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Abstract 

Geographically weighted regression (GWR) and Multiple Linear Regression (MLR) models have been 
applied to derive the spatial structure of urban heat island (UHI) in Wroc aw, SW Poland and compared. 
It was found that GWR is better suited for spatial modeling of UHI than MLR, as it takes into account 
non-stationarity of the spatial process. Both local and global models were extended by the interpolation of 
regression residuals, and used for spatial interpolation of the UHI structure. The combined: GWR + 
interpolated regression residuals (GWRK) approach is recommended for spatial modeling of UHI. 
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1. Introduction 

Urban heat island (UHI) is probably the most significant phenomenon of urban climate, with further 
strong impact on various aspects of urban environment. The most important features describing UHI are 
its magnitude and spatio-temporal structure. The general spatial structure of UHI is characterized by the 
occurrence of three distinct zones, named cliff, plateau and peak [1]. This general structure of UHI can be 
strongly modified depending on land-use types and urban structures. During calm and clear-sky 
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meteorological conditions, which are favorable for UHI development, and especially during nighttime, 
UHI takes a multicellular, irregular shape [2]. 

Most of the recent studies on spatial characteristic of UHI are based on multidimensional interpolation 
algorithms, with the multiple linear regression (MLR) being the most often applied [3]. Nevertheless 
MLR could lead to distorted results when the spatial process is non-stationary. The main goal of this paper 
is the application and evaluation of GWR for determination of the spatial structure of UHI from Wroclaw 
(SW Poland). A statistical analysis is performed to verify if there is methodological justification for a 
more complex, if compared to MLR, approach with local models. Finally, local and global regression 
models, both raw and extended by interpolation of the regression residuals are used for spatial 
interpolation of UHI. Interpolation results are evaluated with cross-valiadtion (CV). The analysis is 
performed here basing on the case from 3 Jan 2002 when strong heat island (intensity > 8 K) was 
observed and distorted by regional wind resulting in the non-stationarity of the spatial process. 

2. Study area 

The city of Wroc aw (293 km2; population ~640 000) is located in SW Poland (51°N, 17°E) at ~120 m 
a.s.l. The altitude in the city area varies from 105 to 148 m a.s.l., thus the temperature field is practically 
unaffected by elevation. Wroc aw is situated along the Odra River. Approximately 31.4% of the city area 
is built-up, mainly with housing estates, industrial and warehouse buildings. The rest of the area consists 
of urban green space (36.6%), agricultural areas (28.9%) and water (3.1%). 

3. Methods 

3.1. Meteorological data 

Air temperature measurements of Wroc aw UHI were gathered during nighttime with relatively weak 
winds (<2 ms-1) and cloudless sky. Air temperature data were measured by automatic mobile 
meteorological stations mounted on two cars. The sensors were placed in the aspirated radiation shields at 
2 m a.g.l. Total of 206 measurement points (Fig. 1) were selected along the routes systematically to 
represent different land-use categories [3].  

3.2. The set of potential auxiliary variables 

The set of potential predictors was previously prepared basing mostly on land-use map of Wroc aw 
and the buildings database available only for the selected areas of the city [3]. The auxiliary variables for 
interpolation were: roughness length, percentage of artificial and semi-natural surfaces, thermal 
admittance and artificial heat emission. For the purpose of this study the set of potential predictors was 
expanded by including LIDAR scan and satellite imagery (Landsat ETM+) derivatives: porosity, sky 
view factor, daily sums of solar irradiation, albedo, vegetation indices (NDVI, NDMI, SAVI), land 
surface temperature and emissivity [4].  

3.3. Multiple linear regression model 

The MLR method can be used to spatialize discrete point data on the assumption that auxiliary, 
independent variables are known and continuous in space. It has been successfully used for climatological 
purposes, as well as for UHI spatialization [3]. Selection of the predictors was performed stepwise, taking 
into account their statistical significance and the lack of collinearity with other independent variables, by 
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analyzing the variance inflation factor (VIF). Also, the direction of dependence (sing of the  coefficient) 
between air temperature and independent variable was checked to ensure that the final equation can be 
explained in terms of known physical processes that influence UHI formation.  

3.4. Geographically weighted  regression model 

The MLR method can be applied to spatial data under assumption of spatial non-stationarity and 
location-independency. This is usually hard to meet, especially in the field of meteorology and 
climatology, where various processes should be considered as spatially unstable. One solution is to 
substitute the global regression model with the local model (GWR) [5]. It is a non-parametric model of 
spatial drift that relies on a sequence of locally linear regressions to produce estimates for every point in 
space by using a subset of data information from nearby observations. The local estimates are made using 
weighted regression, and weights assigned to observations are the function of the distance from point i. 
Larger weights are assigned to observations closer to the point i. Therefore, the weighting of an 
observation is not constant, but is a function of geographical location. For the continuous processes the 
kernel functions are suggested for constructing the weights. 

For retaining the comparability of both global and local regression models, the same explanatory 
variables, as specified for MLR, were used in GWR model. Calibration of the local regression model in a 
deterministic manner included selection of the kernel type, size of bandwidth and verification that the 
local model can be physically explained over the whole study area. Due to irregular distribution of the 
sampling points (Fig. 1), the adaptive kernel (Gaussian shape) was used. The optimal bandwidth size was 
determined with iterative procedure, and all bandwidth sizes were tested for expected physical relation 
between UHI and the predictor. The following diagnostic measures were calculated: AICc – corrected 
Akaike Information Criterion [6], estimated standard deviation for the residuals ( ), global, and local 
minimum and maximum determination coefficients (R2) as measures of goodness of fit. 

After specification of the GWR model the set of parameter estimates was tested if it exhibits 
significant spatial variation over the study area. The reason is that if localized parameter estimates do not 
meet statistically significant differences, the GWR model can be considered as equivalent to the MLR 
model, although the local parameter estimates show spatial variation. In this paper, two tests were 
employed to address the issue: Monte Carlo [7] and F3 [8]. 

Both models, MLR and GWR, were evaluated and compared using a set of statistics to check a 
goodness-of-fit of the models to the observations. Additionally, spatial autocorrelation of regression 
residuals (Moran’s I statistics) was analyzed to detect possible problems with proper specification of the 
model in the non-stationary conditions of the spatial processes. To test whether the GWR model offers an 
improvement over the MLR model, an analysis of variance (ANOVA) was used [5].  

3.5. Residual kriging 

In the regression methods described above, there is a part of variance that is not explained by the 
model and the regression residuals are assumed to be randomly distributed. The residual kriging (RK) 
algorithm sums up the trend component (deterministic, explained by the regression model) and residuals 
(stochastic part) interpolated with kriging (usually ordinary kriging, OK) technique. 

3.6. Evaluation of interpolation results 

Interpolation results derived with spatialization techniques applied in this study (MLR, GWR, RK and 
GWRK) were evaluated and compared using CV approach (“leave-one-out” method). The procedure is 
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repeated consecutively for all measuring sites and the interpolation errors are calculated as the difference 
between the observed and the modeled values. The CV errors were used to calculate diagnostic measures, 
including: mean bias (BIAS), the root mean square error (RMSE) and the mean absolute error (MAE). 

4. Results 

4.1. Specification of regression models 

Statistical summary of the MLR model for 3 Jan 2001 is given in Table 1. The global model was able 
to explain 85% of the air temperature variance. 

Table 1. Multiple linear regression analysis and spatial autocorrelation of regression residuals for 3 Jan 2002 

Predictor p-value R2 adj. AICc F Std Error 
Moran’s I 

 E(I) = -0.0049 
p-value 

Artificial heat 

Albedo 

Land-surface temperature 

0.0000 

0.0395 

0.0000 

0.85 479.1 373.8 0.77 0.3142 0.0004 

 
The process of GWR model specification was started by calibration of optimal kernel size. It can be 

stated that, with the decrease of the kernel size, the better fit of modeled data to observations is achieved, 
quantified by decreasing values of AICc and , and increasing global R2. The analysis of changes in local 
parameter estimates ( ) showed a similar tendency as in the case of R2: the smaller kernel the greater 
variance of , but also the model is less biased. For the analyzed UHI case we found one independent 
variable (albedo) for which the use of small adaptive bandwidths (< 60 points) causes the change of sign 
of the local  estimate. This means that in some parts of the study area, the model does not properly 
describe the physical processes affecting the air temperature field. For this reason, the optimum adaptive 
kernel size cannot be defined simply by selecting the best R2, AICc or  statistics. In this case the kernel 
size should be as small as possible and the smallest possible for which the  values do not change sign 
over the study area and can be physically explained (Table 2). 

Table 2.  Geographically weighted regression analysis and spatial autocorrelation of regression residuals for 3 Jan 2002 

Optimal adaptive 
kernel 

(no of objects) 

Global 

R2 adj. 

Min local 

R2 adj. 

Max local 

R2 adj. 
AICc 

Moran’s I 

 E(I) = -0.0049 
p-value 

60 0.88 0.82 0.91 437.7 -0.0237 0.3540 

 
The analysis of Moran’s I index of GWR residuals showed significantly better specification of GWR 

model in comparison to MLR. A spatial autocorrelation of regression residuals was detected for the MLR 
model, suggesting the misspecification of the model due to the non-stationarity of the spatial process 
(Table 1). After the implementation of GWR, statistically significant tendency for clustering of similar 
residuals was no longer observed (Table 2).  

The straightforward comparison of MLR and GWR models in each UHI case was performed by the 
analysis of AICc values, global R2 and ANOVA approach. The analysis of AICc revealed a better fit of 
GWR model to observations than that for MLR. This was also supported by the analysis of global R2 that 
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showed the increase of air temperature variation explained by the model up to 88% (locally even 91%) 
(Table 2). ANOVA results showed that the GWR estimates reduced the residual sum of squares over the 
MLR estimates. The test was statistically significant and showed that GWR model performed better than 
MLR (Table 3). 

Table 3. Comparison between MLR and GWR model – ANOVA test (SS - sum of squares, DF – degrees of freedom) for 3 Jan 2002 

Source SS DF F 

MLR Residuals 

GWR Improvement 

GWR Residuals 

118.6 

68.5 

50.2 

4.00 

25.2 

174.8 

 

 

9.47 

 
In the last step of GWR model calibration, non-stationarity tests for regression parameters were 

performed. The results of two tests are generally similar, but the existence of spatial instability was 
detected for artificial heat emission by Monte Carlo test and for albedo by F3 test. Even though it can be 
stated that GWR model for 3 Jan 2002 is specified properly. 
 

 

Fig. 1. Air temperature [ºC] and standardized cross-validation (observed - modelled) errors for 3 Jan 2002 
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4.2. Spatial interpolation 

The results of spatial interpolation by four methods are presented on Fig. 1. MLR is not able to detect 
exterior factor, i.e. the regional northern wind, which can be recognized by the analysis of spatial 
distribution of CV errors and results in the underestimations in southern parts and overestimations in 
northern part of the city. The GWR model works better (CV errors are smaller than for MLR) and 
improves the quality of the interpolation, but still does not fully recognize the role of wind. It should be 
stressed that the incorporation of stochastic part in the process of spatialization (RK, GWRK) improves 
the model and the zones of over- or underestimation are eliminated (Fig. 1). 

5. Conclusions 

Comparing the spatialization results achieved by the MLR and GWR techniques, even if the maps 
looks similar, the latter has a strong advantage in better recognition of non-stationarity characteristics of 
spatial process. The goodness-of-fit of the GWR model is the function of the kernel size, and increase 
with decreasing kernel size. There are two main reasons limiting decrease of the kernel size: too many 
independent variables for too few observations leads to the misspecification of the model and the physical 
interpretation of the local model is often lost for a given predictor if too small kernel size is selected. The 
GWR and MLR results can be significantly improved by adding the stochastic part to the interpolation 
(RK and GWRK) procedures. The results of those procedures are similar while comparing the CV errors 
statistical characteristics and spatial distribution. The main reason that is decisive in recognizing GWRK 
as the most proper method is its statistical correctness due to unexplained (by independent variables) and 
non-stationary phenomena. 
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