On a problem related to a non-squeezing theorem

Alessandro Fedeli a,∗, Attilio Le Donne b

a Dipartimento di Matematica, Università dell’Aquila, 67100 l’Aquila, Italy
b Dipartimento di Matematica, Università di Roma “La Sapienza”, 00100 Roma, Italy

Received 16 June 2004; received in revised form 25 July 2004; accepted 25 July 2004

Abstract

In this paper we give a solution to a problem of Kulpa about the interior of the image of certain continuous maps \(f: X \to \mathbb{R}^n \) where \(X \) is a compact subset of \(\mathbb{R}^n \) with non-empty interior. Moreover we show that the image of every continuous map \(f: X \to \mathbb{R}^2 \) where \(X \) is a non-empty compact subset of \(\mathbb{R}^2 \) and \(\text{diam} f^{-1}(f(x)) < \sqrt{3}a_X \) for every \(x \in \text{Fr} X \), has non-empty interior.

Keywords: Compact; Interior; Diameter

Let \(d \) be the euclidean metric on \(\mathbb{R}^n \). For each (non-empty) \(A \subset \mathbb{R}^n \), \(x \in \mathbb{R}^n \) and \(\varepsilon > 0 \) let us set \(d(x, A) = \inf \{d(x, a): a \in A\} \), \(\text{diam} A = \sup \{d(x, y): x, y \in A\} \), \(D(x, \varepsilon) = \{p \in \mathbb{R}^n: d(x, p) < \varepsilon\} \) and \(\overline{D}(x, \varepsilon) = \{p \in X: d(p, x) \leq \varepsilon\} \). The boundary of \(A \) will be denoted by \(\text{Fr} A \).

For each non-empty compact set \(X \subset \mathbb{R}^n \) let \(a_X = \sup \{d(x, \text{Fr} X): x \in X\} \).

The reader is referred to [3,4] for notations and terminology not explicitly given. In this note we will give a complete solution to the following problem of Kulpa.

Problem [6]. Let \(f: X \to \mathbb{R}^n \) be a continuous map from a compact subset \(X \subset \mathbb{R}^n \) with non-empty interior, such that \(\text{diam} f^{-1}(f(x)) < 2a_X \).

Is \(\text{Int} f(X) \neq \emptyset \)?
The problem above is related to various results of Kulpa [6,7], e.g., the following non-squeezing theorem (which is a strengthening of a classical result of Brouwer [1]):

Let $a > 0$ and let $I^n = [-a,a]^n$; if $f : I^n \to R^n$ is a continuous map such that
\[
\text{diam } f^{-1}(f(x)) < 2a
\]
for each $x \in \text{Fr } I^n$, then $\text{Int } f(I^n) \neq \emptyset$.

A mapping $f : X \to Y$ between topological spaces is called (linearly) Darboux if $f(C)$ is connected whenever C is (pathwise) connected. Clearly every Darboux function (see, e.g., [2,5]) is linearly Darboux.

Now let us show that the problem above has a positive answer for $n = 1$ and a negative one for $n > 1$.

Theorem 1.

(i) Let $f : X \to R$ be a linearly Darboux function from a non-empty compact subset $X \subset R^n$ such that
\[
\text{diam } f^{-1}(f(x)) < 2a_X \text{ for every } x \in \text{Fr } X.
\]
Then $\text{Int } f(X) \neq \emptyset$.

(ii) For every $n > 1$ there is a continuous map $f : X \to R^n$ from a compact subset $X \subset R^n$ with non-empty interior such that $\text{Int } f(X) = \emptyset$ and $\text{diam } f^{-1}(f(x)) < 2a_X$ for every $x \in X$.

Proof. (i) Let $U = \text{Int } X$. Clearly $U \neq \emptyset$. Since the mapping $\psi : X \to R$ given by $\psi(x) = d(x, \text{Fr } X)$ for every $x \in X$ is continuous and X is compact, we can take some $p \in X$ such that $\psi(p) = a_X$. Clearly such a p belongs to U.

We claim that $D(p, a_X) \subset U$ Let $q \in D(p, a_X)$ and let I_{pq} be the closed line segment joining p and q. Since $a_X = d(p, \text{Fr } X)$, it follows that $I_{pq} \cap \text{Fr } X = \emptyset$.

So $I_{pq} = (I_{pq} \cap U) \cup (I_{pq} \cap (R^n \setminus X))$. Since I_{pq} is connected, it follows that $I_{pq} \subset X$. Therefore $q \in I_{pq} \subset U$.

Now let $\phi : X \to R$ be the mapping given by $\phi(x) = d(p, x)$. By the continuity of ϕ and the compactness of Fr X, it follows that there is some $y \in \text{Fr } X$ such that $\phi(y) = \min \phi(\text{Fr } X)$, i.e., $d(p, y) = a_X$.

Let $g : \overline{D}(p, a_X) \to R$ be the restriction of f to $\overline{D}(p, a_X)$. Clearly g is a linearly Darboux function. Moreover g is not constant, otherwise $\overline{D}(p, a_X) = g^{-1}(g(y)) \subset f^{-1}(f(y))$, so $2a_X = \text{diam } \overline{D}(p, a_X) \leq \text{diam } f^{-1}(f(y))$, a contradiction (recall that $y \in \text{Fr } X$).

So $g(\overline{D}(p, a_X))$ is a non-degenerate interval contained in $f(X)$.

Therefore $\text{Int } f(X) \neq \emptyset$.

(ii) Let $0 = (0, 0)$ and $X = \{p \in R^2 : d(p, 0) \leq 1\}$. For each $k \in \{0, \ldots, 5\}$ set $A_k = (\cos \frac{2k\pi}{6}, \sin \frac{2k\pi}{6})$, set also $A_6 = A_0$.

For every $k \in \{0, \ldots, 5\}$ let D_k be the arc A_kA_{k+1} and the two radii $0A_k$ and $0A_{k+1}$.

For every $k \in \{0, 2, 4\}$ let g_k be the projection of D_k onto the segment $0A_k$ along $0A_{k+1}$.

For every $k \in \{1, 3, 5\}$ let g_k be the projection of D_k onto the segment $0A_{k+1}$ along $0A_k$.

Clearly every mapping $g_k : D_k \to R^2$ is continuous.
Since \(\{D_0, \ldots, D_5\} \) is a finite closed cover of \(X \) and \(\{g_0, \ldots, g_5\} \) is a family of compatible mappings, it follows that the combination \(f = \bigvee g : X \to \mathbb{R}^2 \) is continuous.

Since \(f(X) = \overline{0A_0} \cup \overline{0A_3} \cup \overline{0A_4} \), it follows that \(\text{Int} f(X) = \emptyset \).

Since \(a_X = 1 \), it remains to show that \(\text{diam} f^{-1}(f(x)) < 2 \) for every \(x \in X \). Let \(P \in f(X) \). If \(P = \emptyset \), then \(f^{-1}(P) = \overline{0A_1} \cup \overline{0A_3} \cup \overline{0A_5} \) and \(\text{diam} f^{-1}(P) = d(A_1, A_3) = \sqrt{3} \).

If \(P \in \overline{0A_0} \setminus \{0\} \), then \(f^{-1}(P) = PQ \cup PQ' \) for some \(Q \in D_0 \) and \(Q' \in D_5 \) such that \(PQ \parallel \overline{0A_1} \) and \(PQ' \parallel \overline{0A_5} \).

So \(\text{diam} f^{-1}(P) = d(Q, Q') < d(A_1, A_5) = \sqrt{3} \) for every \(P \in (\overline{0A_2} \cup \overline{0A_4}) \setminus \{0\} \).

With suitable modifications one can show, in the same vein, that the answer is negative for every \(n \geq 2 \). □

The space \(X \) constructed in Theorem 1 is such that \(\text{diam} f^{-1}(f(x)) \leq \sqrt{3}a_X \) for every \(x \in \text{Fr} X \). The next theorem shows that this is, in the plane, the best possible bound for a counterexample.

Theorem 2. Let \(X \) be a non-empty compact subspace of \(\mathbb{R}^2 \) and \(f : X \to \mathbb{R}^2 \) a continuous map such that \(\text{diam} f^{-1}(f(x)) < \sqrt{3}a_X \) for every \(x \in \text{Fr} X \). Then \(\text{Int} f(X) \neq \emptyset \).

Proof. Clearly \(a_X > 0 \), so \(\text{Int} X \neq \emptyset \). Moreover we may assume that \(a_X = 1 \), \(B((0, 0), 1) \subset X \) and \(X \) is connected.

Let us suppose that \(\text{Int} f(X) = \emptyset \).

Claim. We may assume that \(X \) is the union of finitely many closed rectangles whose edges are parallel to the axis and do not contain the origin.

Proof. Let \(D_n = \{x \in X : d(x, \text{Fr} X) \leq \frac{1}{n}\} \) for every \(n \in \mathbb{N} \). Let us show that there exists some \(m \) such that \(\text{diam} f^{-1}(f(x)) < \sqrt{3} \) for every \(x \in D_m \). If not, there exist \(x_n, y_n \in D_n \) such that \(f(x_n) = f(y_n) \), \(d(x_n, y_n) \geq \sqrt{3} \) for every \(n \in \mathbb{N} \). So, by eventually considering a subsequence, we may assume that \(x_n \to x, y_n \to y \) for some \(x, y \in X \). Therefore \(d(x, y) \geq \sqrt{3} \) and \(x, y \in \text{Fr} X \).

So, by compactness of \(D_m \), \(b = \frac{1}{\sqrt{3}} \sup \{\text{diam} f^{-1}(f(x)) : x \in D_m\} < 1 \). Since \(\frac{b^{1+1}}{2} < 1 \), we may take some \(\tilde{n} > m \) such that \(B((0, 0), \frac{1}{\sqrt{3}}) \subset X \setminus D_{\tilde{n}} \). Since \(X \setminus D_{\tilde{n}} \subset \text{Int} X \), we may cover it by the union \(V \) of finitely many open squares contained in \(X \), whose edges are parallel to the axis and do not contain the origin. So \(X \) may be replaced with \(Y = V \), in fact \(Y \) is the union of finitely many closed rectangles, with edges parallel to the axis, and \(\text{diam} f^{-1}(f(x)) < \sqrt{3}b < \sqrt{3}a_Y \) for every \(x \in \text{Fr} Y \) (observe that \(\text{Fr} Y \subset D_{\tilde{n}} \) and \(b < \frac{b^{1+1}}{2} \leq a_Y \)).

So, by the claim, there is a grid \(\mathcal{G} \) (i.e., a union of finitely many lines in the plane, each parallel to the \(x \)-axis or the \(y \)-axis, see, e.g., [4, p. 85]) such that \(X \) is the union of some minimal compact rectangles \(R_1, \ldots, R_m \) for the grid \(\mathcal{G} \) and no line of the grid contains the origin. □
A grid \mathcal{H} is said to be a refinement of a grid \mathcal{G} if $\mathcal{G} \subset \mathcal{H}$. A node of a grid \mathcal{H} is the intersection of two non-parallel lines of \mathcal{H}. $\mathcal{N}(\mathcal{G})$ will denote the set of all nodes of \mathcal{G}.

Moreover, for every non-empty set A, let us denote by $F(A)$ the free Abelian group on A.

So FrX can be seen as the closed rectangular 1-chain $\partial X = \partial R_1 + \partial R_2 + \cdots + \partial R_m$ for \mathcal{G} (for $R = [a, b] \times [c, d]$ with $a \leq b$ and $c \leq d$, the boundary ∂R is the 1-chain $\gamma_1 + \gamma_2 - \gamma_3 - \gamma_4$ where γ_1 is the straight path from (a, c) to (b, c), γ_2 from (b, c) to (b, d), γ_3 from (a, d) to (b, d), γ_4 from (a, c) to (a, d)), so $\partial X = f \circ \gamma_1 + f \circ \gamma_2 - f \circ \gamma_3 - f \circ \gamma_4$, see, e.g., [4, Chapter 6]). Since each R_i is contained in X, it follows that ∂X is a 1-boundary in X (see, e.g., [4, p. 82]). Moreover, since $f : X \to f(X)$ is continuous, it follows also that $f_* \partial X = f_* \partial R_1 + f_* \partial R_2 + \cdots + f_* \partial R_m$ is a 1-boundary in $f(X)$ (see, [4, Chapter 6]).

Now let us take three half-lines l_1, l_2, l_3 starting from the origin, not parallel to the axis, and dividing the plane in three equal angles A_1, A_2, A_3, with $A_i \cap A_{i+1} = l_{i+1}$ for $i = 1, 2, 3$, $A_4 = A_1$ and $l_4 = l_1$.

Now set $S_i = A_i \cap FrX$ and $Y_i = f(S_i)$ for $i = 1, 2, 3$. Note that each Y_i is compact. Since $\partial X = f^{-1} f(x) < \sqrt{3}$ for every $x \in FrX$ and $B((0, 0), 1) \subset X$, it follows that $Y_1 \cap Y_2 \cap Y_3 = \emptyset$.

Let us call $M(\mathcal{H})$ the family of all minimal compact rectangles for a grid \mathcal{H}.

Since $Y_1 \cap \text{Int} (K \cup S)$ is disjoint from $Y_2 \setminus \text{Int} (K \cup S)$, we can, up to a refinement of the grid \mathcal{G}, assume that the sets $T = \bigcup \{C \in M(\mathcal{G}^{'}) : C \cap (Y_1 \cap Y_2) \neq \emptyset\}$ and $U = \bigcup \{C \in M(\mathcal{G}^{'}) : C \cap (Y_2 \setminus (K \cup S)) \neq \emptyset\}$ are disjoint.

So we have $f(FrX) \subset \text{Int} (K \cup S \cup T \cup U)$ and $K \cap S = T \cup U = \emptyset$. Moreover observe that $\text{Int} K \cap \text{Int} T = \text{Int} T \cap \text{Int} S = \text{Int} U \cap \text{Int} K = \text{Int} U \cap \text{Int} S = \emptyset$.

Set $\mathcal{M}(\mathcal{G}^{'}) = \{Q_1, \ldots, Q_\kappa\}$ and put $M = \bigcup \{\text{Fr} Q_i : 1 \leq i \leq \kappa\}$.

Since we are assuming that $f(X)$ has empty interior we may pick some $q_i \in \text{Int} (Q_i)$ \ $f(X)$ for every i. Let $g : \bigcup \{Q_i \setminus \{q_i\} : 1 \leq i \leq \kappa\} \to M$ be the continuous map such that $g_{|Q_i \setminus \{q_i\}}$ is the radial projection from q_i to $\text{Fr} Q_i$. Note that $g(K) \subset K$, $g(S) \subset S$, $g(T) \subset T$ and $g(U) \subset U$.

Set $h = g \circ f$. Then $h_* \partial X = g_* f_* \partial X$ is a 1-boundary (in M). Since we assumed that the half-lines l_1, l_2, l_3 are not parallel to the axis, it follows that $L = FrX \cap (l_1 \cup l_2 \cup l_3)$ is finite. So we may assume, up to a refinement of the grid $\mathcal{G}^{'},$ that the points of L go under f to some nodes of $G^{'},$ hence g is the identity on L.

Let S be the family of all straight paths σ_{ab} from a to b (i.e., $\sigma_{ab}(t) = a + t(b - a)$), where a, b is a pair of distinct adjacent nodes of the grid G'. $\partial \sigma_{ab} = b - a$ is an element of $F(N(\mathcal{G}^{'})$).

For every $\mu = \sum \{n_{\sigma} \sigma : \sigma \in S\} \in F(S)$, $n_{\sigma} \in Z$, let us put $\text{Im} \mu = \bigcup \{\text{Im} \sigma : n_{\sigma} \neq 0\}$, $\partial \mu = \sum \{n_{\sigma} \partial \sigma : \sigma \in S \}$ $\in F(N(\mathcal{G}^{'})$).

Now observe that $\partial X = \sum_{i=1}^{n} \gamma_i$, where γ_i is either a path from a_i to b_i and $\text{Im}(\gamma_i) \cap L = \{a_i, b_i\}$ or it is a closed path whose image is disjoint from L.

Now for each $i \in \{1, \ldots, n\}$ let us fix a member μ_i of $F(S)$ homologous to $h_\gamma \gamma_i$ on M, so that $\text{Im} \mu_i \subset \text{Im} h_\gamma \gamma_i$ and $\partial \mu_i = \partial (h_\gamma \gamma_i) = \partial (f \circ \gamma_i) = f_{\mu_i} (\gamma_i) \equiv f \gamma_i = f(b_i) - f(a_i) \in F(N(\mathcal{G}^{'})$ (where the last equality holds whenever $\gamma_i = b_i - a_i$). Note that if γ_i is a closed path then $\partial \mu_i = 0$.

...
Observe that a member \(\mu = \sum \{ n_{\sigma} \sigma : \sigma \in \mathcal{S} \} \) is a 1-boundary in \(M \) (i.e., homologous to zero on \(M \)) if and only if \(n_{\sigma} = n_{\tau} \) whenever \(\partial \sigma = - \partial \tau \) (i.e., \(\sigma \) is the opposite straight path of \(\tau \)).

Moreover if \(\mu = \sum \{ n_{\sigma} \sigma : \sigma \in \mathcal{S} \} \) is a 1-boundary in \(M \), then \(\mu | B = \sum \{ n_{\sigma} \sigma : \text{Im} \sigma \subset B \} \) is a 1-boundary in \(M \) for every \(B \subset R^2 \).

Now let \(\sharp : F(\mathcal{N}(G')) \rightarrow Z \) be the group homomorphism given, for each \(x \in \mathcal{N}(G') \), by \(\sharp(x) = 1 \) whenever \(x \in K \), \(\sharp(x) = 0 \) otherwise.

Let us set \(\sharp \mu = \sharp \partial \mu \) for each \(\mu \in F(S) \) and \(\sharp \gamma_i = \sharp \mu_i \) for every \(i \in \{1, \ldots, n\} \). Observe that, if \(\partial \gamma_i = b_i - a_i \), then \(\sharp \gamma_i \) is equal to 1 whenever \(a_i \notin l_i \) and \(b_i \notin l_i \), it is equal to \(-1\) whenever \(a_i \subset l_i \) and \(b_i \notin l_i \), and it is equal to 0 otherwise. Observe that \(\sharp \gamma_i = \sharp f(b_i) - \sharp f(a_i) \) if \(\partial \gamma_i = b_i - a_i \), in fact \(f(x) \in K \) if and only if \(x \in l_i \) for every \(x \in l_i \).

Now let us show that \(\sum_{i=1}^n \mu_i | T \) is not a 1-boundary in \(M \), thus reaching a contradiction, in fact \(\sum_{i=1}^n \mu_i = \sum_{i=1}^n \gamma_i \) is homologous to \(\sum_{i=1}^n \text{Im} \gamma_i = h^* \partial X \) which is a 1-boundary.

Observe that if \(\mu \) is a 1-boundary on \(M \), then \(\partial \mu \) is the identity element of \(F(\mathcal{N}(G')) \), so \(\sharp \mu = 0 \).

We will show that \(\sharp(\sum_{i=1}^n \mu_i | T) \neq 0 \).

Claim. \(\sharp(\mu_i | T) \) is equal to \(\sharp \mu_i \) whenever \(\text{Im} \gamma_i \subset A_1 \), it is 0 otherwise.

Proof. First observe that \(\exists \gamma = 0 \) whenever \(\text{Im} \sigma \subset K \) or \(\text{Im} \sigma \cap K = \emptyset \). Hence \(\exists \gamma = 0 \). Therefore \(\exists(\mu_i | T) \cap K = \emptyset \), so \(\sharp(\mu_i | T) = 0 \).

If \(\text{Im} \gamma_i \subset A_2 \), then \(\mu_i = \sum \{ n_{\sigma} \sigma : \text{Im} \sigma \subset K \cap U \} + \sum \{ n_{\sigma} \sigma : \text{Im} \sigma \subset S \setminus U \} \).

So \(\mu_i | T = \sum \{ n_{\sigma} \sigma : \text{Im} \sigma \subset (K \setminus U) \cap T \} + \sum \{ n_{\sigma} \sigma : \text{Im} \sigma \subset (S \setminus U) \cap T \} \).

Hence \(\sharp(\mu_i | T) = 0 \).

If \(\text{Im} \gamma_i \subset A_1 \), then \(\mu_i = \sum \{ n_{\sigma} \sigma : \text{Im} \sigma \subset T \} + \sum \{ n_{\sigma} \sigma : \text{Im} \sigma \subset K \setminus T \} + \sum \{ n_{\sigma} \sigma : \text{Im} \sigma \subset S \setminus T \} \).

So \(\sharp \mu_i = \sharp(\mu_i | T) \). \(\square \)

Therefore we have \(\sharp(\sum_{i=1}^n \mu_i | T) = \sum_{i=1}^n \sharp \mu_i | T = \sum \{ \sharp \mu_i : \text{Im} \gamma_i \subset A_1 \} = \sum \{ \sharp \gamma_i : \text{Im} \gamma_i \subset A_1 \} = \sharp(\sum_{i=1}^n \gamma_i | A_1) \).

Now if \(R \) is a rectangle in \(R^2 \), we can write the 1-chain \(\partial R \) as a finite sum of paths \(\eta_1, \ldots, \eta_r \) whose images are contained in one of \(A_1, A_2 \) and \(A_3 \).

Then we set \(\partial R|_{A_i} = \sum \{ \eta_i : \text{Im} \eta_i \subset A_i \} \) (this definition is independent from the choice of the paths \(\eta_1, \ldots, \eta_r \)).

Now \(\sharp(\sum_{i=1}^n \gamma_i | A_1) = \sharp(\sum_{i=1}^n \gamma_i | A_1) = \sharp R|_{A_1} = \sum_{i=1}^m \partial R|_{A_1} = \sum_{i=1}^m \partial R|_{A_1} = \partial R_{|A_1} = 1 \), where \(k \) is the only index for which \((0,0) \in R_k \).

This completes the proof. \(\square \)

We conclude the paper with the following observation. Let \(r \) be the greatest real number such that for each compact subset \(X \) of \(R^2 \) and for each \(x \in \text{Fr} X \), \(\text{diam} f^{-1}(f(x)) < r \alpha x \)
implies \(\text{Int} \ f(X) \neq \emptyset \). As pointed out by the referee, it should be interesting to investigate \(r \) and its dependence on the dimension \(n \).

References