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Abstract—A mathematical model is developed with an aim to study the transport of interstitial
fluid in the wall of a constricted artery by taking into account the microrotation of the erythrocytes
of blood. The movement of the interstitial fluid has been described by the Debye-Brinkman equation.
Exact solutions are obtained for the displacement of the solid matrix of the porous interstitial space,
the velocity of the interstitial fluid movement, and the pressure distribution in the constricted arterial
segment, for large and small consolidation times. Expression for the wall shear stress is also obtained
for the constricted segment of the artery. Theoretical estimates of the distributions of the axial
velocity of blood in the stenosed zone, rotational velocity of the erythrocytes, wall shear stress, and
wall displacement, as well as the pressure and velocity profiles for the interstitial fluid movement,
have been presented in the form of graphs. © 2001 Elsevier Science Ltd. All rights reserved.

NOMENCLATURE

¢ height of the stenosis v Poisson’s ratio

a constant v* 1-2v)/1-v)
0ij ' Kronecker delta w angular frequency
E;; infinitesimal strain tensor P1 pressure in porous space
G, A stiffness constants Pti 56% the pressure gradient
h thickness of the normal arterial wall r radial coordinate
i v—=1 a characteristic radius of the artery
Ig, I modified Bessel functions of the first R* internal radius

kind

Ko, K3 modified Bessel functions of the

t time

Tij composite stress of mixture

T consolidation time

second kind
K, permeability of the matrix
I viscosity of the interstitial fluid
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Ui displacement vector Ly, s rotational and shear viscosity

Vsi solid velocity [ stream function

\4 total velocity Uo mean axial velocity at » =0

w; filtration velocity U1 porous space solid displacement along
" axial distance radial direction

w porous space fluid displacement along

s ial and radial velocity of blood
wy axial and radial veloctty © © radial direction

v rotational velocity along 8 direction
pt transmural pressure of blood

1. INTRODUCTION

The deposit of cholesterol on the endothelium and proliferation of connective tissues in an
arterial wall form plaques which grow inward and restrict the flow of blood through the lumen
of the artery. Arterial diseases such as this have been quite widespread now-a-days, and hence,
studies pertaining to their cause and development are receiving intensified attention of researchers
from various disciplines. Different aspects of the problem are being investigated from different
angles. In order to have a better understanding of the formation, growth, and development of
stenosis, it is definitely essential that together with studies pertaining to flow characteristics of
blood and the deformation and stress field generated in the wall, the movement of the interstitial
fluid in the porous matrix of the arterial wall should be paid due attention. Although in the
past there have been some extensive theoretical studies relating to blood flow, as well as wall
deformations under normal and pathological conditions [1-11], the problem of fiuid flow in the
interstitial space of the arterial wall, as well as the associated problem of transport of nutrients
from blood to the adjacent tissue medium through the pores in the walls of smaller blood vessels
has received scant attention. Kenyon [12,13] made a theoretical analysis for the time-dependent
filtration of fluids through the walls of soft porous tubes. Following [13}, some attempt was made
to study the interstitial fluid flow [14] by using Darcy’s law to relate the said flow to the pore
pressure. . However, previous studies such as this suffer from the inherent deficiency that they do
not, account for the no-slip condition on the coarse fibers of the wall tissues. As pointed out by
Ethier [15], the coarse fibers create velocity gradients within the fine material due to the fact that
the no-slip condition must be satisfied on the surface of the coarse fibers. These coarse fibers also
increase the superficial velocity through the fine material due to the effect of area obstruction,
and also contribute to increasing the overall tortuosity of the mixed material. All these effects
produced by the coarse fibers of the wall tissues have an important bearing on the reduction of
the permeability of the wall tissues.

In order to take care of these obstructions, it is suggested that studies pertaining to the
interstitial fluid movement in the porous matrix of the arterial wall be carried out by using the
Debye-Brinkman equation (rather than Darcy’s law) that bears the potential to account for the
presence of the porous matrix by inclusion of a bulk stress term.

In the present paper, we make an attempt to develop a mathematical model for the study of
the interstitial fluid movement in the fibrous medium of a stenosed arterial wall by using the
Debye-Brinkman equation to describe the transmural flow. The solid phase of the porous matrix
is considered to be elastic while the fluid phase is taken to be incompressible. Under the purview
of the same model, simultaneously we pay full attention to the flow of blood in the lumen of
the constricted artery, keeping in view the fact that the flow characteristics of blood contribute
to the interstitial fluid flow and vice versa. Blood is treated as a non-Newtonian fluid in this
analysis owing to the fact that surrounding the constriction shear rate of blood is low [16] and
experimental observation that blood exhibits non-Newtonian behaviour in the low shear-rate
region [17,18]. Taking cognizance of the observations made by Ariman et al. [19] and [20] that
the erythrocytes of blood have a microrotation at low shear rates, in the mathematical model
developed here, blood is considered as a micropolar fluid.
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The available literature on the movement of interstitial fluid in arterial walls reveals that the
large pressure gradients are mostly confined to narrow boundary layers and that in large arteries
the consolidation time, that is the time taken by the boundary layer, or the fluid drainage front
to extend over the full width of the arterial wall is usually very large. Keeping this in mind, in
the present study, particular attention is paid to the case of large consolidation time, and the
results are compared with those for the situation when the consolidation time is small.

The time-dependence of the pressure and the velocity of the fluid matrix, as well as that of
the displacement of the solid matrix in the interstitial space has been paid due attention while
analyzing the mathematical model. The study is carried out for constrictions formed in the
pathological state of an artery formed by atherosclerotic plaques, as well as constrictions in a
normal artery formed by some mechanical means. With an aim to illustrate the applicability of
the mathematical model, the analytical solution of the model is applied to determine theoretical
estimates of some quantities that describe the flow in the lumen of the artery, as well as various
quantities depicting the deformation and flow characteristics of the interstitial space of the arterial
wall, by using typical values of the system parameters.

2. MATHEMATICAL MODEL OF BLOOD FLOW
IN THE STENOSED ARTERY

Let us consider an axially symmetric laminar pulsatile flow of blood through a cylindrical
segment of an artery having a stenosis (Figure 1). The geometry of the stenosis is described
mathematically as

e 2r L
- = _— —d- = <z <
R'(z) = a 2(1+cosL(:1: d 2)), d<z<d+ 1L,

a, otherwise,

1)

where a is the characteristic radius of the artery, ¢’ the stenosis height, and L the length of the
stenosis.

(a) Atherosclerotic constriction.

Let us consider the velocity components and pressure in the form

w= ur(,r)ei(wt—kl:c)’ V= vm(r)ei(wt—klz)’ i(wt—klm)’

vg = l/gl('l‘)ei(wt_klz), Q= Ql(r)ei(wt—klx)‘

p=pu(r)e 2)

Existing literature shows that the micropolar approach is suitable to treat blood as a fluid suspen-
sion containing spherical nondeformable particles enabling one to describe the rotational motion
of red blood cells through a dynamic kinematical variable (microrotational vector). In this ap-
proach, one is limited in not being able to account for the cell shape and the deformations it
undergoes during shear flow. However, red cell deformability is not significant at low shear rates
(the red cells rotate almost like rigid particles).
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(b) Constriction by mechanical means.

Figure 1.

Application of the micropolar continuum theory to a general blood flow problem requires the
determination of seven unknowns, viz. the pressure p(X,t), the three components of V(X ,t), and
the three components of ¥(X,t).

The vectorial forms of these governing field equations are

(As + 20)VV - V' = (s + )V x V x V + 2u,(V + #) — Vp + pF
v S A T (3)
_p[————VX(VXV)-J-iV(V)jI,

(@+B+7)VV - T =4V XV X 7424,V x V = 4p,7 + pI = pji, (4)

while the equation of continuity is

%f+v.(px7) =0, (5)

where the superimposed dot on the right-hand side of equation (4) denotes material differentia-
tion; V is velocity, 7 the microrotation, F the body force, I the body couple vector, Jj (constant)
gyration tensor parameter, p the density, and p the pressure, while A4, u,, ps, o, 3, v are different
material constants.

Considering the flow to be axisymmetric, we take ug = 0 and v, = 0 = v,. The analysis will
be carried out by taking the haematocrits to be neutrally buoyant and assuming that there are
no body forces or couples. With all these considerations, equations (3)—(5) in the cylindrical
coordinate system reduce to

o0 81/9 Bpt _ Ov v ov
ey Moy <6t T +"57>’ ©)
N Q 61/9 vy Op _ au Bu ou
Ov
YV 20p — 2002 - dp,v = pj 55, (8)
where
e (P 10 1 & (o
T\9r?2 ror r2 8z2)’ “\or oz)°
On account of no-slip on the endothelium, we write
u =0, r = R*(z). (9)

Further, since the axial velocity is maximum (= Uy, say) on the centerline of the artery, we have

u = Uy, r=0. (10)
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The total flux can then be written as

*(x) p2r
/ / rudrdf = 2wy, (11)
0 0

1o being the value of the stream function at the wall.

3. MODEL OF THE WATER FLUX IN THE ARTERIAL WALL

Here, the wall of the artery will be considered to be composed of a mixture of a porous
incompressible elastic solid matrix and an incompressible liquid {12]. Then, the equation that
governs the equilibrium of the wall tissues can be taken to be

Tijj =Tij5 — P15 =0, (12)

7;j,; being the stress tensor that depends on the bulk deformation of the matrix, called the
‘contact stress’ in the sequel, and p, the pressure exerted by the interstitial fluid. The following
equation is taken to describe the flow of the interstitial fluid:

1
D1 =M (ﬂwi,ii - f{—pwi) . (13)

When 3 = 0, the equation reduces to Darcy’s law, while for 5 = 1, equation (13) gives rise to the
Debye-Brinkman equation that was used by Wang et al. [21]; w; is the filtration velocity of the
interstitial fluid relative to the matrix, and u stands for the viscosity of the fluid in the porous
space.

The volume flux conservation equation is given by

Vii =0, (14)

where V; = w; + vy and v, is the solid velocity (averaged macroscopically). The linear ap-
proximation for the relation between the contact stress 7;; and the infinitesimal strain E;; =
(1/2)(Us,; + Uj,i) is given by

Tij = /\Ekk&'j + 2GE,,J : (15)

‘We consider a cylindrical polar coordinate system with r as the radial distance and z the axial
distance. The endothelial layer and the adventitia are, respectively, given by r = R*(z) and
r = R*(x) + h, h being the thickness of the arterial wall. Equations (12)-(15) can be written as

dp, w 10w w 0w U
“ﬁ(aﬁ;?ﬁ"ﬁ ) K (16)

or K,
32U1 1 BUl U1 82U1 8p1
(A+20) (ETJ“?’BT’TT) o7 =~ o’ (1)
The continuity equation for the bulk material is
0 [oU 1 /68U, _
E(w+w)+;(§-+w)—0. (18)

Because of the continuity of the radial velocity of the wall tissue and the blood, and also of the
normal stress along the endothelium, we have

v= %%l tw, = R(z), (19)
o ou, U
—pe + 2(sts +u,)a—:f = +200F 422 r=R'(). (20)
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At the endothelium, the interstitial fluid pressure is equal to the transmural pressure, while the
pressure on the adventitia is zero. These conditions may be described mathematically as

p=p, r=R"(z), (21)
p =0, r= R*(x)+ h. (22)

Considering the adventitia to be traction-free, we write

A+ QG)a—q—l- + /\gl 0, r = R*(x) + h. (23)

4. SOLUTION FOR THE HEMODYNAMIC FLOW

Implicit in the use of the linearized form of Navier-Stokes equations is the assumption that the
convective acceleration terms can be ignored with respect to the linear terms. Thus, eliminating p;
from the linearized version of (6),(7) and then by using (8), we obtain

2 2u, (4
gu—S%&—)V%l + :TQ + — 5 ( /;r +zw_7) Vo1 = 1wk (24)

Operating both sides of this equation by V2, we find

2
2_“_ (‘“‘T + zw]) v2,/01 Mv491 + (iw - 3&) V2Ql' (25)
Y p o /Y

Introducing nondimensional variables

~ Q0 . pa®

- ua
0y = 0

Py = ——— and Ug = ——
Yo ' T Yop Yo
and substituting (24) and (25) into equation (8) and writing the nondimensional quantities with-
out, we get

=3
I
i
8t
i
SR

(AnV*+ B, V? + C,) Q1 = 0; (26)
the expressions for A,, By, and C,, are given by

An = (ur + Bs)Ys

Br, = — [(1s + pir) (4pra® + ija® (ns + pr)) + (iv0?(ps + pr) — 4p2a?)],
2

C, = [o? + pr) (4p2a? + i50® (us + pr))] 2:——“—&—.
(02 (s + pr) (412 3o (s + pir))] Gt )
The biharmonic equation (26) can be rewritten in the form
(V2 - 4%) (V* - AB) & =0, (27)

where

42 _ ~But VBE4AC, ., _ —Bn-/BI-44.Cy
11 — 12 = .

)

24, 24An
The solution of (27) is obtained as

M (A :
Q= (Cfl(AuT) - *HQ) , (28)
i1~ A1

where All = k2 + All’ 2 = k2 + A12, k= kla.
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Expressing §2; in terms of the stream function v and using (28), we have

1 82 1 8 1 82 MIII(AHT)
(Gam-ma+ram)¥=(cnam -0, (29)
The solution of this equation is given by
. Crly (A12’I‘) Mirl (All'r) )
= | iAlprD(kr) — + ) 30
o= (urrnien - SR+ e G )

where Al., C, and M, are arbitrary constants. Using the boundary conditions (9)—(11) in their
nondimensional forms, we have calculated them; their derived expressions are included in Ap-
pendix I

Putting (28) into the linearized version of (8), we get

(31)

202 "
ve1 = C'I(Bur) — ‘3‘ ( i) MiL(Aur) ) ,

(4 -Bh) (A% - 4%) (41, - BY)

where
2

4u .
B? =&<—r+1jw) + k2.
R

While C and M, are already known, C’ is determined by using the following condition for the
cell-rotational velocity on the wall of the stenosed arterial segment:

;;('rugl) =0, r = R(z). (32)

[ =

In order to calculate the transmural pressure, we substitute (30) and (31) into the linearized
version of equation (6) (the expression for v calculated by using the expression for the stream
function has also been used). Integrating the resulting equation with respect to 7 and using (2),
we obtain

_1 2 - ko? (s + pir)lo(Ar2r) ’
o= & [{—a%a+ wryidpdoor)) + 0 {EE Yt g o) i, 4 )
_ 4’ip,gk I()(A127‘) } " M, {_Ot2(ﬂ3 + /.tr)klo(AuT)

vAi2 (A}, — B}) An (43 — 4%,) (A}, — k?)
4ipZk  Io(Anr) } , 2ikp,Io(B11) ] (wi—
r +C +K i(wt km)’
(Anﬁ - 3%1) Byr ¢

Io(Ajar)
Ag2

(33)

= i(pr + ps)klo(Anr) +

where K is an arbitrary constant.
The stress tensor for the micropolar fluid is given by Ariman et al. [22],

o3 = (—7I' + /\v,,r)é,;j + pr ('Ui,j + 'Uj,i) + ps (’Uj’,' - e,;jrl/r) . (34)

The wall shear stress can then be obtained by using the equation

{U:nr [1 - (%)2] + (o — sz)%f‘}

{1+

Tw =

) (35)
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where the expressions for o, and 0, — 03 as calculated from (30) are

| (e + 1) ( 2. 41 a2 1i(AR) AL (AuR)
7er = H re \FATHER) — CAL e ey T Mo — ) (A%I—k%)}

+ tir {C'II(BUR) 4 2 (—c L{AuR) | 4 L{dnR) )}
Y ( B?)

A}, - B}) (A2, ZA2,) (A2, -
+ ek {z’A'TMkR) - ———(ﬁﬁAizfﬁ)
+ M T —{z(?f)lszl — }] gilwt—ke) (36)
Orr — 00 = bz T 1) [iA'Tll(kR) - 2CA12R(IAL§2A—1_2-§—3)
+2MyAuR _ﬁé‘;‘;ﬁ%} —y ~ 2ArkRIo(kR) + C(ﬁ%%
- M _ﬁ;‘:ﬁﬁ% — k2)] gilwt=ke) (37)

5. SOLUTION FOR THE WALL MEDIUM

We consider the displacement components and the pressure to be given by
w = etk U, = Ujeiwt=F2), p1 = prett—Fe), (38)

Substituting (38) into equations (16)-(18) and applying the boundary conditions (19)-(23), we
obtain the following equations in terms of the nondimensional variables introduced earlier:

A _
w = 7 Uiyiw, (39)
dU} au _ A
20Uy | aUi 2,2 4
n d'f] +nd'f} (1+H17] )Ul Hg, (40)
Op1 _ H4 - A'Hg
oy~ HO' T nH (41)
Solutions in nondimensionalized form are given by
A'H
Uy = AL(Hn) + BKy (Him) + ==, (42)
P1 = H H 5 {Alo(H1n) + BKo(Hin)} + —(H2H4 — Hs)log(n) + (43)
where
=T 62={(A+2G)+m’ﬂw}
=% w(u/Ky)
Gk? + K uBiw BK?u
H2={—_—-————+1}a2, H? = +1},
' iw (/Ky) 27 w/EK,
A _ 7!
Al = T Ul = -—1’
dwi a

_ HifKy 0 [ (52— BK) wu
’ PT1ITF2G) b
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2
Ho= {2 (W +1) - ZFAY R =R@) + 2

A, B, A’, and E are given in Appendix I.

The analytical expressions presented above are functions of 1 (= r/é) which is complex since §
is complex. It is found that the characteristic consolidation time is proportional to the hydraulic
resistance (11/Kp) to the flow of the interstitial fluid and inversely proportional to the compressive
stiffness (A + 2G) of the wall tissues, when wr = h?(w(u/K,) + piwB)/(A + 2G) is large or when
it is small. Since both of these cases are of particular interest, the remaining part of our study
will be confined to these limiting cases only. The effect of the large and small consolidation
time on the displacement of the solid matrix and the radial flow of the interstitial fluid will be
investigated by using the following asymptotic expressions that have been derived by considering
the asymptotic expansions of Bessel functions of large/small arguments [23].

For large consolidation time,

Hyh (Alh11 — Ajhy2)
7 (h%, + hi,)

Uy = [{Al-[rl — Aslio + B1K,y — BoKg + }COS(W — kz)

(44)
Hoh(A hi2 + ALR .
- {Allrz t Aoly + BiKyg + ByKy + 2 127 =2 11) } sin(wt — kw)] ,
7(hi; + hiz)
pL= { [Hc [A1I01 — A2lroz + B1 K01 — B2Kro2)
— Hy[Ay I 02 + Iyo1A2 + B1Kro2 + Ba K1)
h
+ (Al hya1 — Abhyaz) log Y —tan™! h—u (AShps1 + Alhys) + El] cos{wt — k)
11
(45)
- [Hc [A11r02 + A2l01 + B1Kro2 + B2Kro1]
1 h
+ Hy[A1101 — Iro242 + B1 Koy — B2Kr02] + (A'lhp;;l — A'2hp32)tan 1 ﬁ
+ logY (A'2hp31 + A’lhpaz) + Ez] sin(wt — k:z)} .
For small consolidation time,
’ Y
Ui = [{Alslsrl — A2sIsr2 + B1sKsr1 — B2sKer2 + H2h(A132h'11 2A2sh'12) }COS(Wt - km)
r(h%, + ki) 46)
_ Hyh (A} b1z + Aj hua) |
{AlsIsTZ + Az2slsr1 + B1sKar2 + B2sKsr1 + r (h, +13,) sin(wt ~ kz)| ,
p1 = { [HC[AlaIarOI — A2s15r02 + B1sksro1 — B2sKsro2]
— Hg[A1sIsr02 + Isr01A2s + B1sKsro2 + B2sKsro1]
+ (A} hps1 — A5 hpaz) logY — tan~?! b2 (A% hp31 + Al hpa2) + E18:| cos(wt — kz)
b1 @n

- [Hc[AlaIar02 + A2sIa7'01 + BlsKsr02 + BZsKsTOI]
+ HglA151sr01 — Isr02A25 + B1sKero1 — B2s Koroz]
1 h .
+ (Al hp31 — Ahyhpsz) tan™? h—ij— +logY (Ahp31 + Al hpaz) + Ez,] sin(wt — km)} .

The expressions for U; and p; have been included in Appendices II and III, respectively. In both
cases, the interstitial velocity w of the flow in the radial direction can be obtained by using (39).

6. RESULTS AND DISCUSSIONS

The primary objective of this investigation has been to study the flow of the interstitial fluid
and the displacement of the solid matrix in the porous wall of a constricted arterial segment.
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Figure 2. Axial velocity distribution of blood in the stenosed zone. At the axial
positions (a) 2 = 0.0mm, (b) 3.0mm, and (c) 5.0 mm, the value for u, considered
is 0.00018kgm—*sec~?, and the values of other parameters are as given in the re-
sults and discussion section. At different instants of time, distribution of the axial
velocity has been shown by different graphs. The results show that the axial velocity
distributions are the same irrespective of whether the constriction has been formed
due to atherosclerosis or some mechanical reason.
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It is found that there exists a significant difference between the magnitudes of the flow velocity
of blood, and the displacement in the solid matrix in the constricted artery is much different
from the corresponding quantities in the case of a normal artery. The flow of blood has been
considered to be pulsatile. In order to include the effect of microrotation of red cells, blood has
been treated as a micropolar fluid. For the flow of blood, it has been assumed that the wave
length is much larger than the axial velocity. The wall tissues are considered to be homogeneous,
and the quantitative analysis is performed by taking average values of the different physical
constants.

The computational work has been based upon the following experimental data available in the
literature for canine femoral artery. ¢ = 1.0mm, U = 10.0 mm/sec, p = 1.056 x 10° kg/m?, G =
106 N/m?, A = 4999 x 106 N/m?, v = 0.5 [1], Kp/p = 5x 10~ ¥ m*/Nsec [21], h = 2x 10~% m [14]»
v =12 x 107" kgm/sec, py = 0.00123kg/msec, u, = 0.00098 kg/msec (40% hematocrit [19]),
L =10.0mm, w = 5.0sec™?, K, = 1078 m?, and j = 11.21 x 109 m2.

Figure 2 gives the velocity profile of blood for the arterial segment under consideration. From
Figure 2a which presents the results for z = 0.0, we observe that in the region where there is
no stenosis, at any given instant of time, backflow occurs only in the vicinity of the wall. This
possibly owes its origin to the fact that the microrotation of the cells is maximum in the region
adjacent to the wall. Outside the stenotic region and also in some portion of the stenosed region,
the magnitude of the axial velocity (wt = 0, 7) attains its maximum value on the axis of the artery
(cf. Figures 2a and 2b), except in the region where the height of the stenosis is maximum (cf.
Figure 2c). We also observe that the flow disorder in the stenosed area is such that at any given
instant of time, the flow takes place mostly either in the forward direction or in the backward
direction throughout the cross-section of the stenosed portion of the arterial segment. Figure 3
shows that the rotational viscosity affects the cell rotational velocity only in the vicinity of the
wall of the stenosed artery.

07

me =8.0x102 2

05-

-~ &
I ’ < Wy =9-8x10
g
oSk

L =1.8x10 ¢

04r

r {(mm) —e

03t

03

1 L 1 1 1
0 20 40 60 80 100 120 140
Vg (rad/s) —=
Figure 3. Distribution of rotational velocity of the erythrocytes. At the axial distance
z = 3.0mm of the stenosed zone at the time instant wt = 0, the three curves
correspond to different values of 4. Here also the results are found to be independent

of the cause of the constriction. These figures have been plotted by considering the
value of the ratio € to be 0.5.

The distribution of wall shear stress at different instants of time has been presented in Figure 4.
A comparison between the results of Figures 4a and 4b reveals that the magnitude of the shear
stress is significantly changed even due to small variation in the rotational viscosity of blood,
although the points at which the maximum value is attained remain the same. These figures
indicate that the shear stress diminishes with an increase in rotational velocity of the erythrocytes.
This may be attributed to the fact that the axial velocity decreases as the rotational velocity
mcreases.
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Figure 4. Wall shear stress at different axial stations and at different instants of
time. The paraméters used here are € = 0.5, v = 12 x 10~ kg m/sec.
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2= 6x1071
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0 2 % 3 ) i
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Figure 5. These curves present a comparison of wall shear stresses at two different
instants, wt = 0 and wt = 2n/3, denoted by solid and dashed-dotted lines, respec-
tively. At each instant of time, graphs have been plotted for three different values
of the microrotational gradient parameter . Variations of the wall shear stress with
axial distance reveal that the magnitude of the shear stress is maximum when the
stenosis height is maximum. The values of the parameters considered are € = 0.5,
tr = 9.8 x 10~4 kg/msec.

Figure 5 gives the shear stress distributions for different values of the microrotational gradient
coefficient v. It is noted that as v increases, the magnitude of the shear stress increases. It is
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Figure 6. Variation of radial velocity in the interstitial space with time (when the -
consolidation time is small). This variation is considered in the nonstenotic situation.
In Figure 6a, graphs have been plotted for different values of ur by taking v =
12 x 10~'3kgm/sec, while graphs of Figure 6b are drawn for different values of Y,
taking ur = 9.8 x 10~% kg/msec. The results presented here correspond to an axial
distance £ = 5 mm.

possible to have some important ideas regarding the movement of the interstitial fluid in the
porous wall tissue medium from Figure 6a. The results presented in this figure give us an insight
of the variation of the interstitial fluid velocity in the radial direction due to change in the
rotational viscosity of blood. The results presented in this figure have been computed for small
consolidation time, that is, by assuming that the time required for the fluid drainage front to
extend over the entire width of the arterial wall is small. It may be noted that the interstitial
fluid velocity is enhanced due to an increase in the rotational viscosity of blood. This implies that
the interstitial fluid movement is dependent upon the magnitude of the rotational viscosity of
blood (i, ). Figure 6b gives us similar ideas for the dependence of the movement of the interstitial
fluid on the value of the other material constant y (microrotational gradient coefficient) connected
with cell rotation.

The computational results for the solid matrix of the arterial wall for a normal. artery (in the
absence of atherosclerotic plaques) have been presented in Figure 7. For the sake of compari-
son, the results reported by Jayaraman [14], who considered Darcy’s law for the motion of the
interstitial fluid, have been included in the same figure.
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Figure 7. Variation of the arterial wall displacement with time in the absence of
stenosis. The solid line gives the theoretical estimate computed with the considera-
tion of Debye-Brinkman model for the interstitial flow, while the dashed line gives
corresponding results of Jayaraman [14] calculated by using Darcy’s law. A compar-
ison between these two graphs reveals that the velocity gradients generated by the
coarse fibers of the arterial wall bear the potential to enhance the wall displacement.
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Figure 8. Time variation of pressure in the interstitial space for large consolidation
time at a radial distance of 1.08 mm. The solid curve gives the said variation for a
stenosed segment of an artery when ¢ = 0.5, while the dotted curve gives the same for
an arterial segment under identical conditions in the absence of stenosis in the context
of present study; the dash-and-dot curve represents similar variation calculated under
the purview of Darcy’s law. The graphs indicate that for a mild stenosis such as the
one considered in the present investigation, although the nature of time variation of
pressure in the interstitial space in an arterial segment having a constriction created
by some mechanical means is similar to that for a normal segment, a reduction in
the magnitude of the pressure occurs particularly in the vicinity of the maximum
height of the stenosis. Moreover, the velocity gradient created by the coarse fibers of
the wall tissue enhances the magnitude of the interstitial pressure by an appreciable
amount.

Figure 8 gives the variation of pressure in the interstitial space with time in the stenosed
arterial segment, as well as for a normal artery. The results for the pressure variation for the
normal artery are compared with the corresponding results by Jayaraman [14], who carried out
a similar study by considering Darcy’s law for the flow in the interstitial space. A comparison
of our results for the stenosed artery with the corresponding results computed by us for the
normal artery reveals that the instants of time at which the pressure attains its maximum are
not affected by the presence of mild stenosis considered in the present investigation. We have
taken into account in the present study the viscous force that is required to satisfy the no-slip
boundary condition on the surface of the smooth muscle cells. A comparison of our results with
those reported in [14] asserts that while this force has an appreciable influence on the variation
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Figure 9. Variation of the radial velocity of the interstitial fluid in the adventitial layer
at the point 0.02 mm below the outer surface of the artery along the axis of the artery
for different constriction heights where the consolidation time is small: (a) when there
is an atherosclerotic plaque formation, (b) when there is a constriction created by
mechanical means. Configurations of both the cases are given in the corresponding
figures. The instant of time for which computation has been carried out is given by
wt=m.
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Figure 10. Variation of the pressure ratio pi/ps1 in the axial direction, p; being
the interstitial fluid pressure and p;1 the transmural pressure at the inner wall of
the constricted segment of the artery in the intima, 0.02 mm above the endothelium.
The solid line gives the variation when the constriction is created by some mechanical
means, while the dotted line gives the same when the constriction owes its origin to
the formation of an atherosclerotic plaque. Here, wt = 7 and the consolidation
time is considered to be small. The figures reveal that the said variation is strongly
dependent on the manner in which the constriction has been formed.
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Figure 11. (a) and (b) represent the variation of the pressure ratio for large and small
consolidation times, respectively. The results are presented for two different stenotic
heights of an atherosclerotic constriction. The pressure ratio is considered at a radial
distance 0.02 mm below the outer surface of the artery. The radius and wall thickness
of the artery are taken to be 1.0 mm and 0.1 mm, respectively, when wt = w. The
results reveal that the pressure variation in the case of large consolidation time is
much different than that, when the consolidation time is small. ,

of pressure with time quantitatively as well as qualitatively, it does not affect the time at which
the pressure attains its maximum and the time instants at which the pressure vanishes.

The distribution of the radial velocity of the interstitial fluid in the stenosed segment of an
artery, as well as an artery constricted by mechanical means, has been shown in Figure 9. It
may be noted that the interstitial fluid velocity is greatly affected by the size of the stenosis
(Figure 9a). This asserts that the degree of stenosis is an important factor not only in the
estimation of the flow velocity of blood, but also in the determination of the interstitial fluid
velocity. Figure 9b gives the velocity distribution for the situation, when in the normal artery a
constriction is caused by some mechanical means. It is quite important to compare Figures 9a and
9b. Such a comparison reveals that the velocity distribution in the vicinity of a constriction caused
by atherosclerotic plaques is much different from that in the neighbourhood of a constriction in
a normal artery, caused by mechanical means. Figure 10 gives pressure distributions in the
constricted artery where the constriction is caused either due to atherosclerosis or due to some
mechanical reason, the nondimensional stenosis height being 0.1 in both cases. We notice that the
pressure distributions in the two cases are entirely different. Figures 11a and 11b give the pressure
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Figure 12. Plots for interstitial fluid velocity versus axial distance. The curve ‘A’
gives the velocity variation at points 0.0l mm above the endothelium, while the
curve ‘B’ represents the said variation at points 0.02 mm below the outer surface of
the artery. The results are computed for 20% occlusion, when wt = w. These figures
indicate that the magnitude of the radial velocity of the interstitial fluid, as well as
the nature of its variation in the axial direction, strongly depends on the site of the
fluid particles.
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Figure 13. Variation of the radial velocity of the interstitial fluid of the stenosed
artery with axial distance, for two different values of the microrotational gradient
coefficient parameter () of the erythrocytes of blood. The results presented by
means of these curves reveal that an increase in the value of the said parameter
results in an enhancement of the magnitude of the radial velocity of the interstitial
fluid; however, the nature of variation along the axis of the artery is not affected
by the extent of microrotation (at least within the limited range considered for the
present study) of the erythrocytes.

distributions for two different stenosis sizes corresponding to two different values of consolidation
time. It is observed that for small consolidation time, there occurs tremendous fluctuation of
pressure (cf. Figure 11b), but if the consolidation time is large, the pressure variation takes
place uniformly (Figure 11a). From Figure 12, we have an idea of the velocity distribution in the
interstitial space, on the endothelial and the adventitial layers of the stenosed region of the artery.
It may be noted that the interstitial fluid velocity on the adventitia of the stenosed arterial wall
is of a fluctuating nature, but on the endothelium it is not so.

Figure 13 gives an estimate of the change in the interstitial fluid velocity due to a change in
the rotational velocity of the erythrocytes of blood. This figure reveals that with an increase in
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the rotational gradient coefficient, there is an enhancement in the interstitial fluid velocity in the
radial direction of the artery in the stenosed area.

7. CONCLUDING REMARKS

The mathematical analysis presented in the paper, together with the quantitative analysis leads
to some important conclusions that should be of considerable interest to clinicians, physicists,
as well as bioengineers, particularly to those who are involved in the construction of artificial
organs. First, the present study reveals that the microrotation of erythrocytes brings about an
appreciable change in the velocity profile of blood, which in turn affects significantly the velocity
distribution of the interstitial fluid in the porous matrix of the arterial wall. Second, the size of
the stenosis has a strong potential to change the velocity distribution of blood, as well as that
of the interstitial fluid. Also, these quantities for a constriction caused due to atherosclerotic
plaques is much different from an arterial constriction in the normal artery, caused by some
mechanical means. Last, we may mention our consideration (based on experimental observations)
that the coarse fibers of the arterial wall which impart velocity gradients within the fine material
(incorporated through the no-slip condition on the surface of the coarse fibers) is a step forward
towards understanding the interstitial fiow; this consideration, as the present investigation shows,
is an important factor in the determination of the flow characteristics in the interstitial space.

APPENDIX I
Derived expressions for A}, C, M, C’ involved in (30) and those of A, B, A’, and E in
equations (42) and (43),
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APPENDIX II

Derived expressions for various symbols appearing in equations (44) and (45):
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o (1 3cos(f;) 1.15.cos(20;) = 1.15.21 cos(36:) ,
8by 21822 31833 ’

ehat . (6 . 0,
Ii2 = —\/5——‘"_7-2- cos(hg2) sin 5 ) sin(hs2) cos 5 )
y <3sin(01) + 1.15.5in(26;)  1.15.21.sin(36,) )

8bs 21822 31833

—h31
Ky = E\/—2_7);- (COS(h32)COS (%1) — sin(hgz) sin (%1-))
g (1 _ 3cos(f1) | 1.15cos(26;) 1.15.21.cos(36,) )

8by 21822 3!8%h3

mwehst 6
Kia= \fz—b— (COS(h32) sin ( 5 ) + sin{h32) cos( >)
(3sm(61) 1.15.5in(26;)  1.15.21.sin( 391)

8b;  218%b2 3183b3 ’ ) ’

I = e cos(ha4) cos b + sin(hsq) sin i
111 = \/§7T_b3 34 2 34 2
y (1 _ 3cos(61) N 1.15.cos(26;) N 1.15.21 cos(36,) b ) ,

8bs 218252 318363

I = e cos(haq) sin ﬁ — sin(has4) cos ﬁ
112 = \/2_7rTz 0S8 34 2 ) 34 2
<3sin(01) 1.15.sin(26;)  1.15.21.sin(36;) )

8bs3 2182p2 3183b3
me a3 0 . .
Ky = N (cos(h34)cos (-—21) — sin(hgq) sin ( )
w (1- 3cos(f,) + 1.15c0s(261)  1.15.21.cos(3
8b3 218252 318353 ’

haa 9 6
Kyig = %; (cos(h34)s1n ( 5 ) + sin(hg4) cos ( 21>)
<3sin(91) 1.15.sin(26;) = 1.15.21:in(361) )

8bs  2!8%b3 3183h3

Loy = _ei_m_ (hss) cos 2 + sin(hgg) sin b
01 = \/2—7‘_3; Cos{/iz6 2 36 2
(1 + cos(61) . 1.9cos(20;) 1.9.25cos(36,) )

8bs 218252 318353

Loz = —(EE—- (h3e) sin 2 + sin(hgg) cos %
r02 = \/2_717): — cos(hsg) si 2 sin(hag 2
N (sin(é?l) 1.9sin(26,) 1.9.25sin(36;) )

8bg 21823 318363

—hss
Kro1 = 726/—2—74“ (COS(has) cos (%) — sin(hgg) sin (%l))

1 cos(61) + 1.9cos(261) 1.9.25cos(361)
8by 2182p2 318363 ’

has 6 ]
Koo = 7:/62_1)4_ (COS(th) sin ( 5 ) + sin(hsg) cos ( 21))



Interstitial Fluid Movement 807

g sin(6,) 1.9 sin(26,) . 1.9.25sin(36,) .
8ba 2182h2 3!83b3 ’

L= ehas (has) cos 0, + sin(hag) sin 01
rl = e - cos(ige) CO 2 sin{h3e 2
y (1 _ 3cos(81) , 1.15.cos(261)  1.15.21 cos(361) )

8b4 218202 318353

h 0
Ig = 62: (cos(hss)Sin (%) — sin(hgg) cos (51))
v 54
y <3sin(01) N 1.15.sin(261) N 1.15.21.s5in(36;) +) ,

8bq 218202 318303

—has 0 . i (]
K, = %4— (cos(hgs) cos (?1) — sin(hgg) sin (—;—))

o (1- 3 cos(f1) + 1.15c0s(26,) 1.15.21.cos(361)
8by 2182p2 3183h3 ’

—hass
Ko = 7—"\6/——2_54— (cos(h36) sin (02 ) + sin(hgg) cos (021))
y <3sin(01) 1.15.sin(26;) + 1.15.21.5in(361) )

8by  2!8%2 3183b3

APPENDIX III

Derived expressions for various symbols appearing in equatlons (46) and (47). Some symbols
used here have been defined in Appendix II.

(Ask1 + Askz — Ask3)Tor1 + (Aska — Asks + Aswe ) Tor2

Al =
° T2, +Th
A = —(Agk1 + Ask2 — Ask3)Tok2 + (Aska — Asks + Aske)Tsk1
28 = T2 + T2 ’
skl sk2
Bir1Ven21 + BskaVinae
Bls = V2 V2 ’
sN1 T Vona
BgkoVana1 — Bar1Vinaz
B2s = V2 V2 y
sN1 + sN2
Alls = RVpy,
,23 = RVT2a

E1; = —H.[A1s15101 — A2s15102 + B1sKs101 — B2sKs102] + Ha[A15I5102 + 5101425 + B1sKs102

h .
-1 —hm (Agghpar + Ay hpss),
11

E2s = —H[A1s15102 + A2s15101 + B1sKs102 + B2sKs101] — HalA1aIs101 — Is10242s + B1sKsi101

+ B28K3101] - (A'13hp31 — A’Zshp32) logX + tan

h
— Bos K102] — (Al hps1 — A hpsz) tan™! Ei—f —log X (Agshp31 + Ajshps2)

where

Agkr = A1 (VNa1VsB21 — Vap2aVsz + Vana1Hoar — VonaoHs2),
Asko = VanazVipae — Vana1Vipon,
Az = — Ay, (Vop21Vns2 + Ves2eViva1 + Vona1Haae + Vonaa H31),
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Agsks = A1(Va2Vepa1 + Va22Vivar + Vana1 Hose + Venae Hsi),

Asks = Vana1Vspaz + VenaaVspar,

Asee = Ay, (Vepar + Va1 — Vap2aVivaz + Vana1 Hozr — Venao Hasz),

Bskr = A2,Ven12 — A1sVen1a + Vanar + A3, Vvae — A1sVivas,

Bakz = Venaz — A1,Vaniz — A2sVan1r — A1, Vivaz — A5, Vivan, ,

houv*har  (Lsor — Is101)ha1 + hi2(Lso2 — Is102)

Vsnir = VeannZu — Voa12212 +

203G (h3; + hi,) h%, + h%,
. hipouv*hae  —(Ls01 — Ls101)h12 + hi1(Zso2 — Is102)
243G (B3, + h3,) h%, + 3, ’
h v*h Too1 — 1 h hio(Zg00 — I
Veniz = Vean1Zi12 + Vsa12211 — 2asc;p?£2 +2i21.2 ) uon sml)h;l -_:_- h;Z( ooz — Toioa)
21 T 3 11+ R
+ Yohuv*har  —(Is01 — Isi01)hi2 + hi1(Lso2 — Is102)
203G (h3, + h3,) hi; + hi; ’
hiopv*hyy (K01 — Ksio1)hi1 + hi2(Kso2 — Ks102)
Vena1 = V11211 — VsB12Z12 +
N21 nZu = VesreZi2 + g5 7y RZ, + 2,
wohuv*has  —(Ks01 — Ke101)h12 + h11(Kso2 — Ks102)
203G (h3; + h3,) hi1 + ki ’
hopv*hey  (Ks01 — Ksi01)h11 + h12(Ks02 — Ks102)
Vs = Vi;B11212 + VsB12Z11 —
N2 auZiz + Vep12Zu = 3550y R,
ohpv*hoy  —(Kso1 — Kea101)h12 + h11(Ksoz2 — Ka102)
2a3G (h3; + h3,) h%, + hi, ’
(Is111hay + Is112h12) —Lonnthie + Lnghn

Vsa21 = Is100 — Hoo H
P} 3 222 P] 2 )
his + hi; h{y + hi;

(Is111h11 + To112h12) —I111h1g + Inohn
V. = - H - H
sA22 = Is102 222 "2, h2, 221 "2, 12, ,

K11hi + Ks2hi2 —K1h12 + Kii2hnn

+ Hyoo

ViB2i = Ko101 — Ha21

h2, + h3, 2, + 2, )

Vipzs = K02 — Hazo KGIHZ%: 1 2(%.91112/112 Hy —K311;lf%:2++h121?112h11,
Viars = Loi — quIan%:ii?lzhn b Hys 31:;:%:2_:_’;[%8112’7,11,
Vo = s~ g S
Vg1 = Kao1 +H211K5112%:i£{£12h12 + Hog —K81;l’§:2++hfg;s12hn,
Vip1z = Koz — HzlszuZ%:i’Il{imhm B 31;:%:2:;;:12}»11’

Lot =1+ b% czz 264 + b3 c;zwl + bs 020833601 e

Ty =14 b3 si2I;2t91 + b3 si21;401 b§ 8211813601 -

b3 cos 26, + bicos46, , bfcos6
22 26 283 ’

Igro1 =1+
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+ b2 sin 26, + bﬁsin401 b§ sin 66, o

Isr02 =1

22 26 583

I = %3 {0086‘1 (1 + b 032201 + 2‘3::)53291 )
_sing; (bg S;I; 26, + b3 s21;13401 b§ ;:;136391 .. )}

I12 = b—23- {sin 6, (1 + % C;§291 + ;1(:)536291 )
— cos by (b§ Sg; 26, + b s21;13401 + b3 ;;;136201 .. )}

I1 = %4- {cos 6, (1 n b3 cgz 26, v 2(31(:)83291 )
_sinf, (bi 5121; 26, 4 b3 s21(r:34()1 b8 2511;136261 .. ) }

Isri2 = 924- {Sin 61 (1 + b 0(2)§291 + 203)33291 )
— costy (bz Sg; 26, + b s21;13491 + b§ 2511;13(;01 N ) }

b2cos20; bicosd4f; b8 cos66
fcos20;  bjcosddy  Bic L

L1001 =1+ 72 5% - .
Toios =1+ b3 Si2I;291 + b3 si21(15401 b8 521;1 601
I = %3 {cos 61 (1 I b2 c;z 20, N 2clc;s36201 )
—sinf, (bg s;r; 26, " b3 2;13491 4 b8 ;1(1)136201 N )}
I112 = ?23 {sin 61 (1 " b3 032 260, + b3 2(:1(:)836291 )
— cos b (b§ s;r;201 4 b3 521;13401 bS 2511(1)136201 N )}

b
Ks1=—1In 2 + 71 ) Ls01 + Iso2 tan™ —12
2 h11

+ b3 cos 26, 4 s b3 cos 46, (14 1 " 1\ b cos 66, +
22 2 26 2 3 2632 !

b 1 h
K2 =—1In el + 71 } Iso2 — Is01 tan 112
2 hll

b3 sin 26; 1\ b3sin46; 1 1) b§sin66;
_ 14 - ) 24— e ...
+< 5 T{1+3 5 T\lt3+3) oogr t )

by _1h
Ksro1 = —In| — + 7 ) Lsro1 + Isro2 tan 12
2 k11

b3 cos 260, 1\ b} cos 4491 1 b$ cos 66,
24€05251 (44 2| 24C05%01 24€08%1 | .
+( 52 +<+2) 2% 1+2+3 %32 T )

b 1 h
Kgro2 = ~1n 24 Y1 ) Isro2 — Isro1 tan™? 12
2 hi

809
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b2 sin 26, 1\ b}sind6; 1 1) b§sin66,
bt St 14+ 2 T i S T
+( 7t 1t3 % t\1+5+3) g0z T )

b 4k
Koo1 = —In{ = +71 ) Lor + Iso2 tan 122
2 h11
b2 cos 26, 1\ b4cos46, 1 1\ b§cos66;
+<—22——+(”§ N 1+§+§)W+”')’
b L h
Ka02 = —In { = + 71 ) Loz — Lso1 tan 122
2 h11

22 2 26 2 3 21032

by _yhaa  cosf 1 17 b3 cos 36,
K1 =ILaiIn| = — Lot = - ol S’ et}
s11 s11in ( 5 +’Yl) s12 tan har + b 5 bacosty + |2+ 5 51

1 17 b3 cos 56, 1 1 1] b} cos 76,
1 — | ——_— —_ —_ - —_——— ‘e
+[2(+2)+3} o +[2(1+2+3)+4] ),

by _y h3a sinf; 1 . 1] b3sin36;
Kyi2 = I5121n ( 2 + '71) s11 tan hat b 2 basinfy + |2 + 5 ————24

1 17 b3 sin56y 1 1 1] b} sin 76,

z 212250991 g 2.z il I Rl ST

+[2(1+2)+3] 73 +[(1+2+3)+4 Tt )
b3 _yhsy  cosfy 1 17 b3 cos 361

Ka11 = Is11ln (E- + ’71) —~ Ig1atan -}El- —Ta—- —2- bocosfy + |2+ 5 __74——

1 1] 55 cos 561 1 1 1] b% cos 76,
o141} 1] 08000 oy b o p o) ho | B
+[(+2)+3] 73 T +2+3)+4] 21132 )

b3 1 h32 sin 91 1 . 1 bg sin 301
K = Is 1 = Ta11 t e L sl
s112 121N ( 5 + ’71) + 1g11 tan h31 b3 3 b3 sin 01 + |12+ 2 54

1\ 1] b3sin56; 1 1\ 1] b5sin76,
+[2<1+§>+§ st [2(1t5+3) g e T )

"] 3
Kor1 = I ln (% + ’)’1) — Iy1atan™! hay ¢ 22 % <b4 cos 0 + [2 + -1-] bj cos 36,

+(b§sinzel+(1+1)9f3_syﬁ+(1+1+1)9§s_m_6ﬁ+...),

2 ha1 ba 2 24
1 1] bjcos56: | [ 1 1 1] b] cos 76,
2 full T (B St R IRl i Sl SR
+[(1+2)+3_ 75t 2(1t3t3) tal T T

_ b4 -1 h32 sin 01 1 . 1 bi sin 301
Koriz = Isp12ln ( B + 'Yl) + I;r11tan hat be 5 bysinfy + |2+ 3 o

1 1] b3sinb6; | 1 1 1] b]sin 76,
DRI I [ it S Y (i ) ™ e
+[2< +2)+3} 73 | ( +2+3)+4] ISE )

~1 being an Euler’s constant.
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