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The direct observation of gravitational waves (GW) in the near future, and the corresponding determi-
nation of the number of independent polarizations, is a powerful tool to test general relativity
and alternative theories of gravity. In the present work we use the Newman–Penrose formalism to
characterize GWs in quadratic gravity and in a particular class of f (R) Lagrangians. We find that both
quadratic gravity and the f (R) theory belong to the most general invariant class of GWs, i.e., they can
present up to six independent polarizations of GWs. For a particular combination of the parameters, we
find that quadratic gravity can present up to five polarizations states. On the other hand, if we use the
Palatini approach for f (R) theories, GWs present only the usual two transverse-traceless polarizations
such as in general relativity. Thus, we conclude that the observation of GWs can strongly constrain the
suitable formalism for these theories.

© 2009 Elsevier B.V. Open access under CC BY license. 
1. Introduction

Modifications of Einstein’s gravity have been considered in sev-
eral approaches. The Lagrangians which consider higher orders of
the Ricci scalar R and the Ricci tensor Rμν have been proposed
as extensions of general relativity [1]. The semiclassical theory
considers the backreaction of quantum fields in a classical geo-
metric background [2,3]. Such Lagrangians predict field equations
with four orders derivatives of the metric, rather than the two
orders derivatives in the general relativity theory [2,4]. Quadratic
Lagrangians have been used also to yield renormalizable theories
of gravity coupled to matter [5]. Moreover, higher-derivative theo-
ries arise as a low energy limit of string theories [6,7].

Starobinsky [8] argues that the higher order terms could mimic
a cosmological constant. Recently, this idea has been largely stud-
ied as a potential way to address the dark energy problem. In this
context, several different forms of the modified Lagrangians have
been recently considered constituting a class of theories, the so-
called f (R) theories (see e.g. [9] and references therein).

In the context of gravitational waves (GWs), it was shown
that quadratic gravity1 presents a frequency-dependent shift in
the wave amplitude with respect to the wave amplitude obtained
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from general relativity [10]. For the f (R) theories, it was found
that GWs can have a massive-like scalar mode besides the usual
transverse-traceless modes [11].

A powerful tool to study the properties of GWs in any metric
theory of gravity was developed by Eardley et al. [12]. The basic
idea is to analyze all the physically relevant components of the
Riemann tensor Rλμκν , which cause relative acceleration between
test particles. The GWs in a metric theory involves the metric field
gμν and any auxiliary gravitational fields that could exist. But the
resultant Riemann tensor is the only measurable field.

In their work, Eardley et al. used a null-tetrad basis in order to
calculate the Newman–Penrose [13] quantities in terms of the irre-
ducible parts of Rλμκν , namely, the Weyl tensor, the tracelless Ricci
tensor and the Ricci scalar. This analysis showed that there are six
possible modes of polarization of GWs in the most general case,
which can be completely resolved by feasible experiments. Thus,
it is possible to classify a given theory by the non-null Newman–
Penrose quantities [12].

The aim of the present work is to characterize GWs for a par-
ticular class of f (R) gravity and for quadratic gravity making use
of the Newman–Penrose formalism. Since the field equations de-
rived from such Lagrangians in the metric formalism yield dy-
namical equations for R and Rμν , the analysis consists basically
to find the resultant expressions for R and Rμν in the week
field limit, without the need to write explicitly the expressions
in terms of the metric perturbations. This makes the classifica-
tion easier and clear. We also mention how the use of the Pala-
tini approach in deriving the field equations for f (R) gravity af-
fect the number of independent polarizations of GWs. This comes
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from the fact that the classification of a given f (R) is formalism-
dependent.

It is argued that the observations of the GWs in the near future
(for the current status of GWs detectors see e.g. [14–18]), and the
corresponding determination of all possible states of polarization,
is a very powerful test for the present studied alternative theories
of gravity. Particularly, we show that GWs experiments can be de-
cisive for quadratic gravity and in the determination of the suitable
formalism for f (R) theories, i.e., the use of the metric or the Pala-
tini approaches, since the number of polarizations of GWs depends
on the formalism used.2

2. The Newman–Penrose formalism – an overview

Throughout this Letter we consider GWs propagating in the +z
direction. So, all the quantities are functions only of t and z.

At any point P , the null complex tetrad (k, l,m, m̄) is related
to the Cartesian tetrad (et,ex,ey,ez) by:

k = 1√
2
(et + ez), (1)

l = 1√
2
(et − ez), (2)

m = 1√
2
(ex + iey), (3)

m̄ = 1√
2
(ex − iey). (4)

It is easy to verify that the tetrad vectors obey the relations:

−k · l = m · m̄ = 1, (5)

k · m = k · m̄ = l · m = l · m̄ = 0. (6)

The null-tetrad components of a tensor T are written according to
the notation:

Tabc... = Tμνλ...a
μbνcλ..., (7)

where (a,b, c, . . .) run over (k, l,m, m̄) and (μ,ν,λ, . . .) run over
(t, x, y, z) since we are working in Cartesian coordinates.

In general, the Newman–Penrose quantities, namely, the ten
Ψ ’s, nine Φ ’s, and Λ, which represent the irreducible parts of the
Riemann tensor Rλμκν , are all algebraically independent. When we
restrict ourselves to nearly plane waves, however, we find that the
differential and symmetry properties of Rλμκν reduce the number
of independent, nonvanishing components, to six. Thus, we shall
choose the set {Ψ2,Ψ3,Ψ4,Φ22} to describe, in a given null frame,
the six independent components of a wave in the generic metric
theory. In the tetrad basis, the Newman–Penrose quantities of the
Riemann tensor are, therefore, given by:

Ψ2 = −1

6
Rlklk, (8)

Ψ3 = −1

2
Rlklm̄, (9)

Ψ4 = −Rlm̄lm̄, (10)

Φ22 = −Rlmlm̄. (11)

Note that, Ψ3 and Ψ4 are complex, thus each one represents two
independent polarizations. One polarization for the real part and

2 See, in particular, [19] for an application of the Newman–Penrose formalism to
determine the GW polarizations in massive gravity.
Fig. 1. The six polarization modes of weak, plane, null GW permitted in any metric
theory of gravity. Also shown is the displacement that each mode induces on a
sphere of test particles. The wave propagates out of the plane in (a), (b) and (c),
and it propagates in the plane in (d), (e) and (f). The displacement induced on the
sphere of test particles corresponds to the following Newman–Penrose quantities:
ReΨ4 (a), Im Ψ4 (b), Φ22 (c), Ψ2 (d), ReΨ3 (e), Im Ψ3 (f).

one for the imaginary part, totalizing six components (see Fig. 1
which was taken from [20]).

Analyzing the behavior of the set {Ψ2,Ψ3,Ψ4,Φ22} under ro-
tations, we see that they have the respective helicity values s =
{0,±1,±2,0}.

We also have the very useful relations for the Ricci tensor:

Rlk = Rlklk, (12)

Rll = 2Rlmlm̄, (13)

Rlm = Rlklm, (14)

Rlm̄ = Rlklm̄, (15)

and for the Ricci scalar:

R = −2Rlk = −2Rlklk. (16)
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The six amplitudes {Ψ2,Ψ3,Ψ4,Φ22} of a wave are generally
observer-dependent [12] (for more details see Appendix A). How-
ever, there are certain invariant statements about them that are
true for all standard observers if they are true for any one. These
statements characterize invariant E(2) classes of waves. The name
of each class is composed of the Petrov type of its nonvanishing
Weyl tensor and the maximum number of nonvanishing ampli-
tudes {Ψ2,Ψ3,Ψ4,Φ22} (the dimension of representation) as seen
by any observer. Both the Petrov type and the dimension of rep-
resentation are independent of observer. Considering standard ob-
servers such that: (a) each observer sees the wave travelling in the
+z direction, and (b) each observer measures the same frequency
for a monochromatic wave, then the E(2) classes in order of de-
creasing generality are:

• Class II6: Ψ2 �= 0. All standard observers measure the same
non-zero amplitude in the Ψ2 mode. But the presence or ab-
sence of all other modes is observer-dependent;

• Class III5: Ψ2 = 0,Ψ3 �= 0. All standard observers measure the
absence of Ψ2 and the presence of Ψ3. But the presence or
absence of Ψ4 and Φ22 is observer-dependent;

• Class N3: Ψ2 = Ψ3 = 0,Ψ4 �= 0,Φ22 �= 0. Presence or absence
of all modes is observer-independent;

• Class N2: Ψ2 = Ψ3 = Φ22 = 0;Ψ4 �= 0. Observer-independent;
• Class O 1: Ψ2 = Ψ3 = Ψ4 = 0;Φ22 �= 0. Observer-independent;
• Class O 0: Ψ2 = Ψ3 = Ψ4 = Φ22 = 0. Observer-independent. All

standard observers measure no wave.

3. Polarization modes of gravitational waves in f (R) theories

3.1. The metric formalism

Let the gravitational action be an arbitrary function of the Ricci
scalar:

I =
∫

d4x
√−g f (R). (17)

By varying this action with respect to the metric gμν we have the
following vacuum field equations:

f ′Rμν − 1

2
f gμν − ∇μ∇ν f ′ + gμν� f ′ = 0, (18)

where the prime represents derivatives with respect to R .
In the sequence we restrict ourselves to the following class of

the f (R) theories:

f (R) = R − αR−β. (19)

Substituting (19) in the field equations (18) we obtain the follow-
ing relations between Rμν and the Ricci scalar R:

Rμν

= (R − αR−β)gμν + 2αβ∇μ∇ν R−(1+β) − 2αβgμν�R−(1+β)

2[1 + αβR−(1+β)] .

(20)

Contracting this expression we have a dynamical equation for R:

R = α
[
(β + 2)R−β + 3β�R−(1+β)

]
. (21)

The classification procedure involves examining the far-field, lin-
earized, vacuum field equations of a theory. In what follows we
examine different cases for the possible values of α and β . In each
case, we first find R from Eq. (21) and then we can compute Rμν

from (20).
• Case α = 0

This is the trivial case, which reduces to the general relativity
theory. From Eqs. (21) and (20) we find R = 0 and Rμν = 0. Con-
sequently, from the relations of Section 2 we deduce that:

Rlklk = Rlmlm̄ = Rlklm = Rlklm̄ = 0, (22)

and so we have:

Ψ2 = Ψ3 = Φ22 = 0. (23)

And since we have no further constrains:

Ψ4 �= 0. (24)

And, as expected, the E(2) classification for general relativity is N2.

• Case α �= 0, β � 1

For α �= 0, Eq. (21) can be written as:

�R−(1+β) + β + 2

3β
R−β − 1

3αβ
R = 0. (25)

Working in the weak field regime, if β � 1 we have R−β � R and
Eq. (25) now reads:

�φ + β + 2

3β
φ

β
1+β = 0, (26)

where we have renamed φ ≡ R−(1+β) . But this equation is of the
form:

�φ − ∂U

∂φ
= 0. (27)

Comparing (26) and (27) we have the potential:

U (φ) = −
[

(β + 2)(β + 1)

3β(2β + 1)

]
φ

2β+1
β+1 . (28)

Since the field φ is Lorentz-invariant, we can solve Eq. (27) by a
very known method (see, e.g., [21]). First, consider the static solu-
tion of (27), i.e., the solution of the equation:

d2φ

dz2
= ∂U

∂φ
, (29)

which can be written as:

1

2

(
dφ

dz

)2

= U (φ). (30)

Assuming the potential (28) in (30) and integrating we have:

φ(z) = [
iξ(z − z0) + φ

1/2(β+1)

0

]2(β+1)
, (31)

where

ξ = 1

2(β + 1)

[
2(β + 2)(β + 1)

3β(2β + 1)

]1/2

(32)

and φ0 = φ(z0) is the value of the field φ in some initial posi-
tion z0. Now, because the system is Lorentz-invariant, given the
static solution (31), one can Lorentz-transform it to obtain the time
dependent solution:

φ(z, t) =
[

iξ
(z − z0) − vt√

1 − v2
+ φ

1/2(β+1)

0

]2(β+1)

. (33)

And, therefore, the Ricci scalar reads:
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R(z, t) =
[

iξ
(z − z0) − vt√

1 − v2
+ R−1/2

0

]−2

, (34)

where v is the wave propagation velocity. This is the solution of
Eq. (26) as can be verified by direct substitution.

Substituting the solution (34) in (20) we find the non-zero com-
ponents of the Ricci tensor to first order in R:

Rtt = 1

6β

[
(1 − 2β) − 2(β + 2)v2

1 − v2

]
R, (35)

Rtz = (β + 2)v

3β(1 − v2)
R, (36)

Rzz = 1

6β

[
(2β − 1) − 2(β + 2)

1 − v2

]
R. (37)

Therefore, from the relations of Section 2 we find:

Rlklm = Rlklm̄ = 0, Rlklk �= 0, Rlmlm̄ �= 0, (38)

and so:

Ψ2 �= 0, Ψ3 = 0, Ψ4 �= 0, and Φ22 �= 0, (39)

and the E(2) classification for this case is II6.

• Case α �= 0, β < −2

Considering now β < −2 we have R−β 	 R and Eq. (25) reads:

�φ − 1

3αβ
φ−1/(1+β) = 0, (40)

where φ has the same definition presented above. However, now
the potential is given by:

U (φ) = 1

3αβ
φ

β
β+1 , (41)

from which we obtain the static solution:

φ(z) = [
ζ(z − z0) + φ

β+2
2(β+1)

0

] 2(β+1)
β+2 , (42)

where

ζ = β + 2

(β + 1)
√

6αβ
. (43)

And after a Lorentz transformation we find the full solution:

φ(z, t) =
[
ζ

(z − z0) − vt√
1 − v2

+ φ

β+2
2(β+1)

0

] 2(β+1)
β+2

. (44)

Thus, the evolution of the Ricci scalar for this case is:

R(z, t) =
[
ζ

(z − z0) − vt√
1 − v2

+ R
− β+2

2
0

]− 2
β+2

. (45)

The components of the Ricci tensor reads:

Rtt = 1

3

[
β

(β + 1)

v2

(1 − v2)
− 1

2

]
R, (46)

Rtz = − β

3(β + 1)

v

(1 − v2)
R, (47)

Rzz = 1

3

[
β

(β + 1)

1

(1 − v2)
+ 1

2

]
R, (48)

while all the others components are null.
Therefore, together with the formalism presented in Section 2,
we can deduce that:

Ψ2 �= 0, Ψ3 = 0, Ψ4 �= 0, and Φ22 �= 0. (49)

And we are lead to classify the theories with β < −2 in the E(2)

class II6.

• Case α �= 0, β = −2

This is a particular case, where the behavior of the Ricci scalar and
Ricci tensor are oscillatory. That is, if we use β = −2 in Eq. (25),
we obtain:

�R − 1

6α
R = 0, (50)

with the solution:

R = R0 exp
(
ikαxα

)
, kαkα = 1

6α
. (51)

Considering this solution in Eq. (20) with R 	 1 we find the non-
null components of the Ricci tensor:

Rtt = 1

2

(
4αk2 − 1

)
R, (52)

Rtz = −2αk

√
k2 − 1

6α
R, (53)

Rzz = 1

6

(
12αk2 + 1

)
R. (54)

So, again we have:

Ψ2 �= 0, Ψ3 = 0, Ψ4 �= 0, and Φ22 �= 0, (55)

and the E(2) classification is II6.
As can be seen, for all the studied cases (except the case α = 0),

the theory given by Eq. (19) is classified in the class II6, i.e., the
most general classification where all the six polarization can ap-
pear for some specific Lorentz observer, but the amplitude Ψ2 is
observer-independent.

3.2. The Palatini approach

In the Palatini approach, the metric g and the (usually tor-
sionless) connection Γ are considered as independent variables,
entering the definition of the Ricci tensor. The vacuum field equa-
tions, derived from the Palatini variational principle applied in the
action (17) are:

f ′R(μν) − 1

2
f gμν = 0, (56)

∇Γ
α

(√−g f ′gμν
) = 0, (57)

where ∇Γ
α is the covariant derivative with respect to Γ . We shall

use the standard notation denoting by R(μν) as the symmetric part
of Rμν , i.e. R(μν) ≡ 1

2 (Rμν + Rνμ). It was shown that the vacuum
field equations (56) leads to ‘universal’ equations for a wide range
of functions f (R) [22]. These universal equations are just Einstein
equations with cosmological constant Λ.

Thus, the properties of vacuum GWs in the f (R) gravity us-
ing the Palatini approach reduces to the problem of GWs in the
Einstein equations considering the cosmological term. In a recent
work, Näf et al. [23] have analyzed this case. They expanded the
perturbations in a de Sitter and an anti-de Sitter background. Since
the Minkowski metric is not a solution of the vacuum field equa-
tions this approach seems to be the most straightforward. Consid-
ering terms up to linear order in Λ they calculated the non-null
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components of the Riemann tensor and found that Λ does not in-
troduce additional polarization states for the GWs. Moreover, they
shown that the cosmological term introduces tiny modifications in
the amplitude of the wave which are well below the detectability
of the present GWs detectors.

Therefore, we can conclude that GWs in the f (R) gravity us-
ing the Palatini approach has only the two usual polarizations of
general relativity, i.e., the polarization + and ×.

4. Polarization modes of gravitational waves in quadratic gravity

For completeness we analyze the polarizations for the following
Lagrangian of quadratic gravity:

I =
∫

d4x
√−g

[
R + αR2 + γ Rμν Rμν

]
. (58)

Variation of this action in respect to the metric gives the field
equations:

Gμν + αHμν + γ Iμν = 0, (59)

where

Hμν = 2∇μ∇ν R − 2gμν�R + 1

2
gμν R2 − 2R Rμν (60)

and

Iμν = ∇μ∇ν R − 1

2
gμν�R − �Rμν − 2Rμ

α Rαν

+ 1

2
gμν Rαβ Rαβ. (61)

The field equations (59) were analyzed in the linearized regime
by de Rey Neto et al. [10] using a perturbative approach developed
from the concept of regular reduction of a system of partial differ-
ential equations. Working only with the transverse-traceless part
of the metric perturbations hT T

i j , they found a frequency-dependent
correction in the gravitational wave amplitude due to the presence
of the Ricci-squared term in the gravitational action.

Here, we do not write explicitly the field equations in terms
of the perturbations. Instead, we consider the Ricci tensor and the
Ricci scalar as first order functions of the general metric perturba-
tions hμν . Then, we find solutions for the dynamical equations to
linear order in Rμν and R . These solutions enable us to find the
non-null Newman–Penrose quantities and classify the quadratic
gravity in analogy with was made for f (R) theories in the pre-
ceding section.

Considering Eq. (59) to linear order in R and Rμν we have the
following equation for the Ricci tensor:

�Rμν − 1

γ
Rμν = 1

γ
Sμν, (62)

where

Sμν = (2α + γ )

[
∂μ∂ν R − ημν R

4(3α + γ )

]
. (63)

Taking the trace of (62) we find:

2(3α + γ )�R + R = 0. (64)

From this equation, we can find that a particular combination of
parameters, namely γ = −3α, leads to R = 0. For this case the
solution of Eq. (62) reads:

Rμν = Aμν exp
(
iqαxα

)
, qαqα = − 1

. (65)

γ

Since there are no further constrains we find:

Rlklk = 0, Rlmlm̄ �= 0, Rlklm �= 0, Rlklm̄ �= 0. (66)

Therefore:

Ψ2 = 0, Ψ3 �= 0, Ψ4 �= 0, and Φ22 �= 0, (67)

and the correspond E(2) class is III5.
For the case γ �= −3α, Eq. (64) gives:

R = R0 exp
(
ik1

αxα
)
, k1

αkα
1 = 1

2(3α + γ )
. (68)

With this expression in (62), the full solution for the Ricci tensor
reads:

Rμν = Aμνei(k1z−ωt) + Bμνei(k2z−ωt) + c.c., (69)

where

Aμν = 2

3
R0(3α + γ )

[
kμ

1 kν
1 + ημν

4(3α + γ )

]
, (70)

and

k1 =
√

ω2 + 1

2(3α + γ )
, k2 =

√
ω2 − 1

γ
. (71)

Now, from (69) we write explicitly all the components of Rμν :

Rtt = 1

6

[
4(3α + γ )ω2 − 1

]
R0ei(k1z−ωt)

+ Bttei(k2z−ωt) + c.c., (72)

Rtz = −2

3
(3α + γ )ω

√
ω2 + 1

2(γ + 3α)
R0ei(k1z−ωt)

+ Btzei(k2z−ωt) + c.c., (73)

Rzz = 1

2

[
1 + 4

3
(3α + γ )ω2

]
R0ei(k1z−ωt)

+ Bzzei(k2z−ωt) + c.c., (74)

and all the other components satisfies:

Rij = Bije
i(k2z−ωt) + c.c., (75)

where i, j = x, y, z.
Therefore, since there are no further constrains on Bμν , all the

components of the Riemann tensor in the tetrad basis are non-
null:

Rlklk �= 0, Rlmlm̄ �= 0, Rlklm �= 0, Rlklm̄ �= 0, (76)

and so, all the Newman–Penrose quantities are also non-null:

Ψ2 �= 0, Ψ3 �= 0, Ψ4 �= 0, and Φ22 �= 0. (77)

Thus, the E(2) classification for the quadratic gravity in the most
general case is II6.
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5. Conclusions

Recently, working in the metric formalism, Cappozziello et al.
[11] showed that GWs in f (R) gravity can have a massive-like
scalar mode and a longitudinal force besides the two polariza-
tions which appear in general relativity. This agrees with our result
that the quantities Φ22 and Ψ2 are non-null for the particular class
f (R) = R +αR−β . The Φ22 and Ψ2 amplitudes correspond, respec-
tively, to a perpendicular scalar mode (breathing mode) and to a
longitudinal scalar mode. However, it is worth emphasizing that
since the Ψ2 mode are non-null, the E(2) classification is II6 (see
Section 2). So, for this class, it is always possible to find a Lorentz
observer who measures all the six polarization states. On the other
hand, GWs in the Palatini approach have only the two usual polar-
izations states such as general relativity.

Furthermore, the method we use is not only simple but very
robust and we are able to obtain some important information re-
garding the theories considered here. The key observational GW
amplitude is Ψ2. If the amplitude Ψ2 would be detected, the
f (R) models in the metric formalism like the one considered here
would be supported and so the quadratic gravity for γ �= −3α. In
this case we need another method to distinguish the two theories,
we could compare the wave form in both cases, for example. If the
Ψ3 mode would be detected, but not the amplitude Ψ2, only the
quadratic gravity for γ = −3α would be supported.

Therefore, if we would be able to detect GWs, an important way
to identify the theory of gravity could be established [24]. In the
particular case of f (R) gravity in the Palatini approach, we showed
that the polarizations of GWs are the same of general relativity.
However, it is worth stressing that other information contained in
the GW signals, like waveform and phase of the signal, could be
important to permit, together with the polarizations, a clear iden-
tification of the theory.
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Appendix A. Behavior of the NP amplitudes under Lorentz
transformations

We can understand the E(2) classification scheme by an-
alyzing the behavior of the Newman–Penrose (NP) amplitudes
{Ψ2,Ψ3,Ψ4,Φ22} under a Lorentz transformation of the complex
tetrad basis. This point is well explained in Ref. [12]. Here we
summarize the main idea.

Consider two standard observers O and O ′ with tetrads
(k, l,m,n) and (k′, l′,m′,n′) respectively. If we choose the k as
proportional to the wave vector (following the convention of Eard-
ley et al.), so we have k = k′ . The most general proper Lorentz
transformation relating the tetrads that keep k fixed is:

k′ = k, (78)

m′ = eiϕ(m + σk), (79)

m̄′ = e−iϕ(m̄ + σ̄k), (80)
l′ = l + σ̄m + σ m̄ + σ σ̄k, (81)

where σ is an arbitrary complex number which produces null ro-
tations (particular combinations of boosts and rotations), while ϕ ,
which runs from 0 to 2π , is an arbitrary real phase that produces
a rotation about ez .

The transformations induced on the amplitudes of a wave by
(ϕ , α) is:

Ψ ′
2 = Ψ2, (82)

Ψ ′
3 = e−iϕ(Ψ3 + 3σ̄Ψ2), (83)

Ψ ′
4 = e−2iϕ(

Ψ4 + 4σ̄Ψ3 + 6σ̄ 2Ψ2
)
, (84)

Φ ′
22 = Φ22 + 2σΨ3 + 2σ̄ Ψ̄3 + 6σ σ̄Ψ2. (85)

Now, it is evident from this set of equations that the amplitudes
{Ψ2,Ψ3,Ψ4,Φ22} cannot be specified in an observer-independent
manner. For example, suppose that the observer in O measure a
wave having the only nonvanishing amplitude Ψ2 (s = 0). The ob-
server in O ′ , in relative motion with respect to O , will conclude
that the wave has the nonvanishing amplitudes Ψ2, Ψ3, Ψ4 and
Φ22 (s = 0,1,2,0). However, there is a set of invariant statements
which define the E(2) classification scheme. Thus, we classify
waves in an E(2) invariant manner by uncovering all representa-
tions of E(2) embodied in Eqs. (82)–(85). Each such representation,
in which some of the NP amplitudes vanish identically, is a distinct
invariant class. The description of each class can be found in the
main text.
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