( 3 7 )  

5. S O L U T I O N  F O R  T H E  W A L L  M E D I U M  

We consider the displacement components and the pressure to be given by 

w -~ ~ ) e  i ( w t - k l x )  , U1 = U~e i(Wt-k'x), Pl = idle i(~t-klx). (38) 

Substi tut ing (38) into equations (16)-(18) and applying the boundary conditions (19)-(23), we 
obtain the following equations in terms of the nondimensional variables introduced earlier: 

dr/2 + r/--d-~- v 

ii 
= - - Gi~ ,  (39) 

r 

+ H12~72) [J1 -~ A--:'H2, (40) 

Opl H4 (71 A'H5 (41) 
07 = ~ ,H3 " 

Solutions in nondimensionalized form are given by 

C1 = AII(HI~?) + BKl(H177) + A'H2, 
77 

A t 
H4 [AIo(gl~) + BKo(HI~?)} + -~3(H2H4 /-/5) log0?) + E, 

pl = H3H-----7 

(42) 

(43) 

where 

T 
~=~,  

= / c £  +_ } 
t i~(~/K~) +1 ~, 

A' = 6wi ' 

Hs = ( l  + k2flK " H2flKp) :-~ 

~2 = {(~+2G) +~i~} 
i~  ( l~ l Kp  ) ' 

[ ] + 1 , 

G = u~, 
a 

H 3 =  [ ( A + 2 G )  ~aa 3 j '  
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a 

A, B, A', and E are given in Appendix I. 
The analytical expressions presented above are functions of ~ (=  r /~)  which is complex since 5 

is complex. It  is found that  the characteristic consolidation time is proportional to the hydraulic 
resistance (# /Kp)  to the flow of the interstitial fluid and inversely proportional to the compressive 
stiffness ( A + 2G) of the wall tissues, when WT = h2(w(#/Kp)  + # iwZ) / (A  + 2G) is large or when 
it is small. Since both of these cases are of particular interest, the remaining part  of our s tudy 
will be confined to these limiting cases only. The effect of the large and small consolidation 
time on the displacement of the solid matrix and the radial flow of the interstitial fluid will be 
investigated by using the following asymptotic expressions that  have been derived by considering 
the asymptotic expansions of Bessel functions of large/small arguments [23]. 

For large consolidation time, [{ H , , }  ~h (Alhll - A2h12 ) 
U1 = Alia1 - A2Ir2 + B1Krl  - B2Kr2 + r (-~11~}_-h21- ~ cos(wt - kx)  

{ H 2 h ( A , l h 1 2 + A , 2 h l l ) } s i n ( w t _ k x ) ]  (44) 
-- A l l r2  + A2Irl  + BIKr2  + B2Kr l  + r(h21 + h212 ) 

Pl = { [Hc[AIIrol - A2Iro2 + B1Krol - B2K~o2] 

- Hd [AlI~02 + I~olA2 + B1K~02 + B2K~01] 

hi2 A' ] + (Aihpal - A'2hp32 ) logY - tan -1 ~ ( 2h,31 + Aihp32) + E1 cos(wt - kx) 

- [Hc [Alia02 + A2I~ol + BIKe02 + B2K~ol] 
(45) 

A' + Hd [A1/r01 - / ro2A2  + B1Krol - B2K~02] + ( lhp31 - A'2hp32)tan -1 hi2 
hi1 

+ l o g Y  (A'2h,31+ A'1hp32) + E2] sin(wt - kx) } . 

For small consolidation time, 

[( H2h(Xl"hll-A~2"h12)} 
U l  -=" AlsIsrl - A2sIar2 + UlsKsrl - U2sKsr2 + r~ l l -+~12 ) cos(wt - kx) 

(46) 

r ~ ~- h2-~2) sin(wt -- kx) , 

- -  Hd[A1818r02 T IsrolA2s -{- BlsKsr02 -{- B2sKsr01] 

d- (Aishp31 - A~.hpa2)log Y - tan-1 h11hl--~2 (A~2.hpal d- A~.hp32) + ElsJ cos(wt - kx) 
(47) r 

- ]Hc[A18Isr02 d- A28Isrol d- BlsKsro2 d- B2sKsrol] 

÷ Hd[A18Isrol - 18ro2A2a + B18Ksrol - B2aKsro2] 
A' h12 , ] } + (A'~hpal - 2~hp32) tan -~ ~ + logY (A28hp31 + A~sh~32) + E28 sin(wt - kx) . 

The expressions for Crl and Pl have been included in Appendices II and III, respectively. In both 
cases, the interstitial velocity w of the flow in the radial direction can be obtained by using (39). 

6 .  R E S U L T S  A N D  D I S C U S S I O N S  

The primary objective of this investigation has been to s tudy the flow of the interstitial fluid 
and the displacement of the solid matrix in the porous wall of a constricted arterial segment. 
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Figure 2. Axial velocity distribution of blood in the stenosed zone. At the axial 
positions (a) x = 0.0mm, (b) 3.0mm, and (c) 5.0mm, the value for/~r considered 
is 0.00018kgm-Zsec - z ,  and the values of other parameters are as given in the re- 
sults and discussion section. At different instants of time, distribution of the axial 
velocity has been shown by different graphs. The results show that  the axial velocity 
distributions are the same irrespective of whether the constriction has been formed 
due to atherosclerosis or some mechanical reason. 
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It is found that  there exists a significant difference between the magnitudes of the flow velocity 
of blood, and the displacement in the solid matrix in the constricted artery is much different 
from the corresponding quantities in the case of a normal artery. The flow of blood has been 
considered to be pulsatile. In order to include the effect of microrotation of red cells, blood has 
been t reated as a micropolar fluid. For the flow of blood, it has been assumed that  the wave 
length is much larger than the axial velocity. The wall tissues are considered to be homogeneous, 
and the quantitative analysis is performed by taking average values of the different physical 
constants. 

The computational work has been based upon the following experimental data  available in the 
literature for canine femoral artery, a = 1.0 mm, U -- 10.0 mm/sec, p = 1.056 × 103 kg/m 3, G = 
106 N / m  2, A = 4999 x 106 N /m 2, v = 0.5 [1], Kp/# = 5 x 10 -14 m4/Nsec [21], h = 2 x 10 -4m [14]~ 

~ /=  12 × 10 -z7 kgm/sec,  #8 = 0.00123kg/msec, #~ = 0.00098kg/msec (40% hematocri t  [19]), 
L - -  10.0 mm, w = 5.0 sec -1, Kp = 10-1s m 2, a n d j  = 11.21 x 10 -9m 2. 

Figure 2 gives the velocity profile of blood for the arterial segment under consideration. From 
Figure 24 which presents the results for x = 0.0, we observe that  in the region where there is 
no stenosis, at any given instant of time, backflow occurs only in the vicinity of the wall. This 
possibly owes its origin to the fact that  the microrotation of the cells is maximum in the region 
adjacent to the wall. Outside the stenotic region and also in some portion of the stenosed region, 
the magnitude of the axial velocity (wt = 0, ~r) attains its maximum value on the axis of the ar tery 
(cf. Figures 2a and 2b), except in the region where the height of the stenosis is maximum (cf. 
Figure 2c). We also observe that  the flow disorder in the stenosed area is such that  at any given 
instant of time, the flow takes place mostly either in the forward direction or in the backward 
direction throughout  the cross-section of the stenosed portion of the arterial segment. Figure 3 
shows tha t  the rotational viscosity affects the cell rotational velocity only in the vicinity of the 
wall of the stenosed artery. 

0,7 [ , , ,  I 

t ~r =8"OxlO'S " " P 
t as / "  L~:1.8=1o-' 

"2 

0 
0 2; .b .b 8'0 ld0 110 1, 

]P0 ( t a d  Is )  --e. 

Figure 3. D is t r ibut ion of  rotat ional  ve]ocity of  the erythrocytes. A t  the axia l  distance 
x = 3.0ram of  the stenosed zone at the t ime instant w$ = 0, the three curves 
correspond to different values o f  Dr. Here also the results are found to be independent 
of the  cause of the  constriction. These figures have been plotted by considering the  
value of the ratio e to be 0.5. 

The distribution of wall shear stress at different instants of time has been presented in Figure 4. 
A comparison between the results of F igures4a  and 4b reveals that  the magnitude of the shear 
stress is significantly changed even due to small variation in the rotational viscosity of blood, 
although the points at which the maximum value is attained remain the same. These figures 
indicate tha t  the shear stress diminishes with an increase in rotational velocity of the erythrocytes. 
This may be at t r ibuted to the fact tha t  the axial velocity decreases as the rotational velocity 
increases. 
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Figure 4. Wall shear stress at different axial stations and at different instants of 
time. The parameters used here are e = 0.5, 7 = 12 x 10-z3 kgm/sec.  
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Figure 5. These curves present a comparison of wall shear stresses at two different 
instants, w t  = 0 and w t  = 2~r/3, denoted by solid and dashed-dotted lines, respec- 
tively. At each instant of time, graphs have been plotted for three different values 
of the microrotational gradient parameter % Variations of the wall shear stress with 
axial distance reveal that  the magnitude of the shear stress is maximum when the 
stenosis height is maximum. The values of the parameters considered are e = 0.5, 
#r = 9.8 x 10 -4  kg/msec.  

F i g u r e  5 g ives  t h e  s h e a r  s t r e s s  d i s t r i b u t i o n s  for  d i f f e r en t  va lues  of  t h e  m i c r o r o t a t i o n a l  g r a d i e n t  

coef f ic ien t  "7. I t  is n o t e d  t h a t  as  7 inc reases ,  t h e  m a g n i t u d e  o f  t h e  s h e a r  s t r e s s  inc reases .  I t  is 
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Figure 6. Variation of radial velocity in the interstitial space with time (when the 
consolidation time is small). This variation is considered in the nonstenotic situation. 
In Figure 6a, graphs have been plotted for different values of #r  by taking 7 = 
12 x 10 -13 kgm/sec,  while graphs of Figure 6b are drawn for different values of 7, 
taking #r = 9.8 x 10 -4  kg/msec.  The results presented here correspond to an axial 
distance x = 5 mm. 

possible to have some important ideas regarding the movement of the interstitial fluid in the 
porous wall tissue medium from Figure 6a. The results presented in this figure give us an insight 
of the variation of the interstitial fluid velocity in the radial direction due to change in the 
rotational viscosity of blood. The results presented in this figure have been computed for small 
consolidation time, that is, by assuming that the time required for the fluid drainage front to 
extend over the entire width of the arterial wall is small. It may be noted that the interstitial 
fluid velocity is enhanced due to an increase in the rotational viscosity of blood. This implies that 
the interstitial fluid movement is dependent upon the magnitude of the rotational viscosity of 
blood (#r). Figure 6b gives us similar ideas for the dependence of the movement of the interstitial 
fluid on the value of the other material constant 7 (microrotational gradient coefficient) connected 
with cell rotation. 

The computational results for the solid matrix of the arterial wall for a normal.artery (in the 
absence of atherosclerotic plaques) have been presented in Figure 7. For the sake of compari- 
son, the results reported by Jayaraman [14], who considered Darcy's law for the motion of the 
interstitial fluid, have been included in the same figure. 
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Figure 7. Variation of the arterial wall displacement with time in the absence of 
stenosis. The solid line gives the theoretical estimate computed with the considera- 
tion of Debye-Brinkman model for the interstitial flow, while the dashed line gives 
corresponding results of Jayaraman [14] calculated by using Darcy's law. A compar- 
ison between these two graphs reveals that the velocity gradients generated by the 
coarse fibers of the arterial wall bear the potential to enhance the wall displacement. 
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Figure 8. Thne variation of pressure in the interstit ial space for large consolidation 
t ime at a radial dl-tance of 1.08 mm. The solid curve gives the said varmtion for a 
stenosed sesTnent of an artery when ~ = 0.5, while the dotted curve gives the same for 
an arterial segment under identical conditions in the absence of stenosis in the context 
of present study; the d~h-and-dot  curve represents similar variat ion calculated under 
the purview of Darcy's law. The graphs indicate that  for a mild stenosis such as the 
one considered in the present investigation, although the nature of t ime vacat ion of 
pressure in the interstitial space in an arterial segment having a constriction created 
by some mechanical means is similar to that for a normal segment, a reduction in 
the magnitude of the pressure occurs particularly in the vicinity of the maximum 
height of the stenosis. Moreover, the velocity gradient created by the coarse fibers of 
the wall tissue enhances the magnitude of the interstitial pressure by an appreciable 
amount. 

F i g u r e  8 gives t h e  var ia t ion  of  pressure  in the  in te r s t i t i a l  space wi th  t i m e  in t he  s tenosed  

a r t e r i a l  segment ,  as  well as for a no rma l  ar tery.  T h e  resul ts  for t he  pressure  va r i a t i on  for t h e  

n o r m a l  a r t e r y  are  c o m p a r e d  wi th  t h e  cor respond ing  resul ts  by  J a y a r a m a n  [14], who ca r r i ed  ou t  

a s imi la r  s t u d y  by  cons ider ing  Da rcy ' s  law for t he  flow in the  in te r s t i t i a l  space.  A compar i son  

of  our  resul t s  for t he  s tenosed  a r t e ry  wi th  t he  cor respond ing  resul ts  c o m p u t e d  b y  us for t h e  

n o r m a l  a r t e r y  reveals  t h a t  t he  ins tan t s  of  t ime  a t  which the  pressure  a t t a i n s  i ts  m a x i m u m  are  

no t  affected by  the  presence of  mi ld  s tenosis  considered in t he  p resen t  inves t iga t ion .  W e  have 

t a k e n  into  account  in t h e  p resen t  s t u d y  the  viscous force t h a t  is requi red  to  sa t i s fy  t h e  no-s l ip  

b o u n d a r y  cond i t ion  on t h e  surface of  t he  smoo th  muscle  cells. A compar i son  of our  resul t s  w i th  

those  r e p o r t e d  in [14] asser t s  t h a t  while th is  force has  an  apprec iab le  influence on  t h e  va r i a t i on  
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Figure 9. Variation of the radial velocity of the interstitial fluid in the adventitial layer 
at the point 0.02 mm below the outer surface of the artery along the axis of the artery 
for different constriction heights where the consolidation time is small: (a) when there 
is an atherosclerotic plaque formation, (b) when there is a constriction created by 
mechanical means. Configurations of both the cases are given in the corresponding 
figures. The instant of time for which computation has been carried out is given by 

64 f 

~ ,, 
' , ,  

1 ) ____  \ \ / 
s6 \ / 

A t h e r o s o l e r o t i c  \ ~  / Physicol 
£ =0.I  ~ . . . "  Constriction 

X ( m m )  

c # t =  ~r. 

F igure  10. Var ia t ion  of t he  p ressure  rat io  Pl /p t l  in t h e  axial  direct ion,  Pl  be ing  
t he  in ters t i t ia l  fluid pressure  a n d  Pt l  t he  t r a n s m u r a l  p ressure  a t  t h e  inner  wall of  
t h e  cons t r i c ted  s e g m e n t  of  t he  axtery in t he  in t ima,  0.02 m m  above  t h e  endo the l ium.  
T h e  solid line gives t h e  var ia t ion  when  t h e  cons t r ic t ion  is c rea ted  by  s o m e  mechan ica l  
means ,  while  t h e  d o t t e d  line gives t h e  s a m e  when  t h e  cons t r ic t ion  owes i ts  origin to 
t he  fo rmat ion  of  an  atherosclerot ie  plaque.  Here, cot = Ir a n d  t h e  consol ida t ion  
t ime  is considered to  be  small .  T h e  figures reveal  t h a t  t he  said var ia t ion  is s t rong ly  
d e p e n d e n t  on t h e  m a n n e r  in which  t he  cons t r ic t ion  ha s  been  formed. 
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Figure 11. (a) and (b) represent the variation of the pressure ratio for large and small 
consolidation times, respectively. The results are presented for two different stenotic 
heights of an atherosclerotic constriction. The pressure ratio is considered at a radial 
distance 0.02 mm below the outer surface of the artery. The radius and wall thickness 
of the artery are taken to be 1.0mm and 0.1mm, respectively, when w t  = l r .  The 
results reveal that the pressure variation in the case of large consolidation time is 
much different than that, when the consolidation time is small. 

of pressure with time quantitatively as well as qualitatively, it does not affect the time at which 

the pressure attains its maximum and the time instants at which the pressure vanishes. 

The distribution of the radial velocity of the interstitial fluid in the stenosed segment of an 

artery, as well as an artery constricted by mechanical means, has been shown in Figure 9. It  
may be noted that  the interstitial fluid velocity is greatly affected by the size of the stenosis 
(Figure 9a). This asserts that  the degree of stenosis is an important factor not only in the 

estimation of the flow velocity of blood, but also in the determination of the interstitial fluid 
velocity. Figure 9b gives the velocity distribution for the situation, when in the normal artery a 
constriction is caused by some mechanical means. It  is quite important to compare Figures 9a and 
9b. Such a comparison reveals that  the velocity distribution in the vicinity of a constriction caused 
by atherosclerotic plaques is much different from that  in the neighbourhood of a constriction in 
a normal artery, caused by mechanical means. Figure 10 gives pressure distributions in the 
constricted artery where the constriction is caused either due to atherosclerosis or due to some 
mechanical reason, the nondimensional stenosis height being 0.1 in both cases. We notice that  the 
pressure distributions in the two cases are entirely different. Figures 1 l a  and 1 l b give the pressure 
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Figure 12. Plots for interstitial fluid velocity versus axial distance. The curve 'A' 
gives the velocity variation at points 0.01 mm above the endothelium, while the 
curve 'B'  represents the said variation at points 0.02 mm below the outer surface of 
the artery. The results axe computed for 20% occlusion, when wt = lr. These figures 
indicate that the magnitude of the radial velocity of the interstitial fluid, as well as 
the nature of its variation in the axial direction, strongly depends on the site of the 
fluid particles. 
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Figure 13. Variation of the radial velocity of the interstitial fluid of the stenosed 
artery with axial distance, for two different values of the microrotational gradient 
coefficient parameter (7) of the erythrocyt.es of blood. The results presented by 
means of these curves reveal that an increase in the value of the said parameter 
results in an enhancement of the magnitude of the radial velocity of the interstitial 
fluid; however, the nature of variation along the axis of the artery is not affected 
by the extent of microrotation (at least within the limited range considered for the 
present study) of the erythrocytes. 

d i s t r ibu t ions  for two different stenosis sizes corresponding to  two different values of consol idat ion 

t ime.  I t  is observed tha t  for small  consol idat ion time, there  occurs t r emendous  f luc tua t ion  of 

pressure (cf. F igure  l l b ) ,  bu t  if the  consol idat ion t ime  is large, the  pressure var ia t ion  takes 

place un i formly  (Figure  l l a ) .  From Figure  12, we have an  idea of the  velocity d i s t r ibu t ion  in  the  

in ters t i t ia l  space, on the  endothel ia l  and  the  advent i t ia l  layers of the  s tenosed region of the  artery. 

I t  may  be no ted  t h a t  the  in ters t i t ia l  fluid velocity on the  advent i t i a  of the  s tenosed ar ter ial  wall 

is of a f luc tua t ing  na ture ,  bu t  on the  endo the l ium it is no t  so. 

F igure  13 gives an  es t imate  of the  change in the  in ters t i t ia l  fluid velocity due to  a change in 

the  ro ta t iona l  velocity of the  ery throcytes  of blood. This  figure reveals t h a t  wi th  an  increase in 
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the rotational gradient coefficient, there is an enhancement in the interstitial fluid velocity in the 
radial direction of the artery in the stenosed area. 

7. C O N C L U D I N G  R E M A R K S  

The mathematical analysis presented in the paper, together with the quantitative analysis leads 
to some important conclusions that  should be of considerable interest to clinicians, physicists, 
as well as bioengineers, particularly to those who are involved in the construction of artificial 
organs. First, the present study reveals that  the microrotation of erythrocytes brings about an 
appreciable change in the velocity profile of blood, which in turn affects significantly the velocity 
distribution of the interstitial fluid in the porous matrix of the arterial wall. Second, the size of 
the stenosis has a strong potential to change the velocity distribution of blood, as well as that  
of the interstitial fluid. Also, these quantities for a constriction caused due to atherosclerotic 
plaques is much different from an arterial constriction in the normal artery, caused by some 
mechanical means. Last, we may mention our consideration (based on experimental observations) 
that  the coarse fibers of the arterial wall which impart velocity gradients within the fine material 
(incorporated through the no-slip condition on the surface of the coarse fibers) is a step forward 
towards understanding the interstitial flow; this consideration, as the present investigation shows, 
is an important factor in the determination of the flow characteristics in the interstitial space. 

A P P E N D I X  I 

Derived expressions for A~,, C, M1, C'  involved in (30) and those of A, B, A', and E in 
equations (42) and (43), 

[Uoa2RIo(kR) ~ k I l (AnR)  - Al l I l (kR)  
c - -  L ¢0 [ ~--~- - - - ~ -  -~---~-~ (A n - A n ) ( A 1 1 - k )  J 

/ k  RW°a2II(kR) An(Io(kR) - Io(AllR)) 
¢0 > { f - '~ - ' - - - '~ - -"~- - - -~ '~  }] T l l '  

(AII-A12)(A n - k  ) 

U A IR (AI   IkR)-k I(A, RII ¢ OIAlWl-  o(kR)l I 
T1 : [~, (A'~2--_~2) (--~1;-__'~'~) 7"~"- ' - [~-7 (All -- A12 ) f 

RA12 (kII(AIIR)-AllII(kR)) (]o(kR)-Io(A12R))}] 
- 7 )  , (All -- A12 ) 

[Uoa2Io(kR)/¢o - (CA12/ (A22 - k2)) {Io(A12R) - Io(kR) }] 
MI = [An(Io(kR) - Io(AnR))]/(A~I - A122) (A21 - k 2) ' 

, i f A12CIo(A12R) M1Anlo(AnR)  
( A l l -  k ) (All - An)  

C ' =  2a2 [CA12 10(A12R) M1A11Io(AnR) ] 
2 2 2 B21) ' B11Io(B11R) (A122 - B121) 7 (All - A12) (All - 

A' = RVT, 

A =  
A' (VNsVB - VN2 (H252/R2H,) (Av*/2G - 1)) - VN4VB 

VAVN2 - -  VmVB 

VN4 - A'VN3 - AVm 
B =  

V~v2 

E - HIH3 H4 

K = - P c  2a3GH1 AVB1 + BVB1 + R2H------ ~ \ 2G - 1 + Vc 
~o~ZSv* # 

log( )} 
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A P P E N D I X  II 

Derived expressions for various symbols appearing in equations (44) and (45): 

A1 = (Akl + Ak2 - Aks)Tkl + (Ak4 - Ak5 + Ak6)Tk2 
T21+ T22 

A2 = - (Ak l  + Ak2 - Ak3)Tk2 + (Ak4 - Ak5 + Ak6)Tkl 
T~I + T~2 

Bkl VN21 + Bk2VN22 
B~ = V~l + v G  ' 

Bk2 VN2, -- B~l VN22 
= + ' 

A'~ = RVT~, 

AP2 -- RVT2, 
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E~ = - H c [ A I I I 0 1  - A2110~ + BIKlol - B2K102] + Hd[AlI l02 ÷ II01A2 + B1KI02 ÷ B2Klol] 

, , ~ -- (Alhp31 - A2hp32) logX + tan -1 (A~2hp31 + A'lhp32) , 
t e l l  

E2 = - H c [ A l I l 0 2  + A21101 + B~K~02 + B2K~01] - Hd[AIII01 - I102A2 + BIK101 - B2K102] 
! / ! (Alhp31 X2hp32 ) tan_ 1 h~2 log . . . .  X (A~hp3~ + A~hp3~), 

h ~  

where 

Ak l  = -4/1 (VN3t VB21 -- VB22VN32 + VN21Hz31 - VN22Hz32), 

Ak2 = VN42VB22 -- VN41VB21, 

Ak3 = X2(VB21VN32 + VB22VN31 + VN2tHz32 + VN22Hz31), 

Ak4 = A~ (VN32VB2t + VB22VN31 ÷ VN21Hz32 + VN22Hz31), 

Ak5 = VN41VB22 + VN42VB2t, 

Ak6 = X2(VB21VN31 -- VB22VN32 ÷ VN21Hz31 - VN22Hz32), 

B k l  = A2VN12 - A1VNl t  + VN41 + A~VN32 - A~VN31, 

Bk2 = VN42 -- A1VN12 - A2VN11 -- A~ VN32 - A 2' VN31, 

Y l l a  2 Av* H2h 2 (h21 - h22) 
R 2 2G (h~l h122) 2 2 2 

- ÷ 4hllh12 
#v* R hp31hll ÷ hp32h12 

+ ~ l O g R 1  h ~ + h ~  ' 

Y12a 2 Av* H2h 2 (h21 - h22) 
R 2 2 G  (h121 2 2 2 2 

- h12 ) +4hllh12 
b'*]t .R hp32hll - hp31hl2 

+ ~ log R1 h21 + h22 ' 

~ov*h2(~ + tt~)a 
(Yll Vcl Y12V~2)hll 

G ((h~l - h~2) 2 + 4h21h22) 

+ ~bo__._u*h2(#___A +_#r)_...~a (Y12Vc1 + YI1Vc2)hI2, 
2 2 2 2 2 

-¢o~*h2(~ + ~ ) a  (Y~IV~ - Y~2Y~2)h~2 
G (h21 + h22) 2 + 4h21h22 

+ ¢o___v*h2(#___A +_ #r)____aa (Y~2Vc~ + Y~lVc2)hl~, 
2 2 2 2 2 

G ( ( h l l - h 1 2 )  + 4hllh12) 

h ' 

H2Kp~h~2 
hpl2 - h ' 

t~ = ~ (1 + Z~K,),  

t4 -- G k 2 K p a 2 ,  
#w 

zgp 

V N 3 1  - -  

V N 3 2  - -  

V N 4 1  = 

V N 4 2  = 

Y12a 2 (Av* ~ 2H2h2hl lh12 
R 2 \ 2G - 1] (h~l - -  ~"7"---A~A~2 2 

- -  hi2 ) +4hl th12 

Y l l a  2 ~Av* ~ 2H2h2hl lh12 

R 2 \ 2G - 1]  (h211 --  ~"7"'---A~A~2 2 
- -  h12 ) +4h l lh t2  
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hp22 = --~KP (2t3hllh12 -~- t4 (h21 - h22))  

t3 
hp31 : -~  -- (hpllh21 + hp12hp22), 

hp32 : (hpllh22 - hpl2hp21), 

F l l  : h2 ( ,~/2" ) H2h21 
\ 2G - 1 R21 (h221 -~ h222)a 2, 

/;'12 = h 2 ( A u *  ) g2h22 
\ 2G - 1 n~ (h~l + h ~ )  a2, 

H ~ I  = Fl l  (h~, - h?2) - 2F12hllh12, 
(hfi h~2)2+ ~ 2 - 4hl lh12 

H~32 = F12 (h21 - h22) - 2F11hllh12, 

(h~l h~2)2+ 2 2 
- 4hllh12 

H~I = a 2 (Zk2Kp + 1) - Z g p  -~-  (h]i - hi2) ,  

2ZKpH2h31h32 
Hc2 = R2 , 

¢o#  ((1 - flKph11/h) h21 + ~Kph12h22/h) 
Hc31 - 2a3A G (h221 + h22) 

((1 -- ~ K p h l l / h )  h22 - ~Kphl2h21/h)  
Hc41 = (h21 + h22) 

Hc31h l l  + Hc41h12 
Hc3 ---- h211 + h122 , 

Hc41h11 - Uc31h12 
Hc4 = hi21 ~_ h22 , 

H~IHc3 + H~2H~4 
H c =  g33 + g ~  ' 

H~2H~3 - Hc lH~4  
H~ = H ~  + H ~  ' 

X = n~/h211 + h22, 

Y = r~/h~l + h 2 12, 

h¢o#v* h21 (I01 - I i 0 1 ) h l l  -{- h12(I02 - I102) 
VN11 = VAIIZ11 - VA12ZI2 + 

2a3a (h~l + h~2) hfi + h~2 

+ h ¢ o # ~ * h 2 2  - ( I 0 1  - I l o l )h12  + h l l ( I 0 2  - 11o2) 

2a3a (h~l + h ~ )  h~i + h~2 ' 
/2" h¢o#  h22 (I01 - I i01)hn + h12(I02 - 1102) 

V~l~ = VAliZl~ + vA1~z11 - 2a3C(h],  + h~2) h~l + h~2 

¢oh#v*h21 - ( I01 - I101)h12 + h11(I02 - 1102) + 
2~3a (h~l + h~2) hfi  + h~2 ' 

h¢o#u*h21 (K01 - K101)h11 + h12(K02 - K102) 
VN21 = VmlZ11 - VBI2Z12 + 

~a3a (h21 + h222) h211 ...[- h122 
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+ ¢oh#v*h22 -(Kol - Klol)h12 + hll(K02 - K102) 
2a3G (h221 --{- h222) h21 + h122 ' 

h¢ottv*h22 (K01 - Klol)h11 + h12(K02 - K102) 
VN22 = VB11Z12 + VB12Z11 - 2a3G (h~l + h~2) h~ 1 + h22 

+ , ¢oh#v*h21 -(K01 - Klo1)h12 + h11(K02 - K102) 
2a3~ (h221 -~- h222) h21 ~t_ h122 , 

VT2 .~-- C ~I (~.-A1--2-~ MI Il  ( A111~ ) 
A12 - k (A2~ _ A 2 2 ) ( A 2  _ ]~2), 

VTI = -AtTkli ( kR), 

Y~l~ = -~ _1 - 2C (h~l + h~) ) '  
Av* h~2 

g z l  2 ----- _ 

h ( A/l* h21 
H~2~ = ~ _1 - 2G (h~  + h ~ ) / '  

H~e~ = - Av*h::  
2G ( ~  + ~ ) '  

h l l  + II12h12) - I l l lh12  '~ Il12hll  
VA21= Ilol - Hz21(Il l lh~ 2 The1 + Hz22 h~2 + h~ ~ , 

(Illlh1~ + II12h~2) -I1~1h12 + 1H2h11, 
VA22 = I102 -- Hz22 h~ 2 + h~l~ - H~2~ h~12 + h211 

K111hl~ + K~2h12 -K1~1h12 + kl l2hl~,  
VB21 = g~01 - H~2~ h122 + h21 + H~22 h~ 2 + h~ 1 

K l ~ h l ~  + Kll~h12 -KIHh12  + K112h1~ 
VB22 = K102 - Hz22 h22 + h21~ - Hz21 h212 + h211 

_ I~thll + I~2h~2 - I t l h ~  + I~2hl~ 
VAll ~- I01 -- -]-/zll h~---22 -t- h~l + Hz12 h~ 2 + h21 

I ~ h ~  + I~2h12 -I1~h~2 + I12hll 
VA12 = Io2 - ~z~2 ZS-" - Hzll  , 

"o1~ + h~l~ 

VB11 ~--- KOl -]- Hz11 

VB12 ~ /(02 -- Hzl2 

h122 -~- h121 

Kllhl l  + K12h12 + Hz12 -Kllh12 + K12h11 

K11h11 + K12h12 -Kllh12 + K12hll 
..... h~l~ + h~l~ - g~l~ h ~  + hh  ' 

(h11, h12), (h21, h22), (Pd,Pc2), (Vcl, Vc2), (Zll ,  Z12), (Yla, Y12) are the real and imaginary parts 

(~Kpw2r2/h 2 + iwT~ 1/2,a (1 + ~k2Kp i Gk2Kp ~ ) ~  ) - ~.  ) , P c , ~ , - -  
R 

hal = -~(hllh21 - h22h12), 

h32 -- R(h12h21 + h22h11), 

h33 -- - ~ ( h l l h 2 1  - h22h12), 

of 

H I H 3  H3 

1-14 ' / / 4 '  

h34 = -~k(h12h21 + h22h11), 
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h35 -- 

h36 = 

81 = 

b2 = 

b3 -- 

b4 = 

Iol = 

r 
~(hllh21 - h22h12), 

h(h12h21 + h22hll), 

tan_l h32 
h31 ' 

V/(hll + 

eh3' (cos(h32) cos ( ~ )  + sin(h32) sin ( ~ ) )  

( C0S(01) 1.9 C0S(201)1.9 .25 COS(3~1) ) 
× 1 + 8b----~ + 2!82b 2 + 3!8ab~ + "  ' 

= ehsl (-cos(h32)sin(~)+sin(h32)cos(~)) Io5 

~sin(01) 1.9 sin(2Ol) 1.9.25 sin(301) / 
× \ 8b2 + 2!82b 2 + 3!83b 3 + " "  / ' 

7Fe-h31 Kol-~(cos(h32)cos(~)-sin(h32)sin(~)) 
x ( 1  cos(•l) 1.9 cos(201)1.9.25 cos(301) ) 

8b----~ + 2!82b22 - 3!S3b 3 +""  ' 

= ~reh3' (cos(h32) sin ( ~ )  + sin(h32) cos ( ~ ) )  

/ sin(01) 1.9 sin(281) 1.9.25 sin(3/?1) ) 
× \ 8b2 2!82b22 + 3!S3b 3 . . . . .  ' 

ehaa 
I101 = ~ (COS(h34)COS(~) "~sin(h34)siIl(~)) 

( COS(01) 1.9 C0S(2•1)1.9.25 C0S(301) ) 
x 1+ 8b-'---'~ + 2!82b32 + 3!83b33 +""  ' 

eh33 
1102 = ~ (--Cos(h34'sin(~) ~-sin(h34'cos ( ~ ) )  

~sin(81) 1.9 sin(2/91) 1.9.25 sin(301) ) 
× \ 8ba + 2!8Zb] + 3!83b] + ' " . '  

= Tre-h~_____~3 (cos(h34) cos ( ~ ) _ sin(ha4) sin ( ~ ) ) Klol 

×(1  cos(01) 1.9 cos(201)1.9.25 cos(301) ) 
Sb--~ + 2!S2b32 - 3183b 3 +""  ' 

= ~reh33 (cos(h3a)sin (~)+sin(h3a)cos ( ~ ) )  K102 

× /sin(O1) 1.9 sin(2Ol) 1.9.25 sin(3/91) ) 
\ 2!8 b  + 3!8 I,  . . . .  ' 

= eh3------~-~ (cos(h32)cos(~)Tsin(h32)sin(~) ) Ill 
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1.15.cos(201) 1.15.21 cos(301) 3COS(O1) + + 
× 1 8b-~ 2!82b 2 3!83b 3 

- e h 3 '  (cos(h32) sin ( ~ )  - sin(h32) cos ( ~ ) )  112 

K l l  - _ _  

+), 

8b2 2!82b 2 3!83b 3 

K12 ~ 

1.15.sin(201) 1.15.21.sin(301) ) 3 sin(Oa) + + +. . .  
× 8b---~ 2!82b 2 3!83b 3 ' 

~ r e - h 3 '  (cos(h32)cos ( ~ ) -  sin(h32)sin (~---1)) v ~  
( 3 C O S ( e l ) 1 . 1 5  COS(2Ol)1.15.21.COS(301) _}_ ) ,  x 1 - - +  ... 

3sin(Si) 1.15.sin(28t) 1.15.21.sin(301) ) 
x 8b2 2!82b 2 + 3!83b 3 . . . .  ' 

- -  eh33  (cos(h34) cos ( ~ )  + sin(h34) sin ( ~ ) )  1111 

1.15.cos(201) 1.15.21 cos(301) 3 COS(01) "4- + 
x 1 Sb"---"~ 2}82b32 3]83b33 

= ehaa ,11~ ~ (co~,~,,~o (~) s~n,~,~co~ (~)) 
3 sin(01) + + +. . -  

× 8b---~ 2!8~b] 3!8~b~ ' 

- -  7 r e - h 3 3  (cos(ha4) cos (~-~ 1) - sin(h34)sin ( ~ ) )  K I l l  

3cos(01) + 1.15cos(201) 1.15.21.C0S(301) 
× 1 8 b - ~  2!82b 2 3!S3b33 

= 7reh33 (cos(h34) sin (~_!1) + sin(h34) cos ( ~ ) )  Kn2 

x (3sin(01) 1.15.sin(201) 1.15.21.sin(301) ) 
8b3 2!82b 2 + 3!83b~ . . . .  ' 

-- eh35 
IrOl 2v~4 (cos(h36)cos(~)+sin(h36)sin(~)) 

( 1.9 cos(201)1.9.25 cos(301) ) cos(Ox) + + + . . .  
x 1 + 8b--~ 2!82b] 3!83b 3 ' 

- -  eha5 ~0~ ~ (-co~'h~0/s~n (~) *s~n/~0~c°~ (~)) 
(sin(01) 1.9 sin(201)1.9.25 sin(301) ) 

× 8b---4-- + 2!82ba 2 + 3!83b 3 + " "  ' 

- 7 r e - h 3 ~  (cos(h36)cos ( ~ ) -  sin(h36)sin ( ~ ) )  grol v /~  
( _ _  ~.~cos(~o~/ ~.o.~co~(~Ol/ / × 1 cos(O1) + + . . .  

8b4 2!82b42 3!83b 3 ' 

__ 7reha~ 
K~o2 V ~  (cos(h36) sin ( ~ )  + sin(ha6) cos ( ~ ) )  

+ )  

+ )  
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(sin(01) 1.9 sin(20x) 1.9.25 sin(301) ) 
x \ ~44 2182b] + 3 !8363 . . . .  _ ' 

= eh~ ( c o s ( h 3 s ) c o s ( ~ ) + s i n ( h 3 6 ) s i n ( ~ ) )  

/ r2  = 

K r l  - 

Kr2  ~-~ 

3 cos(81) 1.15.cos(201) 1.15.21 cos(301) ) 
x 1 8b---~ q- 2[S2b42 + 3!83b 3 + " "  ' 

eh35 
~ ( c o s ( h 3 6 ) s i n ( ~ ) - s i n ( h 3 6 ) c o s ( ~ ) )  

(3sin(01) 1.15.sin(201) 1.15.21.sin(301) ) 
x \ 8b4 + 2!82b 2 + 3183b 3 + " ' _  ' 

?re-h~5 (cos(h36)cos ( ~ ) -  sin(h36)sin ( ~ ) )  

× ( 1  3 cos(01___~) + 1.15 cos(201) 1.15.21.cos(301) + . . . ) ,  
8b4 2182b 2 3183b 3 

7re-hs5 (cos(h36)sin ( ~ ) + s i n ( h 3 s ) c o s  ( - ~ ) )  

(3sin(01) 1.15.sin(201) 1.15.21.sin(301) 
x \ 8b4 2182b42 + 3!83b43 . . . .  ] " 

A P P E N D I X  III  

Derived expressions for various symbols appearing in equations (46) and (47). Some symbols 
used here have been defined in Appendix II. 

(Askl  + A~k~ -- Ask3)Tskl + (Ask4 -- A~k5 + Ask6)Tsk2 
Als  = T~kl + T2k2 , 

A2s = --(Askl  + Ask2 - Ask3)Tak2 + (Ask4 -- Ask5 + Ask6)Tsk~ 
T:k I + T2,k2 

B s k l  YsN21 + B s k 2 E N 2 2  

Ssk2YsN21 -- B s k l  Vsg22 
S2s = V2N, + V~N2 , 

A ~  = RVT1, 

At2~ --- RVT2, 

E ls  : -Hc[Al s l s l01  - A2slsl02 "-k BlsKsl01 - B2sKsl02] + Hd[AlsIsl02 + IslolA2s "b B lsKs l02  

I h12 t 
q- S2sKslol]  - (Alshp31 - A12shp32) logX + tall -1 ~11 (A2shp31 -4- AIlshp32), 

E2s = -Hc[A l s l s l02  -4- A2slslol  -4- B lsKs l02  --b B2sKslol] - Hd[Als I ,  lol - Islo2A2s -4- B l s K s l o l  

, hl_~2 _ log X (At%hp31 -b AIlshp32), - B2sK~102] - (Alshv31 - X2,hp32) tan -1 hu 

where 

Ask1 : All (~/'N31~/rsB21 -- ~/sB22~/'N32 "~- ~/'sN21~'~z31 -- ~/sN22~z32), 

Ask 2 : ~V'sN42~sB22 -- ~sN41~sB21, 

Ask  3 : --AP2s(~rsB21~/'N32 --}- ~B22~/rN31 + ~sN211-~z32 .~- ~sN22I'~z31)~ 
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Ask4 = Atls(YN32 VsB21 + VsB22 VN31 "a t- VsN21Hz32 + YsN22Hz31), 

A~k5 = VsNaI VsB22 + VsN42VsB21, 

A~k6 = At2s(VsB21 + VN31 -- VsB22VN32 + VsNmHz31 - VsN22Hz32), 

Bskl = A2sVsN12 - AlsVsgl l  + YsN41 "~ A~2aVN32 - A18VN3t, 

Bsk2 Ysg42 AlsVsN12 - A2sYsNll  i _ = -- __ AlsVN32 At2sVN31, 

h~bol~v*h21 (/sOl - Is101)h11 + h12( I ,  o2 - Ino2) 
Y s g l l  ---- YsAll Z l l  - YsA12Zl2 --~ 

2a3G (h~l + h22) h21 + h122 

h¢o#v*h22 -(/8Ol - I n o l ) h n  + hn(I~o2 - I~1o2) 
-~- 2a3G (h221 ~- h222) h21 --~ h212 ' 

h¢o#v*h22 (/801 - I n m ) h n  + h12(I802 - I.102) 
V.N12 = V~AnZ12 + VsA12Z11 -- 2a3G (h21 + h~2) h21 + h22 

~bohl~v*h21 -(I~01 - I n o l ) h n  + hll(I~02 -/8102) 
+ 2a3G (h21 -{- h22) h21 -[- h22 ' 

h¢o#v*hm (K~01 - K~lo1)h11 + h12(K~02 - K~102) 
V~N21 = V~B11Z11 - V~m2Z12 + (hl + hh + hh 

~boh#v*h22 -(K~ol -- Kslol)h12 + h l l ( K s 0 2  - Ks l02)  
+ 2a3G (h21 + h22) h21 + h212 ' 

hg, o~v*h22 (K~o~ - K~lo~)hn + h12(K~02 - 1(8102) 
YsN22 = VsBl lZ l2  "}- VsB12Zll -- 2a3G (h~ + h22) h21 + h22 

¢oh#v*h21 -(K~01 - Ksm1)h12 + h11(K~02 - K~02) 
+ 2a3G (h221 "-~ h22) h21 -~- h22 ' 

YsA21 =/s l01  -- Hz21 

YsA22 = Is102 -- Hz22 

YsB21 = K s l o l  - Hz21 

YsB22 = Ks102 - gz22 

-[- ~sl12h12) ( I s l l l h l l  + Hz22 - I s l l l h l 2  + I s l l2h l l  
h212 ~ h211 h22 ~ h21 

( I s l l l h l l  -k- I s l l 2 h l 2  ) - I s l l l h l 2  + Is l l2h l l  
h22 + h~ 1 - gz21 h~ 2 + h21 , 

K81nhn + Ksn2hl2 - g s n l h l 2  + K s n 2 h n  
h22 + h21 + Hz22 h~ 2 + h~ 1 

K~iilh** + Ksll2hl2 - K s l n h , 2  + K s n 2 h n  
h22 + h2 * - H.21 h22 + h2 * 

Is**hl, + I~12h12 - I s n h , 2  + I812hn 
h212 + h2 * + Hz12 h212 + h~, ' 

I s l l h l l  -{- Is12h12 - I s n h l 2  + / s l 2 h l l  
h h  + h h  - h h  + ' 

K s l l h 1 1  + Ks12h12 - K s l l h 1 2  + Ks12h11 
h~ 2 + h21 + Hz12 h22 + h21 , 

-Ksl lh12 + Ks12h11 
- Hz11 h212 + h21 , 

VsAll = -[sO1 -- Hz l l  

VsAI2 = IsO 2 -- Hz l  2 

YsBll  = Ksol "4- H z l l  

. K s l l h l l  + Ksl2hl2  
VsB12 = Kso2 - / / z 1 2  h22 + h21 

b 2 cos 201 b~ cos 401 b 6 cos 601 
18Ol = 1 + 2-----5---- + 2---------U~ + 28------------ ~ -  

b22 sin 201 b 4 sin 401 b 6 sin 601 
I~o2 = 1 + + - -  + 22 26 283 

+ . . . ,  

+ -.. , 

b~ cos 201 b 4 COS 401 b~ cos 601 + " "  
Isro1 ---- 1 + 2------V--- + 2----C--- + 2s----" ~ , 
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b] sin 201 b 4 sin 401 b 6 sin 601 Isr02 = 1 + 2----T--- + 26 + 28 ~ + -'- , 

~,{ ( ~co~,o, ~co~ool ) 
Is11 = ~- cos01 1 +  23 + 21o32 + . . .  

( b32 sin 201 b~ sin 401 b 6 sin 601 ) } 
--sin01 I~, ~ -  + 26---3 ' '-  + 21032 + " "  - - ' 

b3 { (b2cos201 b34cos601 ) 
Is12 = - ~  sin01 1 +  23 + 21o32 + . . .  

-cos01( b~sin2Ol b~sin4Ol b~sin601 ) }  
2 ~ + 26------ ~ + 21o3 ~ + " "  , 

~,{ ( ~cos~o~ ~o~oo~ ) Isr11 = -~- C0S01 1 + 23 + 21032 + ' ' "  

{ b2 si--n 2Ol b4 sin 4Ol b6 sin 601 ) }  
- sin 01 ik 23 + 26 ~ + 21032 + ' - "  , 

b4 { (b2c°$201 b44c°$601 ) 
I8r12=-~- sin01 1 +  23 + 21o32 + . - .  

_cOSOl (b~sin201 b~sin4Ol + b~sin601 ) }  
2---- T -  + 2 6 ~  2 1 0 3 ~  + " "  , 

b32 COS 201 534 COS 401 b 6 COS 601 
Islm = 1 + 22 + 26 + 283 + .-. , 

bi~.2o, b~ ~a4Ol b~ si~601 
I.~102 = 1 + 2 ~  + 2 ~  + 28------~--- + . . "  , 

53 { ( b2COS201 b4c0S601 ) 
Is111=~-  cos 01 1 +  23 + 21o32 + . . .  

rb~si,2ol b~si,4oi b~sinOO~ )} 
-sin01 \ 23 + 26 ~ + 21o3 ~ + "-. , 

ls112 =-~- sin01 1 + 23 + 21o32 + . . .  

__ COS01 (b~ sin20t b4sin401 b 6 sin601 ) }  
2--------5--- + 2 6 ~  + 2163---------- 5 -  + . . .  , 

( ~ )  ~1, 
Ks01 = - In + "/1 /sOl + Iso2 tan  -1 h l l  

~c~o, ( 1 )  ~,,cosoo1 ( 1 ~) ~co, ool 
+ \ 22 + 1 + 26 + 1 + ~ + 2632 

( ~ )  ~1, 
K s o 2 = - l n  - - + 7 1  I eo2 - I so l t an  - lh11  

+ ~, 22 + 1 + 26 + I + ~ + 21032 

Ksrol =-ln ( b~ + 71) ISr°1+ ISr°2tan-t h12hil 

+ \  22 + 1 +  26 + 1 + 5 +  2632 

Ksro2 = - l n  (b#-+ 71~ Isro2-  IsrOl tan -1 h12 
hl l  \ z  / 

+ ) 

- -  n t - - , . ) )  

+ )  
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(b42sin201 ( 1 )  b~sin401 ( 1 1 )  b~sin601 
+~ ,  ~ + 1 +  2-----W--+ 1 + ~ +  21o32 

(b  2 ) hi2 K8101 = - I n  - - + 7 1  / so l+ I so2 t  an-1 h u  

~cos~01 ( ~)~co~01 ( 1  1)~co~001 
+ ~, 22 + 1 + 26 + 1 + ~ + 2632 

K s l ° 2 = - l n ( ~ + 7 1 )  I . ° 2 -  Is° l tan-1  hnhl2 

+ (b2sin201 ( 1 )  b4sin401 ( 
2------5--- + 1 + 2------g~ + 1 + 

1 1 )  b6 sin 601 ) 
+ 21032 + ' ' "  , 

(~ ) ~ Ksll  = I su  In - -  + 71 - Isl2tan -1 ~31 

K~12=I8121n - - + ' h  - I s l l t a n  - l h a l  

+ + + 27------ 5 -  + [2 

( ~ )  ~ Ksl l l  = Isllln - -  + 71 - / 8 1 2 t a  n-1 ~31 

( [ ~] ~co~01 
+ COSb__~01 21 b2 cos 01 + 2 + 24 

( ~ )  1]~cos~0~ ) 
1 + ~ +  + 21132 + " "  , 

sin 01 1 b2 sin 01 + 2 + 24 
b2 2 ( ~ )  1]~i~01 ) 

1 + ~ + + 2113--------- ~ + " "  , 

+ b----~ 2 24 
~,~ ~+~)+~] ~cos;0, 

21132 

( ~  ) h32 sinO1 1 (b3sinOl + [2+1] b3sin301 
Ks112 = Is12 In - -  + 71 + Isll  tan -1 h31 b3 2 24 

21132 + ' " ) ,  

(~ ) ( [~]~o~01 h32 cos 01 1 b4 cos 01 + 2 + 24 Ksrll = Isrll In + 71 -- Isrl2 t all-1 ~31 + b4 - 

+[~(1+~)+~] ~cos~01 [~(1~ +)  
21132 

(b  2 ) h32 sin01 l (b4s inOl+[2+l]basin301 
Ksrl2 = I ,  r12 In - -  + "/1 -+- Isrll tan -1 h31 b4 2 24 

+ [2 ( 1 + 1 ) + 1 ]  b5sin501 [2 (1  1 - -  _ _ 2 7 3  + + ~ + 1 ) + } ]  b~ sin 70121132 + . . . ) ,  

V1 being an Euler's constant. 
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