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a b s t r a c t

In this paper, we introduce a new numerical scheme, based on the ADI (alternating
direction implicit)method, to price American put optionswith a stochastic volatilitymodel.
Upon applying a front-fixing transformation to transform the unknown free boundary
into a known and fixed boundary in the transformed space, a predictor–corrector finite
difference scheme is then developed to solve for the optimal exercise price and the option
values simultaneously. Based on the local von Neumann stability analysis, a stability
requirement is theoretically obtained first and then tested numerically. It is shown that the
instability introduced by the predictor can be damped, to some extent, by the ADI method
that is used in the corrector. The results of various numerical experiments show that this
new approach is fast and accurate, and can be easily extended to other types of financial
derivatives with an American-style exercise.

Another key contribution of this paper is the proposition of a set of appropriate
boundary conditions, particularly in the volatility direction, upon realizing that appropriate
boundary conditions in the volatility direction for stochastic volatility models appear to
be controversial in the literature. A sound justification is also provided for the proposed
boundary conditions mathematically as well as financially.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

It is well known that one of the most important topics in quantitative finance research is the valuation of option
derivatives. Empirical evidence suggests that the Black–Scholes model, which is a breakthrough in the financial area, is
inadequate to describe asset returns and the behavior of the optionmarkets [1]. This is because their assumption on the log-
normality of the value of the underlying asset has somewhat oversimplified the real process of the asset price. One possible
remedy is to assume that the volatility of the asset price also follows a stochastic process [2–5]. In this paper, we will use
the stochastic model introduced by Heston for pricing American options [4]. In this model, it assumes that the variance (the
square of the underlying price volatility) follows a random process known in financial literature as the Cox–Ingersoll–Ross
(CIR) process and in mathematical statistics as the Feller process [3,6]. Empirical studies suggest that this non-negative and
mean-reverting process is indeed more consistent with what has been observed in real markets [7–9]. For example, Adrian
and Victor [1] showed that the time-dependent probability distribution of the changes of the stock index generated in the
Heston model agrees well with the Dow-Jones data after the calibration of the parameters in this model.

How to rationally price an option remains one of the major challenges in today’s finance industry. This is even for so
for pricing American options as the challenge stems from the nonlinearity originated from the inherent characteristics
that an American option can be exercised at any time during its lifespan and thus the additional right of being able
to exercise the option early, in comparison with a European option, casts the problem into a free boundary problem,
which is far more difficult to deal with, even under the traditional Black–Scholes framework. In this area, there have been
predominantly two kinds of approaches, numerical methods and analytical approximations, for the valuation of American

∗ Corresponding author. Fax: +61 2 42214845.
E-mail addresses: spz@uow.edu.au (S.-P. Zhu), wc904@uow.edu.au (W.-T. Chen).

0898-1221/$ – see front matter© 2011 Elsevier Ltd. All rights reserved.
doi:10.1016/j.camwa.2011.03.101

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82297506?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.camwa.2011.03.101
http://www.elsevier.com/locate/camwa
http://www.elsevier.com/locate/camwa
mailto:spz@uow.edu.au
mailto:wc904@uow.edu.au
http://dx.doi.org/10.1016/j.camwa.2011.03.101


2 S.-P. Zhu, W.-T. Chen / Computers and Mathematics with Applications 62 (2011) 1–26

options under the Black–Scholes framework. While the former typically includes the finite difference method [10,11], the
finite element method [12], the binomial method [13] and the Monte Carlo simulation method [14], the latter includes the
Richardson extrapolation approximation [15], the Laplace transform method [16], the algebraic equation method [17,18]
and the integral-equation method [19–22]. Furthermore, recently, an analytical solution for American puts on a non-
dividend underlying asset was even found out by Zhu [23]. It must be pointed out that all these approaches cannot be
easily extended to the Heston model, primarily due to the fact that, under stochastic volatility, the optimal exercise price
depends, in addition to time, on the dynamics of volatility. In other words, the introduction of a second stochastic process
has considerably complicated the solution process in pricing American options.

In the last decade, several numerical approaches based on the finite differencemethod (FDM) are introduced to solve the
free boundary problem associated with the valuation of American options under the Hestonmodel. For instance, Clarke and
Parrott [24], used a special version of a projected full approximation scheme with multigrid to solve the American option
pricing problem. One advantage of such a multilevel method is that the number of iterations required to solve a linear
complementarity problem is essentially independent of the grid size. However, their method is rather complicated because
of the use of a special projected linear Gauss–Seidel smoother. Ikonen and Toivanen [25] calculated the option values by
using the operator splitting method, in which an auxiliary variable is used to improve the accuracy. However, their method
still requires a relatively large amount of computational storage space. Zvan et al. [26] applied the penalty method to the
American option pricing problem. Their method is simpler than the one used by Clark and Parrott, but still needs a relatively
large amount of computational resources to produce an accurate result.

Since most of the numerical methods in the literature are either too complicated to implement or with very low
computational efficiency, it is desirable to have alternative ways to deal with the valuation of American options with
stochastic volatility. In this paper, we propose an approach based on a predictor–corrector framework, which is commonly
used to numerically solve nonlinear partial differential equations (PDEs). The idea behind the predictor–corrector method
is to use a suitable combination of an explicit and an implicit technique to obtain a method with better convergence
characteristics. Previously, this scheme has only been applied to the pricing problemunder the Black–Scholesmodel, such as
Zhu and Zhang reported in [11]. Though their method is efficient and accurate, it cannot be applied directly to the stochastic
models. Thepurpose of this article is to introduce anewpredictor–corrector scheme,which is not only suitable for theHeston
model, but also for other stochastic models. In our new approach, we adopt the so-called front-fixing transformation [27] to
let the unknown boundary be included in the governing equation as a nonlinear term in exchange for a fixed boundary. To
tackle the nonlinear nature of American option pricing problem, which is explicitly exposed in the transformed equation,
we use a predictor–corrector finite difference scheme at each time step to convert the nonlinear PDE to two linearized
difference equations associated with the prediction and correction phase, respectively. The prediction phase, constructed
by an explicit Euler scheme, is used to calculate the optimal exercise price, whereas the correction phase, designed by the
alternating direction implicit, or ADI,method, continues to do the calculation of the option price togetherwith the correction
of the optimal exercise price. The ADI scheme used in the corrector is efficient in computing multi-dimensional problems.
Moreover, it is also suggested that the good convergence property of the ADI scheme can somehow, damp the instability
that might be introduced by the predictor. With the perfect combination of the explicit Euler scheme and the ADI method,
the originally nonlinear problem has been successfully converted to a set of linear algebraic equations, which can be solved
efficiently. In comparison with the numerical methods in the literature, the advantage of the current scheme is obvious.
For example, first, our method requires almost the same storage space as a one-dimensional problem does and it will not
increase even when the method is applied to option pricing problems on multi-assets. This is, however, not the case for
the numerical methods proposed in [25], as a substantially larger amount of the storage space is required, which will also
increase as the number of the assets increases. Second, in addition to the option values, the present method captures the
entire optimal exercise boundary as part of the solution procedure, whereas in [25], the optimal exercise price cannot be
obtained simultaneously, and needs to be solved with some extra effort. Finally, our method requires no iterations, and can
be easily extended to the valuation of American options under other models.

It is usually easy to design a numerical scheme to solve a PDE system, but much harder to provide a theoretical threshold
for the stability and the convergence of the scheme. It is probably even worse to theoretically define a suitable stability
criterion for the predictor–corrector method, since it is a hybrid finite difference method. For this reason, the issue of
stability requirement was not even attempted in [11] for the Black–Scholes case. One could naturally imagine that with
the complexity of the Heston model, it would have made a theoretical stability analysis much less achievable. Based on the
local von Neumann stability analysis, combining with the ‘‘frozen’’ coefficient technique, which is commonly used for the
stability analysis of the variable-coefficient problem [28], we have managed to not only verify that the ADI method used
for the European puts under the Heston model is unconditionally stable, but also give a proper stability requirement for the
predictor–corrector approach.

In the subsequent sections, we will present this new approach together with the numerical results for American put
options under the Heston model. The paper is organized as follows: in Section 2, we introduce the PDE system that the
price of an American put must satisfy under the Heston model, with our emphasis being placed on properly closing the
systemwith appropriate boundary conditions,which appear to be controversial in the literature. In Section 3,we present our
predictor–corrector approach in detail as well as the implementation of the ADI scheme. In Section 4, numerical examples
and some analyses are presented to demonstrate the convergence and accuracy of the current scheme. Concluding remarks
are given in the last section.
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2. Pricing American options under the Heston model

Although the Heston model has been studied by a number of authors [7–9], we still describe it in reasonable detail, in
this section, for the sake of completeness of the paper and easiness of reference for the readers. However, our emphasis will
be placed on the discussion of appropriate boundary conditions in the volatility direction, which contributes greatly to the
proper close of the PDE system to be solved numerically in the later sections.

2.1. The Heston model

Heston [4], assumed that the underlying St , as a function of time, follows the stochastic differential equation (SDE) of a
geometric Brownian motion in the Itô form:

dSt = µStdt +
√

vtStdw1, (2.1)

where µ is the drift rate, w1 is a standard Brownian motion, and
√

vt is the standard deviation of the stock returns dSt
St

.
Furthermore, he assumed that the variance vt (the square of the volatility) is governed by the followingmean-reverting SDE

dvt = κ(η − vt)dt + σ
√

vtdw2. (2.2)

Here, η is the long time mean of vt , κ is the rate of relaxation to this mean, and σ is the volatility of the volatility. w2 is
also a standard Brownian motion, and it is related to w1 with a correlation factor ρ ∈ [−1, 1]. Eq. (2.2) is known in the
financial literature as the Cox–Ingersoll–Ross (CIR) process and inmathematical statistics as the Feller process [3,6]. Various
studies [7–9] suggest that it is consistent with the real market. Most remarkably, Heston found a closed-form exact solution
for the price of European-style options. Unfortunately, the approach he adopted could not be easily extended to the case of
American options; no analytical solution for American options under the Heston Model has been discovered yet.

2.2. The PDE for the value of American puts and the corresponding boundary conditions

Let U(S, v, t) denote the value of an American put option, with S being the price of the underlying asset, v being the
variance and t being the time. For simplicity, we assume that the underlying pays no dividend. Under the Heston Model, it
can be easily shown that under the risk-neutral argument, the value of a put option U should satisfy the following bivariate
PDE:

1
2
vS2

∂2U
∂S2

+ ρσvS
∂2U
∂S∂v

+
1
2
σ 2v

∂2U
∂v2

+ rS
∂U
∂S

+


κ(η − v) − λσ

√
v
∂U

∂v
− rU +

∂U
∂t

= 0, (2.3)

where λ is the market price of risk, r is the risk-free interest rate. In this paper, for simplicity, we set λ to zero, and the
extensions to the case that λ is non-zero should be straightforward. The terminal condition to Eq. (2.3) is given by the payoff
function. For an American put option, it reads: U(S, v, T ) = max(K − S, 0), where K is the strike price. Since at the expiry
date, the optimal exercise price of an American put on a non-dividend underlying asset is equal to the strike price, this
condition can be simplified as [23]:

U(S, v, T ) = 0, for S > Sf (v, T ) = K , v > 0. (2.4)

For the valuation of American puts, a set of appropriate boundary conditions is also needed together with the terminal
condition (2.4) to solve Eq. (2.3). It is obvious that the boundary conditions along the S direction are easy to justify. They are
just the same as those in the Black–Scholes model. The value of a put should satisfy the far-field boundary condition,

lim
S→∞

U(S, v, t) = 0,

whichmeans that when the price of the underlying becomes extremely large, a put option becomes worthless. On the other
hand, just as in the Black–Scholes model, there is a critical asset price, below or equal to which it is optimal to exercise
the put option. It can be shown, under the no-arbitrage argument, that the boundary conditions at the optimal exercise
boundary S = Sf are [29]:

U(Sf , v, t) = K − Sf ,
∂U
∂S

(Sf , v, t) = −1.

It should be noted that the above two conditions look very similar to the case with constant volatility. However, the main
difference between the constant volatility model and the stochastic volatility model lies in the fact that in the latter case,
such as in the Heston model, the optimal exercise price Sf depends, in addition to time, on the dynamics of the volatility. In
other words, Sf is a function of both v and t .

The boundary conditions along the v direction remain unclear in the literature. Even for the European case, it is still
controversial whether or not Heston’s analytical formula [4] does indeed satisfy the given boundary conditions along the v
direction. While some (e.g. [30]) chose the boundary conditions along the v direction, for European puts, by taking the limit
of Black–Scholes’ formula with respect to σ , others (e.g. [31]) chose to neglect the boundary conditions along the v direction
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altogether for American puts. From the financial point of view, there is no reason why the boundary conditions in the v
direction should be different when the moving boundary for the case of American puts is associated with the S direction
only. There were also some authors [24,25,32] who argued that boundary conditions along the v direction are still necessary
in their numerical approaches for solving the American option pricing problem under the Heston model and chose the two
boundary conditions:

lim
v→0

U(S, v, t) = max(K − S, 0), (2.5)

lim
v→∞

∂U
∂v

(S, v, t) = 0. (2.6)

However, they did not explain exactly why the option price should be equal to the payoff function at v = 0. As different
boundary conditions imposed will undoubtedly affect the value of an option, the controversy of what boundary conditions
should be imposed in the v direction has clearly jeopardized the uniqueness of the solution and thus needs to be properly
investigated. In the following, we will discuss what special price the option should be along the boundary of the v direction.

Whether or not boundary conditions are needed for v = 0 and if they are needed, what would be their appropriate form,
should be discussed from both mathematical and financial points of view.

Mathematically, v = 0 is a so-called ‘‘degenerate’’ boundary of Eq. (2.3), because its characteristic form vanishes as
v approaches zero [33]. From the mathematical point of view, boundary conditions along degenerate boundaries are not
needed at all if the Fichera function is nonnegative, but should be imposed otherwise [33]. For the Heston model, it can be
shown that the Fichera function along v = 0 equals κη −

σ 2

2 . Therefore, if κη ≥
σ 2

2 , the pricing system without boundary
constraints at v = 0 is already closed, and thus there is no need to prescribe any condition along the boundary v = 0 at
all for this case. On the other hand, if κη < σ 2

2 , appropriate boundary conditions at v = 0 are still ‘‘needed’’ to ensure the
uniqueness of the solution. However, the Fichera function does not reveal what the specific boundary conditions should
be prescribed for this case. We believe that one now has to use a financial argument to set up an appropriate boundary
condition for this case.

Under the risk-neutral argument, when v → 0, the leading order term of the solution of the SDE (2.1) is S = ertS0, i.e.,
the underlying becomes virtually riskless, and its price should appreciate at a deterministic rate r when v → 0. Therefore, if
S < K , the put option should be immediately exercised as there is no reason to hold the option any more if one knows that
the underlying will definitely increase for sure. In other words, the underlying price range [0, K) belongs to the ‘‘exercise’’
region, i.e., [0, K) ⊆ [0, limv→0 Sf (v, t)], and thus limv→0 Sf (v, t) ≥ K . On the other hand, if S > K , it is obvious that the
value of the put option becomes zero, and therefore it is better to hold the option as the option may still have some time
value before its expiration date is reached. That is to say, the underlying price range (K , ∞) belongs to the ‘‘continuous’’
region, i.e., (K , ∞) ⊆ (limv→0 Sf (v, t), ∞), and thus limv→0 Sf (v, t) ≤ K . A combination of the above two statements leads
to the conclusion that

lim
v→0

Sf (v, t) = K . (2.7)

Having established that Sf (v, t) must be equal K when v → 0, it is then trivial to show

lim
v→0

U(S, v, t) = 0 (2.8)

from the definition of Sf associated with put options.
Two points need to be remarked. Firstly, Eq. (2.8) is a simplified version of Eq. (2.5); it can be deduced from Eq. (2.5)

by considering the definition of Sf , as well as the fact that limv→0 Sf (v, t) = K . Therefore, we believe those [24,32] who
proposed to use Eq. (2.5) as the boundary condition at v → 0 are correct, although we argue that it is better to use the
simplified version Eq. (2.8). Second, this boundary condition based on a financial argument is irrespective of the ratio 2κη

σ 2

being greater than 1 or not. Naturally, one may wonder the consistency of the two arguments for the case of κη ≥
σ 2

2 , for
which the mathematical argument shows that there is no need for any boundary condition at v = 0, whereas the financial
argument suggests that the option value vanishes there. In other words, if one also adopts the boundary condition Eq. (2.8)
for the case κη ≥

σ 2

2 , will this value be consistent with the inherent value of the PDE system when v → 0, and thus would
not be an inappropriate ‘‘boundary condition’’ that will certainly ‘‘deteriorate’’ the well-posedness of the pricing problem?
Note that the PDE system here refers to (2.16) butwithout boundary condition at v = 0, which is already closed for this case.
Fortunately, we have managed to prove the consistency of Eq. (2.8) with the asymptotic behavior of the unknown function
U(S, v, t) as v → 0 when κη ≥

σ 2

2 . For briefness, we leave such a proof in Appendix A.
Combining both arguments, we can now confidently conclude that Eq. (2.8) should be used as the boundary condition at

v → 0 for pricing an American put option, regardless of what the ratio 2κη

σ 2 is.
We now show what the boundary condition should be imposed as v → ∞. One needs to understand how the volatility

impacts on the option price, since v in the Heston model is nothing but the square of the volatility. Roughly speaking, the
volatility of the underlying asset is a measure of the uncertainty of the future underlying price movements. As a result, if
volatility increases, the probability of the underlying asset price varyingwithin a large rangewould increase too, resulting in
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higher option prices for both puts and calls, since the holder of the option will have a chance to cash in when the movement
of the underlying is in his favor and do nothing when it is not. Mathematically, this is equivalent to saying that the option
price U(S, v, t) is a monotonic increasing function with respect to v.

Like the case that the boundary conditions for European puts and American puts, in the S direction, are different at the
lower boundary of the computational domain, those associated with European puts and American puts in the v direction
are of different forms as well; they need to be discussed separately.

First, we consider the case of European puts. Market observations show that when the volatility is extremely large, the
option price U is independent of volatility changes [24], i.e.,

lim
v→∞

∂U
∂v

(S, v, t) = 0. (2.9)

In fact, this has been used by many authors as their boundary condition for the option price at the large end of v (e.g. [24,
25]). However, we believe that under the same argument we should be able to deduct an even simpler boundary condition
that not only reflects the fact that the vega approaches zerowhen v → ∞, but also considerably facilitates the computation.
This is achieved by realizing the fact that when v → ∞, the second-order partial derivative of U(S, v, t) with respect to v
should vanish too if the vega approaches zero, i.e.,

lim
v→∞

∂2U
∂v2

(S, v, t) = 0. (2.10)

Then, utilizing Eqs. (2.9) and (2.10), the Heston operator

LH =
1
2
vS2

∂2

∂S2
+ ρσvS

∂2

∂S∂v
+

1
2
σ 2v

∂2

∂v2
+ rS

∂

∂S
+ κ[η − v]

∂

∂v
− r +

∂

∂t
,

degenerates to be the Black–Scholes operator, with σ 2 being substituted by v,

LBS =
1
2
vS2

∂2

∂S2
+ rS

∂

∂S
− r +

∂

∂t
.

This implies that we can use the option value calculated from the Black–Scholes formula as the boundary value of U(S, v, t)
when σ → +∞ under the Heston model. In other words, through this argument, we have successfully converted the
Neumann boundary condition Eq. (2.9) into a Dirichlet boundary condition

lim
v→∞

U(S, v, t) = Ke−r(T−t), (2.11)

the implementation of which would require far less computational effort. It should be remarked that Eq. (2.11) is a special
case of Eq. (2.9), which means that the solution obtained by satisfying Eq. (2.11) would automatically satisfy Eq. (2.9), but
not vice versa.

Now, we consider the case of American puts. To better articulate the establishment of appropriate boundary condition
for this case, we form and prove the following proposition.

Proposition 1. When v approaches infinity, the value of an American put option reaches the strike price K asymptotically, i.e.,
limv→∞ UA(S, v, t) = K .

Proof. First, we consider the effect of the expiration date on the option prices. It is a well-known fact that the value of
American puts is an increasing function of the time to expiry, simply because the longer the tenor of an option is, the more
‘‘right’’ the holder has in terms of exercising the option [34]. Mathematically, this is equivalent to saying that the option
price UA(S, v, t) is a monotonic decreasing function of t , i.e.,

lim
v→∞

UA(S, v, T ) ≤ lim
v→∞

UA(S, v, t) ∀t ∈ [0, T ]. (2.12)

Moreover, an American put is always worth at least as much as its European counterpart [34], i.e.,

lim
v→∞

UE(S, v, T ) ≤ lim
v→∞

UA(S, v, T ). (2.13)

From Eq. (2.11), we have

lim
v→∞

UE(S, v, T ) = Ke−r(T−t)
|t=T = K ,

which, combined with the inequalities (2.12) and (2.13), yields,

K ≤ lim
v→∞

UA(S, v, t). (2.14)

On the other hand, it is also well known that no matter what the underlying value becomes, the price of an American put
option can never be worth more than its strike price [34], i.e.,

lim
v→∞

UA(S, v, t) ≤ K . (2.15)
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Clearly, from Eqs. (2.14) and (2.15) one must reach the conclusion

lim
v→∞

UA(S, v, t) = K . �

This can also be understood from the financial point of view. From the definition of a put option, its value is bounded
up by the strike price K [34]. Therefore, if one can show that K is also the least upper bound, one must then conclude
that option price must reach K when v → ∞, based on another financial intuition that any option value monotonically
increases with volatility. The ‘‘least upper boundness’’ of K can be easily established by arguing that if there was another
upper bound that is less than K , since the infinite volatility implies that the underlying may take any value within the range
of S ∈ [0, ∞)with a probability one, the option value can always be greater than this ‘‘upper bound’’. A contradiction is thus
reached.

In summary, the properly-closed PDE system for pricing American put options under the Heston model can be written
as: 

1
2
vS2

∂2U
∂S2

+ ρσvS
∂2U
∂S∂v

+
1
2
σ 2v

∂2U
∂v2

+ rS
∂U
∂S

+ κ(η − v)
∂U
∂v

− rU +
∂U
∂t

= 0,

U(S, v, T ) = 0,
lim
S→∞

U(S, v, t) = 0,

U(Sf (v, t), v, t) = K − Sf (v, t),
∂U
∂S


Sf (v, t), v, t


= −1,

lim
v→0

U(S, v, t) = 0,

lim
v→∞

U(S, v, t) = K ,

(2.16)

for S ∈ [Sf (v, t), ∞), v ∈ [0, ∞), and t ∈ [0, T ]. There are several remarks before we introduce an efficient and accurate
numerical scheme to solve this system in the next section. First of all, the two newly-introduced boundary conditions in
the v direction have coincidentally well manifested the monotonicity of the option price with respect to v as well as its
boundedness [34]:

max(K − S, 0) ≤ U(S, v, t) ≤ K .

Or, the option price is expected to monotonically increase from its lower bound max(K − S, 0) to its upper bound K when
v varies from 0 to ∞ (one should not forget that when v = 0, the solution domain of the above differential system is
S ∈ [K , ∞) as we have shown before already). Second, while the last boundary condition is a special case of that adopted
by some authors (e.g. [24,25,32]), the fact that this is now a Dirichlet boundary condition rather than a Neumann boundary
condition as used in (e.g. [24,25,32]) has considerably facilitated the numerical solution procedure to be shown in the next
section. In other words, the solution satisfying the differential system (2.16) must also satisfy those obtained with the last
boundary condition replaced by the Neumann boundary condition (2.9), but not vice versa. Finally, one should notice that
there exists a singularity at the corner where S → ∞, v → ∞, in addition to the well-known one along the moving
boundary S = Sf . However, unlike the latter, the former does not cause any computational difficulties as it is a simple
and removable singularity that commonly exists in diffusion problems with different boundary values prescribed on two
adjacent boundaries.

3. Numerical method based on the ADI scheme

Upon establishing a closed differential system (2.16) for the price of American puts under the Heston model, we propose
a new predictor–corrector approach based on the ADI method, in this section, to solve this system in two phases within a
time step: a prediction phase in which a rough value of the optimal exercise price Sf is calculated, and a correction phase in
which the option value U as well as the final value of Sf is determined.

3.1. Coordinate transformation

In order to solve the PDE system (2.16) effectively, we introduce a new variable as the time to expiration: τ = T − t . It
should be noted that the backward problem (2.16) has been changed to an initial value problem (3.1) after the introduction
of τ .

If we want to solve PDE system (2.16) directly using FDM, some kinds of iterative methods may be adopted because of
the existence of the free boundary. To avoid iterations, we first adopt the Landau transform [27], i.e.,

x = ln


S
Sf


to shift the moving boundary conditions to fixed boundary conditions before applying our predictor–corrector method.
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After some rather simple algebraic manipulations, the PDE system (2.16) can be written as: for x ∈ [0, ∞), v ∈ [0, ∞),
τ ∈ [0, T ]

LU = 0,
U(x, v, 0) = 0,
lim
x→∞

U(x, v, τ ) = 0,

U(0, v, τ ) = K − Sf (v, τ ),

∂U
∂x


0, v, τ


= −Sf (v, τ ),

lim
v→0

U(x, v, τ ) = 0,

lim
v→∞

U(x, v, τ ) = K ,

(3.1)

where

L =


1
2
v +

1
2

σ 2v

S2f


∂Sf
∂v

2

−
ρσv

Sf

∂Sf
∂v


∂2

∂x2
+

1
2
σ 2v

∂2

∂v2
+


ρσv −

σ 2v

Sf

∂Sf
∂v


∂2

∂x∂v

+


−

1
2
v +

1
2

σ 2v

S2f


∂Sf
∂v

2

−
1
2

σ 2v

Sf

∂2Sf
∂v2

+ r − κ(η − v)
1
Sf

∂Sf
∂v

+
1
Sf

∂Sf
∂τ


∂

∂x
+ κ(η − v)

∂

∂v
− r −

∂

∂τ
.

In order to simplify the notation of L, we introduce three new notations

ξ =
1
Sf

∂Sf
∂v

, β =
1
Sf

∂2Sf
∂v2

, λ =
1
Sf

∂Sf
∂τ

,

so that L can be written as:

L = a(v)
∂2

∂x2
+ b(v)

∂2

∂v2
+ c(v)

∂2

∂x∂v
+ (d(v) + λ)

∂

∂x
+ e(v)

∂

∂v
− r −

∂

∂τ
,

where

a(v) =
1
2
v +

1
2
σ 2ξ 2v − ρσvξ, b(v) =

1
2
σ 2v, c(v) = ρσv − σ 2vξ,

d(v) = −
1
2
v +

1
2
ξ 2σ 2v −

1
2
σ 2vβ + r − κ(η − v)ξ, e(v) = κ(η − v).

One should notice that after the Landau transform, the nonlinear nature of the problem is explicitly exposed in
the transformed equation. It consists the optimal exercise price, which is also part of the solution. Before our new
predictor–corrector approach can be applied, we should discretize the highly nonlinear PDE system (3.1), which will be
demonstrated in detail in the next subsection.

3.2. Discretization of the PDE system

Now the option pricing problem is defined on an unbounded domain
(x, v, τ )|x ≥ 0, v ≥ 0, τ ∈ [0, T ]


.

In order to use finite difference approximation for spacial variables, we need to truncate the semi-infinite domain into a
finite domain:

(x, v, τ ) ∈ [0, xmax] × [0, vmax] × [0, T ]

. (3.2)

Theoretically, xmax and vmax should be sufficiently large to eliminate the boundary effect. However, based onWillmott et al.’s
estimate [29] that the upper bound of the asset price Smax is typically three or four times the strike price, it is reasonable for
us to set xmax = ln 5. On the other hand, the volatility value is usually very small. The highest value of the volatility that has
ever been recorded on Chicago Board Options Exchange (CBOE) is only 0.85 [35]. Thus, it is quite reasonable to set vmax = 1,
and this has also been the case in many previous studies, (e.g. [25]).

The discretization is performed by placing a set of uniformly distributed grids in the computation domain (3.2). With the
number of steps in the x, v and τ directions being denoted by Nx,Nv and Nτ , respectively, the step sizes are correspondingly
1x =

Xmax
Nx

, 1v =
Vmax
Nv

and 1τ =
T
Nτ

. The value of the unknown function U at a grid point is thus denoted by

Un
i,j ≈ U(xi, vj, τn) = U(i1x, j1v, n1τ),

where i = 0, . . . ,Nx; j = 0, . . . ,Nv; n = 0, . . . ,Nτ .
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The discretization of the PDE system (3.1) needs to be conducted both in the interior domain

Ω =

(i1x, j1v)|i = 1 · · ·Nx − 1, j = 1 · · ·Nv − 1


,

and along the boundary ∂Ω = ∂xΩ


∂vΩ


∂xvΩ , in which

∂xΩ =

(i1x, j1v)|i = 0,Nx, j = 1 · · ·Nv − 1


,

∂vΩ =

(i1x, j1v)|i = 1 · · ·Nx − 1, j = 0,Nv


,

∂xvΩ =

(i1x, j1v)|i = 0,Nx, j = 0,Nv


.

For those grid points that belong to Ω , we use the standard second-order central difference scheme to approximate the
first-order and second-order non-cross spatial derivatives. The cross-derivative term, on the other hand, is discretized as:

(δxvU)i,j =
(δxU)i,j+1 − (δxU)i,j−1

21v
,

where

(δxU)i,j+1 =
Ui+1,j+1 − Ui−1,j+1

21x
, (δxU)i,j−1 =

Ui+1,j−1 − Ui−1,j−1

21x
.

Next, we consider the discretization of the grid points that belong to ∂Ω . The treatment of the Dirichlet boundary
conditions is quite standard. However, it is a bit more difficult to deal with the Neumann boundary condition. In the
literature, there are usually two different approaches for such kinds of boundary conditionswith second-order accuracy [28].
The first one is to introduce a fictitious grid point Un

−1,j, and approximate the Neumann boundary condition at x = 0 with
the central difference,

∂Un
0,j

∂x
=

Un
1,j − Un

−1,j

21x
.

Then, together with the assumption that the governing equation in the PDE system (3.1) is also satisfied at the boundary
point Un

0,j, we obtain two different algebraic equations, from which Un
−1,j can be eliminated. The details of the algebraic

manipulations are given in [11]. In essence, this method is to use the grid point Un
1,j and some extra information from the

PDE, to approximate the derivative
∂Un

0,j
∂x .

The second approach is to use the so-called one-sided difference, which is, in essence, a form of extrapolation that
determines the value of the unknown function on the boundary in terms of its values at the interior grid points [28]. From
the Taylor series, we obtain the approximation:

Un
1,j ≈ Un

0,j + 1x
∂Un

0,j

∂x
+

1
2
(1x)2

∂2Un
0,j

∂x2
+ O((1x)3), (3.3)

Un
2,j ≈ Un

0,j + 21x
∂Un

0,j

∂x
+ 2(1x)2

∂2Un
0,j

∂x2
+ O((1x)3). (3.4)

By eliminating the second-order derivatives in Eqs. (3.3) and (3.4), we obtain

∂Un
0,j

∂x
=

4Un
1,j − Un

2,j − 3Un
0,j

21x
+ O((1x)3).

In short, this method is to use the interior grid values Un
1,j, U

n
2,j and the known boundary value Un

0,j to approximate the

derivative
∂Un

0,j
∂x .

In our work, we adopt the second approach to approximate the derivative
∂Un

0,j
∂x . The specific reason will be stated in the

next section. For readers’ convenience, we summarize the finite difference equations written on a grid point (i, j, n) as:

∂Un
i,j

∂τ
= ajδxxUn

i,j + bjδvvUn
i,j + (dj + λj)δxUn

i,j + cjδxvUn
i,j + ejδvUn

i,j − rUn
i,j,

U0
i,j = 0,

Un
0,j = K − Snf (j),

4Un
1,j − Un

2,j − 3Un
0,j

21x
= −Snf (j),

Un
i,0 = 0,

Un
i,nv = K ,

(3.5)
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where

ξ n
j =

1
Snf (j)

Snf (j + 1) − Snf (j − 1)

21v
, βn

j =
1

Snf (j)

Snf (j + 1) − 2Snf (j) + Snf (j − 1)

(1v)2
,

λj =
1

Snf (j)

∂Snf (j)

∂τ
, aj =

1
2
vj +

1
2
σ 2vj(ξ

n
j )2 − ρσvjξj, bj =

1
2
σ 2vj,

cj = ρσvj − σ 2vjξ
n
j , dj = r −

1
2
vj +

1
2
(ξ n

j )2σ 2vj −
1
2
σ 2vjβ

n
j + κ[η − vj]ξ

n
j ,

ej = κ[η − vj].

One should notice that in the PDE system (3.5), the time derivative remains un-discretized. The discretization of the time
derivative is completed in the next subsection when we design a fast and efficient numerical scheme to solve this highly
nonlinear system through a linearization.

3.3. Linearization of the nonlinear PDE system

It can be seen from the PDE system (3.5) that, if the optimal exercise price Snf were known at the beginning of the (n+1)th
time step, this system would become a linear one, and the option price at the (n + 1)th step could be worked out directly.
Based on this point, we propose a new predictor–corrector approach to solve the highly nonlinear PDE system (3.5) in two
phases within a time step.

The first phase is to work out an estimated value of the optimal exercise price at the (n + 1)th time step, denoted asSn+1
f . For simplicity, we omit the subscript in the v direction. Recall that there are two ways to approximate the first-order
derivative at x = 0, i.e.,

∂Un+1
0

∂x
=

Un+1
1 − Un+1

−1

21x
+ O((1x)3) = −Sn+1

f , (3.6)

∂Un+1
0

∂x
=

4Un+1
1 − Un+1

2 − 3Un+1
0

21x
+ O((1x)3) = −Sn+1

f . (3.7)

If Eq. (3.6) is adopted to approximate ∂Un+1
0
∂x , one needs to assume that the governing equation contained in (3.1) is also

satisfied at x = 0, which will lead to a complicated nonlinear differential equation of Sf (v, τ ) with respect to v, due to the
complexity of the Heston operator. However, if the second approximation formula Eq. (3.7) is adopted, we only need to deal
with amuch simpler process that will lead to an explicit exposure of Sf (v, τ ), while maintaining the same order of accuracy.
From the Dirichlet boundary condition at x = 0, we know that

Un+1
0 = K − Sn+1

f . (3.8)

Substituting Eq. (3.8) into (3.7), we can obtain a relation among Un+1
1 ,Un+1

2 and Sn+1
f at the (n + 1)th time step as:

Sn+1
f =

3K + Un+1
2 − 4Un+1

1

3 + 21x
. (3.9)

Then, by applying the explicit Euler scheme to the time derivative
∂Un

i,j
∂τ

and the implicit Euler scheme to the time derivative
∂Snf (j)

∂τ
, respectively, in the governing equation contained in (3.5), we obtain

Un+1
i,j = Un

i,j + 1τ


ajδxxUn

i,j + bjδvvUn
i,j +


dj +

1
Snf (j)

Sn+1
f (j) − Snf (j)

1τ


δxUn

i,j

+ cjδxvUn
i,j + ejδvUn

i,j


− r1τUn

i,j, i = 1, 2. (3.10)

Consequently, we can obtain a predicted value of the optimal exercise price at the new time step:

S̃n+1
f (j) =

3K + D(Un
2,j − 4Un

1,j)

3 + 21x −

δx


Un
2,j−4Un

1,j


Snf (j)

.

Here, the operator D is defined as:

D = I + 1τ


ajδxx + bjδvv +


dj −

1
1τ


δx + cjδxv + ejδv


− r1τ I.
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Fig. 1. Schematic flow chart of the scheme.

It should be noted that with the calculated S̃n+1
f , we can also obtain a predicted boundary value Ũn+1

0 from Eq. (3.8), which
completes the first phase of prediction.

The second phase is to calculate Un+1 at all grid points by using the estimated S̃n+1
f and Ũn+1

0 . Then, by using the
newly-obtained Un+1

1 and Un+1
2 , we can obtain the corrected values of Sn+1

f and Un+1
0 . Unlike the first phase in which the

explicit Euler scheme is used to construct the predicted values, the whole process of calculating Un+1 from the linearized
PDE system (3.5) is based on the ADI scheme, which will be described in detail in the next subsection. Then, repeat this
prediction–correction process until the expiration date is reached. The schematic flow chart of the scheme is provided in
Fig. 1 to summarize what has been described above.

3.4. The ADI scheme

The ADI scheme is a very powerful tool that is especially useful for solving parabolic equations on rectangular domains.
It can be also applied to equations of other types or on more general domains [28]. Generally, the ADI scheme is a way of
reducing a two-dimensional problem to a succession of many one-dimensional problems. The efficiency of the ADI method
lies in the fact that those reduced one-dimensional problems usually possess a good structure, that is, their final matrix is
tridiagonal and can thus be efficiently dealt with. On the other hand, the ADI method requires less storage space, because
it solves the two directions alternatively by fixing the variable in one direction at a time step and thus it needs almost the
same storage space as that required to solve a one-dimensional problem. Since our problem now is a two dimensional one,
excluding time, it is better to use the ADI method. In the following, we will illustrate how this method can be applied to our
case.

According to what we have discussed before, our problem at hand now is to solve the PDE system (3.5). The time
derivative of U needs to be discretized before the ADI method can be used. While the details of the derivation are provided
in Appendix A, the finite difference equation, to which the ADI method is applied, is of the form:

(I − θA1)(I − θA2)Un+1
= [I + A0 + (1 − θ)A1 + A2]Un

− (I − θA1)θA2Un, (3.11)

where the definitions of linear operators A0, A1 and A2 are also left in Appendix B.
In terms of the ADI scheme, the simplest one is the Douglas-Rachford (DR)method [36], which is of the first order in time.

Other methods, such as the Craig–Sneyed (CS) method [37], the Hundsdorfer and Verwier (HV)method [38], aremuchmore
complicated, but are of more than first-order accuracy in the time direction. We chose the DR method to calculate Un+1

defined in Eq. (3.11). One of the most important reasons is that in the predictor, we have used the explicit Euler scheme,
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which is a first-order scheme, to construct the predicted value of Sn+1
f . Theoretically speaking, an increase of the order of

accuracy in the correction phase beyond that in the prediction phase is futile, as far as the overall order of accuracy of the
entire procedure is concerned. Moreover, it is far more efficient to use the DR method, because there are only two steps in
the DR method, while others have at least four.

The DR method involves two steps, in which the original operator in Eq. (3.11) is split into two that are applied in two
spatial directions respectively. First, we compute an intermediate value, Y , from

(I − θA1)Y = [I + A0 + (1 − θ)A1 + A2]Un, (3.12)
with the nodal values in the v direction fixed. The corresponding matrix form for calculating Y can be simply written as

AYj = Pj + bnd xj,
with the details of A, Yj, Pj and bnd xj being defined in Appendix C. Note that the matrix A is tridiagonal, so the Thomas
algorithm [28] can be used to accelerate the computational speed. In short, the way to implement the first step is to use a
loop on j, and within each loop the Thomas algorithm is used to solve for the values of Yi,j, for i = 0 · · ·Nx.

Having computed Y , the second stage of computation is to compute Un+1 from

(I − θA2)Un+1
= Y − θA2Un, (3.13)

by fixing the variable in the x direction. The corresponding matrix form is:
BUn+1

i = Qi + bnd vi,

where B,Un+1
i ,Q and bnd vi are also defined in Appendix C. Similar to Eq. (3.12), this is a systemofNx−1 tridiagonal systems

of equations, one tridiagonal system for each value of i. Again, we use a loop on i, within which the Thomas algorithm is used
to solve for the values of Un+1

i,j , for j = 0 · · ·Nv .
One can easily show that solving Eqs. (3.12) and (3.13) in an alternative way is equivalent to solving the original

Eq. (3.11).
Before presenting the results of the numerical implementation of this two-stage solution procedure in the next section,

it should be remarked that boundary values of the intermediate variable Y need to be produced first before the interior Y
values can be computed from Eq. (3.12). The calculation of Y values on the two boundaries needs to be treated differently.
The calculation on the right boundary is straightforward, since the U values there are always equal to zero. That is, we can
simply set

YNx = 0. (3.14)
On the other hand, the calculation of Y values on the left boundary x = 0 is a bit more complicated, as U is time dependent
there. Eq. (3.13) is utilized because the estimated Un+1 values on the boundary have already been obtained in the prediction
phase, although its interior values have not been calculated yet. That is, we can calculate Y0 from

Y0 = (I − θA2)Ũn+1
0 + θA2Un

0 ,

= (I − θA2)(K − S̃n+1
f ) + θA2(K − Snf ),

where S̃n+1
f is the predicted optimal exercise price obtained at the beginning of the (n + 1)th time step. This completes

the ADI scheme and thus the entire numerical procedure, that we have used to calculate the results presented in the next
section.

4. Examples and discussions

Even if the ADI method used for the corrector is unconditionally stable, our predictor–corrector finite difference scheme
is only conditionally stable since the explicit Euler scheme for the predictor is conditionally stable. The stability condition
for the current approach remained undiscussed in the literature even when it was applied to the Black–Scholes case [11].
The complicity of the Heston model has no doubt added the degree of difficulty in verifying the conditional stability of the
current approach. However, based on the local von Neumann stability analysis [28], wewere able to theoretically obtain the
stability requirement for the current approach applied to the Heston model.

In this section, we shall present some numerical results as well as some useful discussions, which reveal the essence
of the current scheme. The section is organized into three subsections, according to three important issues that should be
addressed.

In the first subsection, we calculate the European puts to test the reliability of the chosen ADI method. In the second
subsection, we discuss the convergence of the current approach. The stability condition is obtained by using von Neumann
stability analysis. In the last subsection, we study the accuracy and efficiency of the current scheme.

4.1. Valuing European put options using the ADI scheme

Since the corrector plays a crucial role in the current approach, it is important to test first whether the chosen DRmethod
can be used to construct a good corrector. An efficient way to illustrate the reliability of the DR method is to calculate the
value of a European put, and compare it with the existing Heston formula [4].
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(a) European put option value at v = 0.2. (b) European put option value at v = 0.4.

(c) European put option value at v = 0.6. (d) European put option value at v = 1.

Fig. 2. European put option prices with different variance values.

The option’s parameters are set as follows: reversion rate κ = 5, reversion level η = 0.16, volatility factor of volatility
σ = 0.9, risk-free interest rate r = 0.1, correlation factor ρ = 0.1, time to expiration T − t = 1 (year), strike price
K = $10.0. The computation domain is truncated as:

[0, Smax] × [0, vmax] × [0, T ] = [0, 200] × [0, 5] × [0, 1].

In this numerical test, we apply the Crank–Nicolson scheme, i.e., θ =
1
2 , to the time derivative. The grid numbers in

the x direction and v direction are chosen to be 400 and 150, respectively. Furthermore, a relatively large grid size in the
time direction is used, i.e., 1τ =

1
20 . Fig. 2 shows the comparison of the option values calculated by the DR method and

those obtained by using Heston’s analytical formula. The option prices presented in Fig. 2 are plotted against the underlying
asset with different fixed variance values. The excellent agreement of the two results confirms that the DR method is
accurate.

Having gained confidence on the chosen DR method as a good corrector, we then apply the predictor–corrector scheme
to American put options under the Heston model, which will be demonstrated in the following subsection.

4.2. Discussion on convergence

In this subsection, we study the convergence of the proposed numerical scheme. As has been pointed out previously, our
problem in hand is originally a nonlinear one before the linearization process is invoked. Therefore, the convergence of the
linearized system and the overall convergence of the numerical solution to that of the original nonlinear PDE should be both
discussed.

4.2.1. Stability analysis
For the convergence of the linearized system, the Lax Equivalence Theorem [28] can be applied, which states that the

convergence of a numerical scheme is equivalent to its consistency and stability. The proof of the consistency is trivial
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and is thus omitted here. The proof of stability, however, is not so trivial because our method is a hybrid finite difference
scheme, and it is applied to a problem with variable coefficients. Intuitively, even if the ADI scheme for the corrector is
unconditionally stable (see Theorem 2), the current approach should be only conditionally stable since the explicit Euler
scheme is used in the predictor. However, it can be anticipated that the unconditional stability in the correction phase
would be weakened to some extent. This is because the main ingredient of the predictor–corrector method is the corrector,
which serves as a feedback mechanism. The feedback can damp the instability that has been introduced by the predictor,
and thus relax the stability requirement of the explicit Euler scheme used in the predictor. It is extremely difficult to
calculate exactly ‘‘how much’’ the corrector can influence the predictor, and in the literature, no one has discussed this
issue in detail. Based on the local von Neumann stability analysis, we havemanaged to show the conditional stability for the
predictor–corrector scheme. In the followingwork, the stability requirements of the explicit Euler scheme Eq. (3.10) and the
ADI scheme Eqs. (3.12)–(3.13) will be first discussed. Finally, we obtain the conditional stability of the predictor–corrector
approach.

The von Neumann stability analysis is usually restricted to problems with constant coefficients. However, the
stability conditions obtained for constant coefficient schemes can be used to give stability conditions for the same
scheme applied to equations with variable coefficients, mainly due to the fact that, in essence, instability is a local
phenomenon with the high frequency modes being the most unstable ones that would result in the collapse of a numerical
scheme [28]. The general procedure is to consider the so-called frozen coefficient problem, which is the corresponding
problem with constant coefficients obtained by fixing the coefficients at their values attained at each grid point in the
computational domain. If each frozen coefficient problem is stable, then the variable coefficient problem is also stable [28].
For simplicity, in the following analysis, we do not consider the overall effect of the boundary conditions between
subdomains.

When using the frozen coefficient technique, for a typical node (i, j, n), we ‘‘freeze’’ all the coefficients in the governing
equation contained in Eq. (3.5) across the whole computational domain, as if they were all constants. In short, we first
consider the stability condition of theDRmethod applied to a two-dimensional convection–diffusion equationwith constant
coefficients, i.e.,

∂U
∂τ

= a
∂2U
∂x2

+ b
∂2U
∂v2

+ c
∂2U
∂x∂v

+ d
∂U
∂x

+ e
∂U
∂v

− rU, (4.1)

where a, b and r are of positively values. The standard procedure of von Neumann stability analysis is to express Un
k,m in

Eqs. (3.12)–(3.13) by gneikϕeimφ , and Yk,m by g̃gneikϕeimφ [28], where g and g̃ are the amplification factors of Eqs. (3.13) and
(3.12), respectively, with ϕ, φ ∈ [−π, π]. As a result, Eqs. (3.12)–(3.13) are transformed to:

g̃(1 − θz1) = 1 + z0 + (1 − θ)z1 + z2;
g(1 − θz2) = g̃ − θz2,

which result in the amplification factor:

g = 1 +
z0 + z1 + z2

(1 − θz1)(1 − θz2)
,

where

z1 = −
4a1τ

1x2
sin2 ϕ

2
−

r1τ

2
+ i

d1τ

1x
sinϕ,

z2 = −
4b1τ

1v2
sin2 φ

2
−

r1τ

2
+ i

e1τ

1v
sinφ,

z0 = −
c1τ

1x1v
sinϕ sinφ,

after some algebraic manipulations.

Proposition 2. (i) If the coefficients a, b, c, d, e, c, r are chosen such that

|z0| ≤ 2


ℜ(z1)ℜ(z2), (4.2)

then for θ ≥
1
2 , the DR method (Eqs. (3.12)–(3.13)) is unconditionally stable, i.e., |g| ≤ 1.1

(ii) Assuming that the coefficients satisfy c2 ≤ 4ab, the fully explicit scheme (Eqs. (3.12)–(3.13)with θ = 0), is stable if and only
if

1τ ≤
1

2a
1x2

+
2b

1v2

. (4.3)

1 Refer to [39].
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Proof. (i) First, we define two vectors as vj =

−2ℜ(zj)

|1 + θzj|
√
2θ

, where j = 1, 2. It is trivial to show ‖vj‖2 =
|1−θzj|
√
2θ

. Thus, we have

|1 − θz1|
√
2θ

|1 − θz2|
√
2θ

= ‖v1‖2 ‖v2‖2,

≥ v1 · v2,

= 2


ℜ(z1)ℜ(z2) +
|1 + θz1|

√
2θ

|1 + θz2|
√
2θ

,

≥ |z0| +

 (1 − θz1)
√
2θ

(1 − θz2)
√
2θ

+ z1 + z2

 . (4.4)

Without loss of generality, we assume that |1 − θz1||1 − θz2| ≠ 0. Dividing both sides of Eq. (4.4) with |1 − θz1| |1 − θz2|,
we have

1
2θ

≥

 z0
(1 − θz1)(1 − θz2)

+  1
2θ

+
z1 + z2

(1 − θz1)(1 − θz2)

 ,
≥

 1
2θ

+
z0 + z1 + z2

(1 − θz1)(1 − θz2)

 . (4.5)

On the other hand, when θ ≥
1
2 , we have

g =

1 +
z0 + z1 + z2

(1 − θz1)(1 − θz2)

 ,
=

1 −
1
2θ

+
1
2θ

+
z0 + z1 + z2

(1 − θz1)(1 − θz2)

 ,
≤ 1 −

1
2θ

+

 1
2θ

+
z0 + z1 + z2

(1 − θz1)(1 − θz2)

 ,
which, combined with Eq. (4.5), yields |g| ≤ 1. Therefore, if

|z0| ≤ 2


ℜ(z1)ℜ(z2),

the ADI scheme (for θ ≥
1
2 ) is unconditionally stable.

(ii) When θ = 0, the DR method turns out to be a fully explicit scheme. In this case, it is efficient to first assume that
1τ

(1S)2
= µ1,

1τ

(1v)2
= µ2, where µ1 and µ2 are fixed constants. Thus, we have

λ1 =
1τ

1x
=


1tµ1 ∼ O(
√

1τ),

λ2 =
1τ

1v
=


1tµ2 ∼ O(
√

1τ),

which indicate that, in comparisonwith thoseO(1) terms, the lower-order derivative terms only give anO(1τ) contribution
to |g|2, and thus do not affect the stability. In fact, ignoring lower-order derivative terms when determining stability is a
commonly used technique in the stability analysis [28].

Now, we need to prove that, with 1τ ≤
1

2a
1x2

+
2b

1v2
,

1 −
c1τ

1x1v
sinϕ sinφ −

4a1τ

1x2
sin2 ϕ

2
−

4b1τ

1v2
sin2 φ

2

2

≤ 1, (ϕ, φ) ∈ [−π, π] × [−π, π],

which is equivalent to showing that

0 ≤
c1τ

1x1v
sinϕ sinφ +

4a1τ

1x2
sin2 ϕ

2
+

4b1τ

1v2
sin2 φ

2
≤ 2, (ϕ, φ) ∈ [−π, π] × [−π, π], (4.6)

and vice versa. This is achieved by using the following procedure.
Define a function

P(ϕ, φ) = c̃ sinϕ sinφ + 2ã sin2 ϕ

2
+ 2b̃ sin2 φ

2
,

where

c̃ = c
√

µ1µ2, ã = 2aµ1, b̃ = 2bµ2.
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Since P(ϕ, φ) is continuous over the domain [−π, π] × [−π, π], the maximum andminimum values can be both achieved
in this domain. As a result, Eq. (4.6) is satisfied if and only if

0 ≤ Pmin ≤ Pmax ≤ 2. (4.7)

Suppose (ϕ, φ) is an interior point of the domain of the function P , and it is also a local maximum or minimum point, we
have Pϕ(ϕ, φ) = Pφ(ϕ, φ) = 0, i.e.,

c̃ cosϕ sinφ + ã sinϕ = 0,
c̃ cosφ sinϕ + b̃ sinφ = 0.

(4.8)

It is straightforward to show that Eq. (4.8) is equivalent to
((c̃2 + ã)2) sin2 ϕ =

c̃4 − ã2b̃2

c̃2
,

((c̃2 + b̃)2) sin2 φ =
c̃4 − ã2b̃2

c̃2
.

(4.9)

Clearly, the origin (ϕ, φ) = (0, 0) is the only solution of Eq. (4.9) because of the constraint c2 ≤ 4ab, which is equivalent to
c̃2 ≤ ãb̃. Thus, in (−π, π)×(−π, π), the only possible localmaximumorminimumpoint of P is (ϕ, φ) = (0, 0). Comparing
the function values at (0, 0), and along the boundary ϕ = ±π , or φ = ±π , it is clear that

Pmax = 4aµ1 + 4bµ2,

Pmin = 0.

Consequently, if 1τ ≤
1

2a
1x2

+
2b

1v2
, then Eq. (4.7) is satisfied, and vice versa. Therefore, under the assumption that the

coefficients of Eq. (4.1) satisfy c2 ≤ 4ab, the sufficient and necessary condition for the stability of the explicit scheme
(Eqs. (3.12)–(3.13) with θ = 0) is 1τ ≤

1
2a

1x2
+

2b
1v2

. This completes the proof. �

By means of Proposition 2, the following theorems can be proved.

Theorem 1. The DR method that is applied to the valuation of European puts is unconditionally stable

θ ≥

1
2


.

Proof. In the case of European puts, z0, ℜ(z1), and ℜ(z2) are defined as follows:

ℜ(z1) = −
2vx21τ

1x2
sin2 1

2
ϕ −

r1τ

2
,

ℜ(z2) = −
2σ 2v1τ

1v2
sin2 1

2
φ −

r1τ

2
,

|z0| =

ρσvx1τ

1x1v
sinϕ sinφ

 ,
where x and v are defined over the whole computational domain. We have,

4ℜ(z1)ℜ(z2) − |z0|2 = 4

2vx21τ

1x2
sin2 1

2
ϕ +

r1τ

2


2σ 2v1τ

1v2
sin2 1

2
φ +

r1τ

2


−


ρσvx1τ

1x1v
sinϕ sinφ

2

,

≥


4vσ x1τ

1x1v
sin

1
2
ϕ sin

1
2
φ

2 
1 − ρ2 cos2

1
2
ϕ cos2

1
2
φ


,

≥ 0,

whichmeans that for any fixed point (x, v) across thewhole computational domain, Eq. (4.2) is always satisfied. According to
the first part of the proposition and the frozen coefficient technique, theADI scheme is unconditionally stable. This completes
the proof. �

Theorem 2. Assuming that the optimal exercise price is known in advance, and all the variable coefficients are both bounded and
sufficiently smooth, the DR method that is applied to the corrector (Eqs. (3.12)–(3.13)) is unconditionally stable


θ ≥

1
2


.

Proof. In this case, z0, ℜ(z1), and ℜ(z2) are defined as follows:

ℜ(z1) = −
(2v + 2σ 2vξ 2

− 4ρσvξ)1τ

1x2
sin2 1

2
ϕ −

r1τ

2
,

ℜ(z2) = −
2σ 2v1τ

1v2
sin2 1

2
φ −

r1τ

2
,
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|z0| =

 (ρσv − σ 2vξ)1τ

1x1v
sinϕ sinφ

 .
We have,

4ℜ(z1)ℜ(z2) − |z0|2 = 4


(2v + 2σ 2vξ 2
− 4ρσvξ)1τ

1x2
sin2 1

2
ϕ +

r1τ

2


2σ 2v1τ

1v2
sin2 1

2
φ +

r1τ

2


−


(ρσv − σ 2vξ)1τ

1x1v
sinϕ sinφ

2

,

≥


4vσ1τ

1x1v
sin

1
2
ϕ sin

1
2
φ

2 [
(1 + σ 2ξ 2

− 2ρσξ) − (ρ − σξ)2 cos2
1
2
ϕ cos2

1
2
φ

]
,

≥


4vσ1τ

1x1v
sin

1
2
ϕ sin

1
2
φ

2

[(1 + σ 2ξ 2
− 2ρσξ) − (ρ − σξ)2],

=


4vσ1τ

1x1v
sin

1
2
ϕ sin

1
2
φ

2

(1 − ρ2),

≥ 0,

which means that for any fixed point (x, v) across the whole computational domain, Eq. (4.2) is always satisfied. According
to the first part of the proposition and the frozen coefficient technique, the ADI scheme that is applied to the corrector is
unconditionally stable. This completes the proof. �

Theorem 3. Assuming that the optimal exercise price is known in advance, and all the variable coefficients are both bounded and
sufficiently smooth, the fully explicit scheme that is applied to the predictor Eq. (3.10) (θ = 0) is stable if and only if

1τ ≤
2

a1 + a2
,

where

a1 =
2vmax − 4ρσvmaxξmin + 2σ 2vmaxξ

2
min

(1x)2
,

a2 =
2σ 2vmax

(1v)2
.

(Here, we further assume that the correlation factor ρ ≥ 0.)
Proof. According to the second part of Proposition 2, and by using the frozen coefficient technique, we only need to show
that, with

1τ ≤
2

a1 + a2
,

the constraints c ≤ 4ab, and1τ ≤
1

2a
1x2

+
2b

1v2
are both satisfied at each point across the whole computational domain. In this

case, a, b, c are defined as:

a =


1
2
v +

1
2
σ 2vξ 2

− ρσvξ


, b =

1
2
σ 2v,

c = ρσv − σ 2vξ .

Since

4ab − c2 = (v + σ 2vξ 2
− 2ρσvξ)σ 2v − (ρσv − σ 2vξ)2,

= (vσ )2(1 − ρ2),

≥ 0,

all the frozen coefficient problems are stable if and only if

1τ ≤
1

2amax
1x2

+
2bmax
1v2

.

Note that the optimal exercise price Sf (v, τ ) is amonotonic decreasing function of v. On the other hand, it is assumed that all
the coefficients are both bounded. Therefore, there exists a ξmin, such that ξmin ≤ ξm ≤ 0. As a result, amax = a1, bmax = a2,
this completes the proof. �
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Based on Theorem 3, one can easily find out that the stability condition of the fully explicit scheme is closely related to
the value of σ . More steps in the time direction are needed when σ is large.

Through previous analyses, we know that with the optimal exercise price known in advance, the corrector is
unconditionally stable. Thus, if the predictor constructed by the explicit Euler scheme is stable, the whole process is stable.
In other words, the amplification factor of the predictor is also the one for the entire predictor–corrector scheme. The main
difference between our predictor and the single explicit Euler scheme lies in the fact thatwe use the corrected value,which is
produced by the ADImethod, to continue the prediction of the next time step. As a result, the good stable property of the ADI
scheme has somehow relaxed the overall amplification factor. It would be ideal to show the above statement numerically.
This is achieved after we prove Theorem 4 as follows.

Theorem 4. If g1 is the amplification factor of the explicit Euler scheme used in the predictor, and g2 is the one of the ADI scheme
used in the corrector, then the predictor–corrector method is stable if and only if |g1g2| ≤ 1 + M1τ .

Proof. We use tildes to denote the value that is obtained after the predictor. In the following proof, we have omitted the
subscript in the v direction or x direction for simplicity.

Since

S̃n+1
f =

3K + Ũn+1
2 − 4Ũn+1

1

3 + 21x
,

we can easily deduce:

|S̃n+1
f − S̃0f | ≤

|Ũn+1
2 − Ũ0

2 | + 4|Ũn+1
1 − Ũ0

1 |

3 + 21x
.

Thus, the predictor is stable if and only if the process of computing Ũn+1 is stable.
From Eq. (3.10), we know that

Ũn+1
= (I + A∗

0 + A∗

1 + A∗

2)U
n (4.10)

where a star denotes the parameter θ = 0. Here, Un is solved from

(I − θA1)Y = [I + A0 + (1 − θ)A1 + A2]Ũn−1, (4.11)

(I − θA2)Un
= Y − θA2Ũn−1, (4.12)

where Ũn−1 is obtained after the predictor of the nth time step. Again, we take all the variable coefficients in these two
stages to be ‘‘frozen’’ at constant values, so that the von Neumann analysis can be applied. By using Fourier transform on
Eqs. (4.10) and (4.11)–(4.12), we obtain:

˜̃U
n+1

k,m = (1 + z∗

0 + z∗

1 + z∗

2 )Û
n
k,m,

= g1Ûn
k,m,

Ûn
k,m = 1 +

z0 + z1 + z2
(1 − θz1)(1 − θz2)

˜̃U
n−1

k,m ,

= g2
˜̃U
n−1

k,m ,

where ˜̃U
n+1

k,m and Ûn
k,m are the Fourier transform of Ũn+1

k,m and Un
k,m, respectively. Thus,

˜̃U
n+1

k,m = (g1g2)
˜̃U
n−1

k,m ,

which shows that the overall amplification factor g for the predictor–corrector approach is nothing but g = g1g2.
Therefore, our method is stable if and only if

|g1(xi, vj, τn; 1τ)g2(xi, vj, τn−1; 1τ)| ≤ 1 + M1τ , (4.13)

where M is a constant that is independent of ϕ, φ, as well as all the step sizes, and i, j, n are defined over the whole
computational domain. This completes the proof. �

A further analysis of inequality (4.13) shows:

|g1(xi, vj, τn; 1τ)| ≤
1 + M1τ

|g2(xi, vj, τn−1; 1τ)|
. (4.14)

Since the corrector is unconditionally stable, i.e.,

|g2| ≤ 1,
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Table 1
Comparison of the stability requirement. Model
parameters are κ = 2.5, η = 0.16, r = 0.1, ρ =

0.1, T = 0.25 (year), K = $10.0.

σ Predictor–corrector Explicit

0.01 (25, 32, 13) (25, 32, 250)
(50, 64, 130) (50, 64, 1000)

0.1 (25, 32, 39) (25, 32, 250)
(50, 64, 140) (50, 64, 1000)

0.45 (25, 32, 100) (25, 32, 400)
(50, 64, 1100) (50, 64, 1600)

Table 2
Comparison of the computed option prices with the reference solutions. Model parameters are
κ = 2.5, η = 0.16, σ = 0.45, r = 0.1, ρ = 0.1, T = 0.25 (year), K = $10.0.

Volatility value (Nx,Nv,Nτ ) Asset values
8 9 10 11 12

v = 0.0625 (25, 32, 200) 2.0000 1.0682 0.4920 0.1950 0.0760
(50, 64, 1600) 2.0000 1.0794 0.4828 0.1851 0.0634
(100, 100, 6000) 2.0000 1.0774 0.4789 0.1796 0.0622
Approximation
1 [40]

1.072 0.475 0.174

Approximation
2 [40]

1.077 0.478 0.178

Ref. [32] 1.077 0.479 0.178
Ref. [14] 1.075 0.478 0.177

v = 0.25 (25, 32, 200) 2.9877 1.3669 0.8521 0.4787 0.2913
(50, 64, 1600) 2.0904 1.3645 0.8410 0.4921 0.2756
(100, 100, 6000) 2.0903 1.3644 0.8382 0.4884 0.2685
Approximation
1 [40]

1.365 0.838 0.488

Approximation
2 [40]

1.362 0.836 0.487

Ref. [32] 1.364 0.837 0.487
Ref. [14] 1.363 0.837 0.488

it is straightforward that

1τexplicit ≤ 1τpredictor–corrector.

Therefore, comparing with the explicit Euler scheme, the stability requirement of our current scheme is less restrictive. This
allows us to choose a larger time step than the fully explicit Euler scheme, and thus considerably enhance the computational
efficiency.

This theorem leads to the conclusion that 1τexplicit ≤ 1τpredictor–corrector, because the corrector is unconditionally stable,
or g1 < 1.

Ideally, the above theoretical statement has been verified by the following numerical experiment (see Table 1). It shows
the comparison of the smallest number of time steps that each method requires to calculate a convergent solution. One
should notice that in Table 1, the ‘‘Predictor–corrector’’ refers to the current method with parameter θ =

1
2 , while the

‘‘Explicit’’ refers to the fully explicit scheme, which is a special case of our scheme. It should be also noted that the third
number in the triplets (Nx,Nv,Nτ ) is the smallest number that each method needs to produce a convergent solution. It can
be clearly seen that our current method requires a lower number of time steps than the fully explicit one. Moreover, our
method is far more stable when σ is small. It confirms that the stability requirement of the predictor–corrector method has
been influenced by the corrector. In other words, a better corrector can improve the computational efficiency of the whole
scheme significantly.

Having demonstrated the convergence of the linearized system, we need to show that the numerical solution does
converge to that of the original nonlinear PDE. Since there is no analytical solution for American puts under the Heston
model, the only reasonable approach is to compare our numerical solution with other published results. This would be
demonstrated by the following numerical examples.

4.2.2. Computed option prices and optimal exercise prices
We calculate two sets of American put options with different parameters using the current method based on the

Crank–Nicolson scheme, i.e., θ =
1
2 . These prices are presented in Tables 2 and 3 for the asset values S = 8, 9, 10, 11, 12,

and for variance values v = 0.0625, 0.25. We have used different discretization grids in order to study the accuracy of the
numerical solutions. The prices reported in [14,24,26,32,40,41] are also shown in these tables for comparison. It can be seen
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Table 3
Comparison of the computed option prices with the reference solutions. Model parameters are
κ = 5, η = 0.16, σ = 0.9, r = 0.1, ρ = 0.1, T = 0.25 (year), K = $10.0.

Volatility value (Nx,Nv,Nτ ) Asset price
8 9 10 11 12

v = 0.0625 (25, 32, 500) 2.0000 1.0752 0.5100 0.2200 0.0943
(50, 64, 5000) 2.0000 1.0908 0.5073 0.2133 0.0837
(100, 100, 50 000) 2.0000 1.0987 0.5082 0.2106 0.0861
PSOR 2.0000 1.1075 0.5190 0.2129 0.0818
Ref. [41] 2.000 1.107 0.517 0.212 0.0815
Ref. [24] 2.000 1.1080 0.5316 0.2261 0.0907
Ref. [26] 2.000 1.1076 0.5202 0.2138 0.0821

v = 0.25 (25, 32, 500) 2.0701 1.3366 0.8131 0.4654 0.2645
(50, 64, 5000) 2.0787 1.3335 0.7999 0.4540 0.2474
(100, 100, 50 000) 2.0781 1.3337 0.7965 0.4496 0.2441
PSOR 2.0785 1.3336 0.7956 0.4481 0.2427
Ref. [41] 2.079 1.334 0.796 0.449 0.243
Ref. [24] 2.0733 1.3290 0.7992 0.4536 0.2502
Ref. [26] 2.0784 1.3337 0.7961 0.4883 0.2428

that even with the most coarse grid, the error is only about 10−2. Furthermore, the prices obtained with the finest grid are
fairly close to the ones in [14,24,26,32,40,41], and the error is about 10−4. This confirms that our numerical solution does
converge to that of the original nonlinear PDE.

Depicted in Fig. 3(a) and (b) are the option price U(S, v, τ ) as a function of S with different parameters. Clearly, the
option price is a decreasing function of the asset values. Moreover, the ‘‘smooth pasty’’ conditions across the free boundary,
which are usually difficult to implement numerically, are also satisfied well. In Fig. 4, we show the option price U(S, v, τ )
as a function of S with fixed variance v = 0.25 at three instants: τ = T − t = 0.5 (year), τ = T − t = 0.25 (year) and
τ = T − t = 0.1 (year). Clearly, as it gets closer to the expiration of the option, i.e., τ = 0, the option price becomes
closer to the payoff function max(K − S, 0). Moreover, the optimal exercise price Sf (v, τ ) as a function of time to expiration
with different fixed variance values is shown in Fig. 3(c) and (d). As expected, the optimal exercise price is a monotonically
decreasing function with both τ and v.

4.2.3. Convergence rate
Another important issue for a numerical scheme is its convergence rate. Theoretically speaking, we should have a

first-order convergence in the τ direction and a second-order convergence in both x and v direction. This is because
the explicit Euler scheme is used to construct the predictor, and the central finite difference is adopted for the space
variables.

It is demonstrated that the optimal exercise price is far more difficult to calculate accurately than the option price [16].
Furthermore, once Sf is determined accurately, the calculation of the option price becomes straightforward. Consequently,
it suffices to focus on the calculation of Sf to study the order of convergence for the current scheme.

Theoretically speaking, to obtain the order of convergence in one direction, we should examine the ratios of the
consecutive errors of Sf with the grid spacing along this direction being successively decreased, while the grid spacings
along other directions being fixed to be sufficiently small. However, as demonstrated earlier, there is no analytical solution
available for the American puts with stochastic volatility. One of the standard ways to demonstrate the rate of convergence
is to calculate a reference solution based on very fine grids, and use it as if it were the exact solution. We have conducted
such an experiment, with the reference solution being constructed with the number of grids defined as (Nx,Nv,Nτ ) =

(400, 400, 100 000), under the parameters settings: κ = 1.5, η = 0.16, σ = 0.1, r = 0.1, ρ = 0.1, T = 0.1 (year),
K = $10.0.

To obtain the order of convergence along the τ direction, we fix the spacial grid sizes to be 1x =
Xmax
250 , v =

Vmax
250 , and

vary the number of time steps from 4000 to 5000. The errors reported in the following tables are the L2-norm difference
between the computed numerical values and the reference solution. Moreover, the Experimental Order of Convergence
(EOC) appearing in the (i + 1)th row of Tables 4–6 is defined as,

EOCi+1 =
ln errori+1 − ln errori
lnNτ ,i − lnNτ ,i+1

.

According to Table 4, when the grid sizes in both x and v directions are fixed and kept to be quite small, the EOCs reported
are close to 1, indicating that our scheme is first-order convergent in the time direction.

Similarly, when we fix the time step size to 1τ =
T

100 000 , and the grid size in the x (or v) direction to be Xmax
400 (or Vmax

400 ),
and increase the grid number in the v direction (or in the x direction), we find that the EOCs approach 2, as shown in Tables 5
and 6, respectively. This indicates that a second-order convergence is achieved in both x and v directions.

To better investigate the convergence rate of the current scheme, we also calculated the EOCs with the time and spatial
steps adjusted to each other according to the expected order of error O(1τ) + O(1x2) + O(1v2). Specifically, we choose
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(a) American put option value at v = 0.25 with κ = 2.5, σ = 0.45.. (b) American put option value at v = 0.25 with κ = 5, σ = 0.9.

(c) Optimal exercise prices with different volatility values. Model
parameters are κ = 2.5, σ = 0.45.

(d) Optimal exercise prices with different volatility values. Model
parameters are κ = 5, σ = 0.9.

Fig. 3. American puts and the optimal exercise prices calculated with η = 0.16, r = 0.1, ρ = 0.1, T = 0.25 (year), K = $10.0, θ =
1
2 .

Fig. 4. Option prices at different times to expiration. Model parameters are κ = 2.5, η = 0.16, σ = 0.45, r = 0.1, ρ = 0.1, K = $10.0.

varying grid sizes, i.e., 1τi = h2
i 1τ1, 1xi = hi1x1, 1vi = hi1v1, where hi is the rate of the grid spacings used in the

i-th line of Table 7 to those appearing in the first line of the same table. We could anticipate that if the theoretical order of



S.-P. Zhu, W.-T. Chen / Computers and Mathematics with Applications 62 (2011) 1–26 21

Table 4
EOC in the time direction, calculated with
1x =

Xmax
250 , 1v =

Vmax
250 .

No. of time steps Difference Ratio

4000 4.8699E−4
4500 4.3639E−4 0.9314
5000 3.9212E−4 1.0153
5500 3.7315E−4 1.0679

Table 5
EOC in the x direction, calculated with 1τ =

T
100 000 ,

1v =
Vmax
400 .

No. of steps in x-direction Difference Ratio

20 0.2092
30 0.0891 2.1052
40 0.0469 2.2305
80 0.0097 2.2711

Table 6
EOC in the v direction, calculated with 1τ =

T
100 000 ,

1x =
Xmax
400 .

No. of steps in v-direction Difference Ratio

10 0.0547
20 0.0152 1.8475
40 0.0046 1.7244
80 0.0013 1.8231

Table 7
EOC with varying grid sizes, with
1x1 =

Xmax
10 , 1v1 =

Vmax
10 , and

1τ1 =
Tmax
5 .

h Difference Ratio

1 0.9265
0.5 0.2783 1.7352
0.25 0.0580 2.2625
0.1 0.0070 2.3077

convergence is achieved in all directions, the EOC, which is now defined as

EOCi+1 =
ln errori+1 − ln errori

ln hi+1 − ln hi
,

should approach 2. From Table 7, we find that the EOCs are approximately equal to 2, which confirms again that the current
scheme is indeed first-order convergent in the time direction, and second-order convergent in both x and v directions.

4.3. Discussion on accuracy and efficiency

In the financial industry, an ideal numerical scheme is the onewith both high efficiency and accuracy. However, generally,
the computational efficiency is always inversely proportional to accuracy. Thus, whether or not one can achieve a high
efficiency at the expense of losing certain degrees of accuracy should be considered as a key criterion for choosing good
numerical method.

In this subsection, we study numerically the relationship between the efficiency and the accuracy of our current scheme.
We shall demonstrate that with an acceptable accuracy, our scheme can achieve a relatively high speed. Once again, we
shall demonstrate this issue by showing the results of the calculation of the optimal exercise price only.

The tested example is chosenwith parameter values: κ = 1.5, η = 0.16, σ = 0.2, r = 0.1, ρ = 0.1, T − t = 0.25 (year),
and K = $10.0.

Unfortunately, there is no exact or analytical solution for the valuation of American put options with stochastic volatility.
Thus, we computed the reference values using the predictor–corrector method with a very fine grid defined by Nx =

200,Nv = 400, and Nτ = 50 000. These values are used to verify the accuracy of the computed Sf values based on some
coarse grid.

Table 8 shows the relationship of the efficiency and accuracy of our scheme. Here, the computational efficiency is
measured by the total CPU time in seconds consumed for each run, while the accuracy is measured by the relative error
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Table 8
Report on CPU time vs. relative error.

(Nx,Nv,Nτ ) CPU time (s) Error (%)

(13, 25, 25) 0.5470 6.67
(13, 50, 25) 0.8440 6.43
(26, 50, 80) 3.4370 2.26
(52, 50, 250) 19.5420 1.09
(104, 100, 2000) 529.4920 0.89

over the whole computational domain, which is defined as:

Error =
‖Sf − S̃f ‖∞

‖S̃f ‖∞

where Sf and S̃f denote the computed values and the reference values, respectively, and ‖ · ‖∞ denotes the infinite norm.
All the experiments here were performed within Matlab6.1 on an Intel Pentium 4, 3 GHz machine.

As clearly shown in Table 8, the accuracy is inversely varying with the efficiency. Furthermore, a better resolution in
the asset values or the variance values implies more computational time. It can also be observed that our numerical results
converge quickly to the reference values, and even with the most coarse grid, the accuracy is still acceptable by the industry
standard. On the other hand, based on previous sections, it is suggested that the current method requires a lower number of
time step intervals when σ is small. One should note that σ is usually very small in the real market. Therefore, our scheme
is indeed a good one with a high computational efficiency and a satisfactory accuracy, and is suited for practical use.

5. Conclusion

In this paper, we first propose a set of appropriate boundary conditions along the v direction for American puts under the
Heston model, and make the valuation system closed. Then, under this closed system, a new predictor–corrector scheme
based on the ADI method is demonstrated and tested. The novelty of the current scheme, in comparison with some other
finite differencemethods in the literature, lies in the fact that it requires no embedded iterations, and can capture the whole
optimal exercise boundary as part of the solution procedure. Based on the local von Neumann analysis, combined with the
‘‘frozen’’ coefficient technique, a conditional stability requirement is also obtained for the predictor–corrector method. It is
suggested that the good convergence property of the corrector can influence the whole procedure significantly, which has
also been confirmed by some of our numerical results. This approach can be easily extended to other stochastic volatility
models and to non-zero choices of the market price of risk function, as long as a front-fixing transform exists. Various
numerical examples suggest that the proposed scheme is both accurate and efficient, and is also suitable for practical use.
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Appendix A

In this appendixwe consider the consistency between Eq. (2.8) and a newly constructed PDE system,which is the same as
the PDE system (2.16), but without the boundary constraint at v = 0. As demonstrated in Section 2.2, this new PDE system is
already closedwhen κη ≥

σ 2

2 . Note that in the following theorem, ‘‘the PDE system’’ always refers to this newly-constructed
PDE system, unless stated elsewhere.

Theorem 5. For κη ≥
σ 2

2 , the proposed boundary condition (2.8) for v = 0, is consistent with the inherent value of the PDE
system as v → 0.

Proof. Fromaperturbationpoint of view, this statement is equivalent to showing that Eq. (2.8)will not create any singularity
or boundary layer as v → 0. Mathematically, we need to prove that the leading order term as v → 0 deduced from the PDE
system is exactly the same as Eq. (2.8).

The asymptotic behavior of the PDE system can be examined with the perturbation technique. First, we rewrite v as
v = ϵV , with ϵ being a small parameter and V being an O(1) variable, to reflex the fact that v is an extremely small number
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in the limit process of v approaching zero (cf. [42]). Now, substituting v = ϵV into the governing equation of the PDE system,
and assuming that its solution can be written in powers of ϵ, i.e., U(S, V , t) =

∑
∞

n=0 Un(S, V , t)ϵn, we obtain the leading
order term as

U0(S, V , t) = C1(S, t) + C2(S, t)
V 1−α

α

as v → 0, where α =
2κη

σ 2 . Clearly, when α > 1, i.e., κη ≥
σ 2

2 ,U0 has an exponential growth as V → 0, unless C2 is set to
zero. With C2 being set to zero to maintain the boundedness of the American put value as the solution of the PDE system,
U0 is now a function of S and t only. Since U0 also needs to satisfy the initial and boundary conditions along the t and S
directions, respectively, one has no choice but letting C1(S, t) = max(K − S, 0). Using Eq. (2.7), the boundary condition
(2.8) can be easily deduced. Consequently, the consistency between Eq. (2.8) and the inherent value of the PDE system as
v → 0 for the case of κη ≥

σ 2

2 is established. �

The proof of this theorem leads to the final establishment of the PDE system (2.16) for pricing American put options
under the Heston model, with a key boundary condition (2.8) being imposed regardless of what the ratio 2κη

σ 2 is.

Appendix B

Once the space discretization is performed, the governing equation in the PDE system (3.1) becomes:
∂Un

i,j

∂τ
= ajδxxUn

i,j + bjδvvUn
i,j + (dj + λj)δxUn

i,j + cjδxvUn
i,j + ejδvUn

i,j − rUn
i,j.

By applying the first-order fully implicit Euler scheme to the time derivative
∂Un

i,j
∂τ

, we can obtain

Un+1
i,j − Un

i,j

1τ
= ajδxxUn+1

i,j + bjδvvUn+1
i,j + (dj + λj)δxUn+1

i,j + cjδxvUn+1
i,j + ejδvUn+1

i,j − rUn+1
i,j .

In order to demonstrate the ADI method clearly, we use linear operators A0, A1 and A2 to denote the mixed derivative,
the spatial derivatives in the x direction and the spatial derivatives in the v direction respectively, i.e.,

A0Un
i,j = 1τ · cjδxvUn

i,j,

A1Un
i,j = 1τ ·


ajδxxUn

i,j + (dj + λj)δxUn
i,j −

r
2
Un
i,j


,

A2Un
i,j = 1τ ·


bjδvvUn

i,j + ejδvUn
i,j −

r
2
Un
i,j


.

Thus, the governing equation in the PDE system (3.1) can be written shortly as:

[I − (A0 + A1 + A2)]Un+1
= Un

+ O((1τ)2).

Similarly, the first-order explicit Euler scheme reads:

[I + (A0 + A1 + A2)]Un
= Un+1

+ O((1τ)2).

Thus, the weighted average of the fully implicit scheme and explicit scheme can be written as

[I − θ(A0 + A1 + A2)]Un+1
= [I + (1 − θ)(A0 + A1 + A2)]Un

+ O((1τ)3). (B.1)

One should note that when θ is equal to zero or one, Eq. (B.1) goes back to fully explicit Euler scheme or fully implicit one.
When θ =

1
2 , it is equivalent to apply the Crank–Nicolson scheme to the time derivative ∂Un

∂τ
.

Adding θ2A1A2Un+1 to both sides of Eq. (B.1), we have:

[I − θA0 − θA1 − θA2 + θ2A1A2]Un+1
= [I + (1 − θ)A0 + (1 − θ)A1 + (1 − θ)A2 + θ2A1A2]

×Un
+ θ2A1A2(Un+1

− Un) + O((1τ)3). (B.2)

As Un+1
− Un

∼ O(1τ), and A1A2 ∼ O((1τ)2), we can merge the term θ2A1A2(Un+1
− Un) into the error term. Thus,

Eq. (B.2) becomes:

(I − θA1)(I − θA2)Un+1
− θA0Un+1

= [I + (1 − θ)A0 + (1 − θ)A1 + (1 − θ)A2 + θ2A1A2]Un
+ O((1τ)3). (B.3)

However, it is still difficult to solve Eq. (B.3) alternatively in two directions because of the existence of θA0Un+1. One possible
measure is to treat themixed derivative fully explicit at the expense of losing one order of accuracy in the time direction, i.e.,

(I − θA1)(I − θA2)Un+1
= [I + A0 + (1 − θ)A1 + (1 − θ)A2 + θ2A1A2]Un

+ θA0(Un+1
− Un) + O((1τ)3),

= [I + A0 + (1 − θ)A1 + (1 − θ)A2 + θ2A1A2]Un
+ O((1τ)2),

which is equivalent to:

(I − θA1)(I − θA2)Un+1
= [I + A0 + (1 − θ)A1 + A2]Un

− (I − θA1)θA2Un. (B.4)
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Here, the linear operators A0 and A1 in Eq. (B.4) are time-dependent. We value them at the (n + θ)th time step, i.e.,
A0 = 1τ cjδxv

= 1τ

ρσv − σ 2vξ


,

A1 = 1τ

ajδxx + (dj + λj)δx −

r
2
Un
i,j


= 1τ


v

2
+

σ 2v

2
ξ 2

− ρσvξ


δxx +


−

v

2
+

σ 2v

2
ξ 2

−
σ 2v

2
β + r − κ(η − v)ξ + λ


δx −

1
2
rI


,

where

ξ =
δv(θSn+1

f + (1 − θ)Snf )

θSn+1
f + (1 − θ)Snf

,

β =
δvv(θSn+1

f + (1 − θ)Snf )

θSn+1
f + (1 − θ)Snf

,

λ =
Sn+1
f − Snf

(θSn+1
f + (1 − θ)Snf )1τ

.

Appendix C

The matrix form for calculating Y corresponding to Eq. (3.12) is:
AYj = Pj + bnd xj,

with
Yj = (Y1,j, Y2,j, . . . , YNx−1,j)

T ,

Pj = (p1,j, p2,j, . . . , pNx−1,j)
T ,

bnd xj =


θ


aj1τ

(1x)2
−

d′

j1τ

21x


Y0,j

...

θ


aj1τ

(1x)2
+

d′

j1τ

21x


YNx,j

 ,

pij = Un
i,j +

cj1τ

41x1v


Un
i+1,j+1 + Un

i−1,j−1 − Un
i+1,j−1 − Un

i−1,j+1


+ (1 − θ)


aj1τ

(1x)2
−

d′

j1τ

21x


Un
i−1,j

+ (1 − θ)


−

aj1τ

(1x)2
−

r1τ

2


Un
i,j + (1 − θ)


aj1τ

(1x)2
+

d′

j1τ

21x


Un
i+1,j +


bj1τ

(1v)2
−

ej1τ

21v


Un
i,j−1

+


−

bj1τ

(1v)2
−

r1τ

2


Un
i,j +


bj1τ

(1v)2
+

ej1τ

21v


Un
i,j+1,

A =



1 + θ


2aj1τ

1x2
+

r1τ

2


−θ


aj1τ

1x2
+

d′

j1τ

21x



−θ


aj1τ

1x2
−

d′

j1τ

21x


1 + θ


2aj1τ

1x2
+

r1τ

2


. . .

. . .

. . .
. . .

1 + θ


2aj1τ

1x2
+

r1τ

2




,

where d′

j = (dj + λ), and bnd xj stands for the vector that contains the boundary value of the intermediate variable Y in the
x direction.
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The corresponding matrix form for computing Un+1 from Eq. (3.13) is:

BUn+1
i = Qi + bnd vi,

with

Un+1
i = (Un+1

i,1 ,Un+1
i,2 · · ·Un+1

i,Nv−1)
T ,

Qi = (qi,1, qi,2 · · · qi,Nv−1)
T ,

bnd vj =


θ


bj1τ

1v2
−

ej1τ

21v


Un+1
i,0

...

θ


bj1τ

1v2
+

ej1τ

21v


Un+1
i,Nv


,

qi,j = Yi,j − θ


bj1τ

1v2
−

ej1τ

21v


Un
i,j−1 − θ


−

bj1τ

1v2
−

r1τ

2


Un
i,j − θ


bj1τ

1v2
+

ej1τ

21v


Un
i,j+1,

B =



1 + θ


2bj1τ

1v2
+

r1τ

2


−θ


bj1τ

1v2
+

ej1τ

21v



−θ


bj1τ

1v2
−

ej1τ

21v


1 + θ


2bj1τ

(1v)2
+

r1τ

2


. . .

. . .

1 + θ


2bj1τ

1v2
+

r1τ

2




,

where bnd vj stands for the vector that includes the boundary value of Un+1 in the v direction.
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