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Appropriate patterns of DNA methylation and histone modifications are required to assure cell identity, and
their deregulation can contribute to human diseases, such as cancer. Our aim here is to provide an overview
of how epigenetic factors, including genomic DNA methylation, histone modifications, and microRNA regu-
lation, contribute to normal development, paying special attention to their role in regulating tissue-specific
genes. In addition, we summarize how these epigenetic patterns go awry during human cancer development.
The possibility of ‘‘resetting’’ the abnormal cancer epigenome by applying pharmacological or genetic strat-
egies is also discussed.
Introduction
Normal development appears to take place through a unidirec-

tional process characterized by a step-wise decrease in devel-

opmental potential and an activation of specific gene programs

that trigger differentiation into specialized cell types. Once

established, temporal and spatial activation and silencing of

specific genes in a cell-type-specific pattern must be stable

over many cell generations and long after inductive develop-

mental signals have disappeared. Equally important, a cell

must silence expression of genes specific to other cell types to

secure its fate. Repression must be maintained throughout the

life of the individual in normal development, and epigenetic

mechanisms, which are defined as heritable changes in gene

function that do not alter the primary DNA sequence, are ideal

for regulating such events. The best-studied epigenetic modifi-

cation is DNA methylation, which consists of the addition of

amethyl group to carbon 5 of the cytosinewithin the dinucleotide

CpG. It has been estimated that 3%–6% of cytosines are

methylated in normal tissues and that this DNA methylation is

necessary for controlling gene expression of tissue-specific,

housekeeping or imprinted genes and also for maintaining

genomic stability through silencing transposable elements of

the genome (Esteller, 2007).

DNA methylation does not work alone and occurs in the

context of other epigenetic modifications, such as histone

modifications. Histone tails may undergo many posttranslational

chemical modifications, including acetylation, methylation,

phosphorylation, ubiquitylation, and sumoylation. For instance,

the different statuses of acetylation and methylation of specific

lysine residues are considered crucial histone marks affecting

chromatin structure and gene expression (Kouzarides, 2007).

Additionally, recent advances in the rapidly evolving field of

epigenetics have demonstrated the extensive role of noncoding

RNAs, especially miRNA expression, in maintaining global

expression patterns during normal development (Sharma et al.,

2010). Although several small-scale studies of specific epige-

netic marks have provided limited information about the regula-

tion of genes from different pathways, there is a need for knowl-
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edge in a broader perspective. A range of matters remains to be

resolved, such as the relationships between the epigenetic

players (the ‘‘epigenetic code’’) and how the environment and/

or aging modulate the epigenetic marks. Some of this could be

achieved by analyzing patterns on a genome-wide scale, an

approach that has at last become possible thanks to recent tech-

nological advances (Bernstein et al., 2007; Barski et al., 2007;

Irizarry et al., 2009).

It is clear that a comprehensive knowledge of the human

epigenome will allow a fuller understanding of normal develop-

ment, aging, abnormal gene control in cancer, and other

diseases, as well as the role of the environment in human health.

This is the main goal of the International Human Epigenome

Consortium (IHEC) and the Roadmap Epigenomics Program at

NIH Fund (http://nihroadmap.nih.gov/epigenomics); however,

we must bear in mind that there is no single epigenome but,

rather, many different ones that are characteristic of normal

and diverse pathological states. It is clear that the information

extracted from the whole-genome assays will help us under-

stand the role of epigenetic marks in normal development and

in diseases such as cancer. The aim of the present review is

to provide an overview of how epigenetic factors, including

genomic DNA methylation, histone modifications, and micro-

RNA regulation, contribute to normal development, paying

special attention to their role in the establishment of cell identity.

In the second part, we will focus on how tissue-specific epige-

netic patterns go awry during human cancer development.

Epigenetic Changes during Normal Development
It is well described that DNA methylation patterns undergo

genome-wide alterations that occur immediately after fertiliza-

tion and during early preimplantation development (Mayer

et al., 2000; Reik et al., 2001) and that enrichment of indi-

vidual histone modifications (such as H3K9me, H3K4me and

H3K27me3) also varies in a specific manner at different stages

of development (Reik, 2007). Apart from the extensive chromatin

remodeling that occurs during early differentiation, epigenetic

factors must guarantee the activation and maintenance of
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Figure 1. Gene-Specific Changes of the
Epigenetic Landscape during Mammalian
Development
CpG promoter hypermethylation and histone
marks regulate the expression levels of genes
that relate to pluripotency, that are required for
tissue identity, and that occur in alternative line-
ages in the transition from a zygote to a highly
specialized adult cell. In germ cells and the zygote,
key developmental and lineage genes are main-
tained in a transcriptionally ‘‘poised’’ but inactive
state, e.g., by bivalent histone marks. During
differentiation, lineage-specific genes must be
activated by active epigenetic marks, while
those genes required for alternative lineages
and pluripotency genes must be permanently
silenced. H3K27me3, trimethylated histone H3
at lysine 27; H3K4me3, trimethylated histone H3
at lysine 4; H3K9me3, trimethylated histone H3 at
lysine 9, H3K9Ac, acetylated histone H3 at lysine 9.
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specific gene programs in specialized cell types. For instance,

the expression of pluripotency-related genesmust be abolished,

while housekeeping genes and appropriate patterns of tissue-

specific genes must be guaranteed (Figure 1). In the following

sections, we will discuss how DNA methylation, histone modifi-

cations, and microRNA regulation could assure cell-type speci-

ficity in normal development.

Roles for DNA Methylation in Differentiation, Genomic

Stability, X-Inactivation, and Imprinting

Gene expression and DNA methylation are inversely correlated

inmany genes thatmust be developmentally controlled following

cell-type specification in early development. For example, the

pluripotency genesOct4 andNanog are expressed in preimplan-

tation embryos and in the germline, and their promoters are

hypermethylated and silenced in differentiated cells (Hattori

et al., 2004; Hattori et al., 2007). But not only pluripotency-

related genes are hypermethylated during differentiation.

A number of genes are unmethylated in germline cells but

methylated in somatic cell types, such as theMAGE (melanoma

antigen-encoding genes) family (De Smet et al., 1999). Genome-

wide studies characterizing the de novo hypermethylation of

promoters during differentiation in mouse models identified 5%

of the CpG islands as hypermethylated and, in consequence,

silenced in somatic tissues, but not in germline cells (Mohn

et al., 2008; Song et al., 2005). A similar result was identified in

human tissues, where various methylation studies identify testis-

and sperm-specific hypomethylation with respect to several

somatic tissues (Schilling and Rehli, 2007; Shen et al., 2007).

DNA hypermethylation of repetitive genomic sequences has

also been proposed as a mechanism to prevent chromosomal

instability, translocations and gene disruption caused by the

activation of transposable DNA sequences or endoparasitic

sequences (Xu et al., 1999). In contrast to developmental

genes, mobile sequences of the genome need to be silenced

completely and stably to prevent them from moving around the

genome (Reik, 2007). According to this idea, many transposon

families are both methylated and marked by repressive histone

modifications, for example H3K9me3. Furthermore, some trans-
D

poson families, such as the intracisternal A particles, are even

resistant to the erasure of DNA methylation in the zygote,

possibly resulting in epigenetic inheritance across generations

(Reik, 2007).

In addition, DNA methylation is implicated in establishing

patterns of monoallelic gene expression (Figure 1). For example,

X chromosome inactivation (Xi) involves monoallelic repression

of genes (i.e., on one of the two X chromosomes) in female cells

to equalize the imbalance of the ‘‘extra’’ X chromosome gene

expression as compared to the one X chromosome in males.

Random Xi is initiated in the epiblast (Allegrucci et al., 2005),

and the inner cell mass (ICM) cells reactivate Xi in the late

blastocyst, while extraembryonic cells (trophoectoderm and

primitive endoderm) maintain Xi (Kiefer, 2007). Many epigenetic

mechanisms promote heterochromatization of Xi. First, the

X-inactivated chromosome acquires both K3H9me3 and

H3K27me3 but lose histone acetylation and the activating

mark H3K4me3 (Plath et al., 2003; Valley et al., 2006). Second,

there is a substitution of the core histone H2A with the histone

variant MacroH2A (Chadwick and Willard, 2003). Third, there is

a hypermethylation of CpG islands (Reik and Lewis, 2005). All

of these epigenetic marks guarantee the stability of the Xi for

the lifetime of the individual.

Furthermore, genomic imprinting must be included as

a second example of monoallelic expression in which epigenetic

chromosomal modifications drive differential gene expression

according to which parent transmitted the chromosome to the

progeny. Expression is exclusively due either to the allele

inherited from the mother (e.g., the H19 and CDKN1C genes)

or to that inherited from the father (e.g., IGF2). This inheritance

process is independent of the classical Mendelian model. DNA

methylation has been widely described as the main mechanism

for controlling genes subjected to imprinting (Kacem and Feil,

2009). One model of this regulation is based on the cluster orga-

nization of imprinted genes. The structure within clusters allows

them to share common regulatory elements, such as noncoding

RNAs and DMRs (Differentially Methylated Regions). DNA meth-

ylation of DMRs is thought to interact with histone modifications
evelopmental Cell 19, November 16, 2010 ª2010 Elsevier Inc. 699
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and other chromatin proteins to regulate parental allele-specific

expression of imprinted genes; for instance, H3K27me3 and

H3K9me2 together with CpG promoter hypermethylation are

involved in silencing imprinted genes (Henckel et al., 2009).

Furthermore, the aforementioned regulatory elements usually

control the imprinting of more than one gene, giving rise to

imprinting control regions (ICRs). This cluster organization,

observed in 80% of imprinted genes and the specific DNAmeth-

ylation patterns associated with DMRs are two of the main

characteristics of imprinted genes. These genes have diverse

roles in growth and cellular proliferation, and specific patterns

of genomic imprinting are established in somatic and germline

cells (Dolinoy et al., 2007; Feil and Berger, 2007). Deletions or

aberrations in DNAmethylation of ICRs lead to loss of imprinting

and inappropriate gene expression (Murrell et al., 2008), and they

are usually associated with several syndromes and pathologies

such as cancer.

Tissue-Specific DNA Methylation in Somatic Cells

It has long been speculated that cytosine methylation is involved

in the establishment and maintenance of cell-type-specific

expression of developmentally regulated genes; however, there

are no clear examples of such genes, especially in humans.

A small but significant proportion of genes have been identified

as being differentially methylated between normal tissues and

cell types (Imamura et al., 2001; Futscher et al., 2002; Rauch

et al., 2009). Expression of the human MASPIN (SERPINB5)

gene, an autosomal gene, is limited to certain types of epithelial

cells, but no detectable amounts of the gene are found in skin

fibroblasts, lymphocytes, bone marrow, heart, or kidney. The

cytosine methylation status of SERPINB5 shows an inverse

correlation with SERPINB5 expression in normal cells (Futscher

et al., 2002). Consistent with this finding, other genes, such as

rSPHK1 and hSLC6A8, showpromoter hypermethylation associ-

ated with gene silencing in specific tissues (Grunau et al., 2000;

Imamura et al., 2001). For example, the rSPHK1 promoter region

is hypomethylated in the adult brain, whereSphk1a is expressed,

whereas it is hypermethylated in theadult heart,where thegene is

not expressed (Imamura et al., 2001). Using an array representing

over 17,000 CpG islands, Illingworth et al. (2008) established

that 6%–8% of CpG islands are methylated in genomic DNA

from human blood, brain, muscle, and spleen. Interestingly,

some of these genes represent genetic loci that are essential

for development, including HOX and PAX transcription factor

family members (Illingworth et al., 2008; Rauch et al., 2009).

These results support the hypothesis posited more than 25

years ago that cell-type-specific patterns of cytosine methyla-

tion mediate control of cell-type-specific gene expression and,

by extension, cellular differentiation. However, profiling of CpG

methylation at chromosomes 6, 20, and 22 identifies several

CpG islands that are differentially methylated when eight

somatic tissues were compared (Eckhardt et al., 2006). Specifi-

cally, authors found that 17% of the analyzed genes (873) were

differentially methylated in their 50 UTRs, but only in about one-

third of the differentially methylated 50 UTRs could an inverse

correlation with transcription be established (Eckhardt et al.,

2006). Further work is needed to test whether this absence of

correlation is due to limitations of the analytical techniques or

to the existence of additional methylation-independent regula-

tory mechanisms.
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Cell Identity and Histone Modifications

The b-globin locus offers one of the best-studied examples of the

regulatory relationship between histone modifications and

developmental expression of genes, in part because vertebrates

express different globin genes at different stages of develop-

ment. Initial small-scale studies of the murine b-globin locus

revealed acetylated histones associated with globin gene

promoters in a tissue-specific and developmentally regulated

manner (Bulger et al., 2003). Furthermore, H3K4me2 generally

follows the acetylation process (Kiefer et al., 2008). We now

knowa considerable amount about the characterization of global

levels of histone modifications in differentiated mammalian

tissues, mainly thanks to the development of large-scale tech-

niques (ChIP-Seq, ChIP on chip, among others) (Barski et al.,

2007; Bernstein et al., 2007).

T cells, especially with respect to their methylation and acety-

lation marks, are one of the most widely employed biological

systems in the study of how histone modifications influence

cell fate. Differentiation of CD4+ T cells into their corresponding

subtypes appears to be controlled by various layers of modifica-

tions. First, the cytokine genes that define lineage identity (IFN-g,

IL-4, and IL-17 for Th1, Th2, and Th17 cells, respectively) are

enriched in the activation mark H3K4me3 in the correct lineage

(Schoenborn et al., 2007; Akimzhanov et al., 2007). It is important

to note that the repressive mark H3K27me3 does not correlate

with the genes that are not expressed in the appropriate lineage

(Wei et al., 2009), indicating that some additional repressive

marks could be involved or that some degree of cellular plasticity

may persist. A similar scenario was found for the transcription

regulators of lineage specificity, including Foxp3, RORgt,

T-bet, and GATA-3 (Wei et al., 2009; Cuddapah et al., 2010).

In addition, genome-wide studies have indicated that the

genomes of differentiated T cells (Roh et al., 2006; Barski

et al., 2007) also possess bivalent domains, marked with both

H3K27me3 and H3K4me3, similar to those described for embry-

onic stem cells (ESCs) (Bernstein et al., 2006; Azuara et al.,

2006). Similarly, the bivalent domains were also described in

genome-wide approaches for the study of histone modifications

during differentiation of multipotent human primary hematopoi-

etic stem cells/progenitor cells into erythrocyte precursors

(Cui et al., 2009) or in the acquisition of oligodendrocyte identity

(Liu and Casaccia, 2010). As a conclusion to these reports, it

seems that certain histone modifications can preserve a poised

but inactive gene state in embryonic stem cells (Bernstein et al.,

2006, Barski et al., 2007) in more lineage-restricted but nonethe-

less multipotent progenitors (Cui et al., 2009; Orford et al., 2008)

and in terminally differentiated cells that can be reprogrammed in

the presence of external stimuli (Roh et al., 2006).

Epigenetic Control of MicroRNAs in Normal

Development

MicroRNAS (miRNAs) are small, approximately 22 nucleotide-

long, non-coding RNAs that function as endogenous posttran-

scriptional silencers of target genes (Ambros, 2004). miRNAs

are expressed in a tissue-dependent manner and are important

regulators of several cellular processes, including proliferation,

differentiation, apoptosis, and development (He and Hannon,

2004). The list of miRNAs identified in the human genome and

their corresponding target genes is rapidly lengthening, vali-

dating their role in the maintenance of global gene expression
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patterns (Zhang et al., 2007). Crosstalk between epigenetic

regulation of miRNA and lineage commitment has recently

been established (Nomura et al., 2008; Szulwach et al., 2010).

First, the coding transcript of the brain-specific miR-184,

imprinted and exclusively expressed from the paternal allele,

may be induced by methyl-binding protein MeCP2 release

(Nomura et al., 2008). Likewise, mir-137, an intrinsic modulator

of adult neurogenesis (Silber et al., 2008), is also subjected to

epigenetic control mediated by MeCP2 (Szulwach et al., 2010).

Sox2, a gene with key functions in stem cell self-renewal (Ferri

et al., 2004), acts directly in tandem with MeCP2 for proper tran-

scriptional regulation of mir-137 in adult neurogenesis (Szulwach

et al., 2010). To understand the pathways by which mir-137

modulates adult neurogenesis, the authors looked for putative

gene targets of mir-137 regulation. Interestingly, they found

that one of miR-137 targets is EzH2, a H3K27 methyltransferase

and component of the Polycomb protein complexes. In conse-

quence, mir-137 mediated repression of EzH2 is associated

with a global decrease in H3K27me3.

Epigenetic Changes in Cancer Cells
Initially, cancer was thought to be solely a consequence of

genetic changes in key tumor-suppressor genes and oncogenes

that regulate cell proliferation, DNA repair, cell differentiation,

and other homeostatic functions. However, the study of epige-

netic mechanisms in cancer during the last decade, such as

DNAmethylation, histone modification, nucleosome positioning,

and micro-RNA expression, has provided extensive information

about the mechanisms that contribute to the neoplastic pheno-

type through the regulation of expression of genes critical to

transformation pathways. Cancer cells have a specific epige-

nome. Regarding DNAmethylation, the low level of CpGmethyl-

ation in tumors compared with that in their normal-tissue

counterparts was one of the first epigenetic alterations to be

found in human cancer (Feinberg and Vogelstein, 1983; Goelz

et al., 1985). From a functional point of view, hypomethylation

in cancer cells is associated with a number of adverse outcomes,

including chromosome instability, activation of transposable

elements, and loss of genomic imprinting. Decreased methyla-

tion of repetitive sequences in the satellite DNA of the pericentric

region of chromosomes is associated with increased chromo-

somal rearrangements, mitotic recombination, and aneuploidy

(Eden et al., 2003; Karpf and Matsui, 2005). Intragenomic endo-

parasitic DNA, such as L1 (long interspersed nuclear elements)

(Schulz, 2006) and Alu (recombinogenic sequence) repeats, are

silenced in somatic cells and become reactivated in human

cancer. Furthermore, the effect on the loss of imprinting must

also be considered. Wilms’ tumor, a nephroblastoma that typi-

cally occurs in children, is the best-characterized imprinting

defect associated with increased susceptibility to cancer

(Bjornsson et al., 2007). At a specific level, aberrations in DNA

methylation patterns of the CpG islands in the promoter regions

of tumor-suppressor genes are accepted as being a common

feature of human cancer (Esteller, 2008). CpG island promoter

hypermethylation affects genes from a wide range of cellular

pathways, such as cell cycle, DNA repair, toxic catabolism, cell

adherence, apoptosis, and angiogenesis, among others (Estel-

ler, 2008), and may occur at various stages in the development

of cancer.
D

Although the ultimate causes of aberrant DNA methylation

remain to be determined, several studies showed that alterations

in the DNAmethylome could be directly affected by diet, xenobi-

otic chemicals, and exogenous stimuli, such as inflammation or

viral/bacterial infection. Diets that are deficient in folate and

methionine, which are necessary for normal biosynthesis of

S-adenosylmethionine (SAM), the methyl donor for methylcyto-

sine, lead to DNA hypomethylation and aberrant imprinting of

insulin-like growth factor 2 (IGF2) (Waterland et al., 2006).

Furthermore, particular genetic variants in the enzymes involved

in the metabolism of folate and methionine are associated with

different DNA methylation levels (Paz et al., 2002). Exposure to

metals, such as arsenic (Benbrahim-Tallaa et al., 2005),

cadmium (Poirier and Vlasova, 2002), lead (Silbergeld et al.,

2000), nickel (Salnikow and Costa, (2000)), and chromium (Wei

et al., 2004), is linked to changes in the expression of epigenet-

ically controlled genes via interactions with DNA-methylation-

associated enzymes, histone acetyltransferase, and histone

deacetylase enzymes. Between exogenous stimuli, it has been

described that altered patterns of DNA methylation could be

associated with Helicobacter pylori infection of gastric epithelial

cells and contribute to gastric cancer risk (Niwa et al., 2010). In

addition, chronic inflammation has been proposed as possible

inducer of aberrant methylation in liver cancers or ulcerative

colitis-associated colon cancers (Kondo et al., 2000; Issa et al.,

2001). However, a causal role of most of these inductors in

DNA methylation patterns remains to be established. In this

regard, studies performed with genetically identical individuals,

such as mice clones (Rideout et al., 2001) and human monozy-

gotic twins (Fraga et al., 2005a), could be an excellent method

for understanding the environment-epigenome interaction.

Because of the complexity of permutations and combinations,

less is known about the patterns of histone modification disrup-

tion in human tumors. Results have shown that the CpG

promoter hypermethylation event in tumor-suppressor genes in

cancer cells is associated with a particular combination of

histone markers and the opposite of that observed in normal

cells: deacetylation of histones H3 and H4, loss of H3K4 trime-

thylation, and gain of H3K9 methylation and H3K27 trimethyla-

tion (Jones and Baylin, 2007). The association between DNA

methylation and histone modification aberrations in cancer

also occurs at the global level. In human and mouse tumors,

histone H4 loses monoacetylated and trimethylated lysines 16

and 20, respectively, especially in repetitive DNA sequences

(Fraga et al., 2005b). Furthermore, histone acetylation and dime-

thylation of five residues in histones H3 and H4 also define two

disease subtypes with distinct risks of tumor recurrence in

patients with low-grade prostate cancer (Seligson et al., 2005).

Finally, as DNA methylation and histone modifications act as

mechanisms for controlling cellular differentiation, allowing the

expression only of tissue-specific and housekeeping genes in

somatic differentiated cells, it is possible that the inappropriate

(re)activation of tissue-specific genes also plays a role in cancer

(Fan et al., 2008). The epigenetic alterations affecting genes

expressed in a tissue-specific manner and their involvement in

tumor development are briefly reviewed below.

Tumor-Type-Specific CpG Island Hypermethylation

Aberrations in DNA methylation patterns of the CpG islands in

the promoter regions of tumor suppressor genes are accepted
evelopmental Cell 19, November 16, 2010 ª2010 Elsevier Inc. 701
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Figure 2. Distribution of CpG Islands in Promoters of Housekeeping and Tissue-Specific Genes
Promoters associated with CpG islands are found in all known housekeeping genes and half of all tissue-specific genes. Generally, housekeeping genes are
unmethylated in normal cells, while tissue-specific genes may be unmethylated or methylated, depending on their requirement for lineage commitment. In
a cancer cell, some of the housekeeping genes become aberrantly hypermethylated. Gains and losses of CpG hypermethylation can be observed for tissue-
specific genes that are aberrantly expressed in cancer. CpG-poor regions are always found in tissue-specific genes, where expression is independent of
CpG methylation status. Some examples of genes relevant to each of these circumstances are illustrated.
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as being a common feature of human cancer. The initial

discovery of silencing was performed in the promoter of the reti-

noblastoma (Rb) tumor suppressor gene (Greger et al., 1989;

Sakai et al., 1991), but hypermethylation of genes like VHL (asso-

ciated with von Hippel-Lindau disease), p16INK4a, hMLH1

(a homolog of Escherichia coliMutL), andBRCA1 (breast-cancer

susceptibility gene 1) were subsequently described (Herman and

Baylin, 2003). It is expected that improvements in genome-wide

epigenomic studies will increase the number of hypermethylated

tumor suppressor genes in a broad spectrum of tumors; by 2001,

100–400 instances of gene-specific methylation had already

been noted in particular tumors (Esteller et al., 2001a).

A CpG island hypermethylation profile of human primary

tumors has emerged, which shows that the CpG island hyper-

methylation profiles of tumor-suppressor genes are specific to

the cancer type (Costello et al., 2000; Esteller et al., 2001a).

Each tumor type can be assigned a specific, defining DNA

‘‘hypermethylome,’’ rather like a physiological or cytogenetic

marker. These marks of epigenetic inactivation occur not only

in sporadic tumors but also in inherited cancer syndromes, in

which hypermethylation may be the second lesion in Knudson’s

two-hit model of cancer development (Esteller et al., 2001b).

Although initial results have been obtained in cancer cell lines

(Paz et al., 2003; Ehrich et al., 2008), CpG hypermethylation

‘‘maps’’ have been identified for primary tumors, including acute
702 Developmental Cell 19, November 16, 2010 ª2010 Elsevier Inc.
myeloid leukemia (Figueroa et al., 2010), glioblastomas (Martinez

et al., 2009), astrocytomas (Wu et al., 2010a), and ovarian epithe-

lial carcinoma (Houshdaran et al., 2010), among others.

Aberrant Promoter Hypermethylation of Housekeeping

Genes in Cancer

In contrast to tissue-specific genes that are expressed at a much

higher level in a single tissue type than in others, some genes are

constitutively expressed in all tissues. These genes have been

referred to as housekeeping genes and include a wide spectrum

of genes essential for cell metabolism, such as cell-cycle, ribo-

somal RNA, or stress defense-related genes. The regulatory

mechanisms underlying the differential expression patterns of

housekeeping genes compared with tissue-specific genes are

also poorly characterized. For a long time, it was accepted that

all known housekeeping genes and half of the tissue-specific

genes have associated CpG islands (Figure 2) (Antequera,

2003). In agreement with this, a recent report systematically

and quantitatively demonstrated the enrichment of CpG islands

in housekeeping genes, although the pattern tends to be more

variable for tissue-specific genes (with a prevailing depletion of

CpG islands) (She et al., 2009). Normally, housekeeping genes

have a nonmethylated CpG island tightly associated with their

promoter (Caiafa and Zampieri, 2005). Because such genes

tend to be expressed ubiquitously and because these autosomal

CpG islands are by and large poorly methylated, housekeeping
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genes were thought not to be regulated by DNA methylation. It

seems that this is an oversimplification and several genes that

are considered as constitutively expressed in all cells are

known to be inactivated by CpG promoter hypermethylation in

cancer cells, affecting a wide range of cellular pathways, such

as cell cycle (Rb, p16INK4a, p15INK4b), DNA repair (BRCA1,

MGMT, MLH1, WRN), transcription factors (BMAL1, GATA-4,

GATA-5, ID4, VHL), epigenetic enzymes (NSD1, RIZ1), receptors

(AR, CRBP1, ESR1, PR, TSHR), signal transduction (APC,

RASSF1A, LKB1, SFRP, TLE1, WIF1), toxic catabolism and

drug resistance (GSTP1), metastasis and cell invasion (CDH1,

CDH13, FAT, TIMP3), apoptosis (DAPK, TMS1, CASP8), and

angiogenesis (THBS1), among others (reviewed in Costello and

Plass, 2001; Esteller, 2007; Jones and Baylin, 2007; Esteller,

2008). Interestingly, it has been proposed that CpG hypermethy-

lation events in cancer were significantly more likely to occur in

the promoters of those genes with enriched Polycomb occu-

pancy and the presence of bivalent histone domains (3mK4H3 +

3mK27H3) in embryonic stem cells (Schlesinger et al., 2007;

Ohm et al., 2007; Widschwendter et al., 2007).

Increased CpG Methylation in Tissue-Specific Genes

during Tumorigenesis

We have described how CpG methylation also constitutes

a mechanism of epigenetic control of differentiation genes,

allowing the expression in a time- and tissue-dependent manner.

These same genes can also be deregulated in cancer by aber-

rant CpG promoter hypermethylation. For example, the tissue-

specific expression of maspin, which encodes the mammary

serine protease inhibitor protein and is expressed only in cells

of epithelial origin, is epigenetically regulated by DNA methyla-

tion (Futscher et al., 2002). Additionally, the aberrant CpG hyper-

methylation of maspin leads to gene silencing in cancers, such

as breast, thyroid, skin, and colon (Boltze et al., 2003; Bettstetter

et al., 2005; Khalkhali-Ellis, 2006; Wu et al., 2010b). A second

example is that of the MCJ (methylation-controlled DNAJ)

gene, which showed restricted expression associated with

high levels of methylation in epithelial cells, but not in lymphoid

and mesenchymal-derived cells (Strathdee et al., 2004). The

methylation of the MCJ CpG island is associated with chemo-

therapy resistance in ovarian cancer (Strathdee et al., 2004),

and aberrant epigenetic inactivation of MCJ may play a role in

the development of a range of pediatric brain tumor types

(Lindsey et al., 2006). The homeobox gene HOXA5 is another

example of a tissue-specific gene in which CpG methylation

plays a dual role in establishing patterns of expression in normal

tissues and contributing to human malignancies. Hypermethyla-

tion of HOXA5 could be detected in adult hematopoietic cells,

but not in epithelial cells and, additionally, in acute myeloid

leukemia (Strathdee et al., 2007).

Loss of CpG Methylation in Tissue-Specific Genes

during Tumorigenesis

DNA hypomethylation in tumors has been associated with the

activation of expression of a discrete number of genes (Baylin

et al., 1998). The major contribution of DNA hypomethylation to

tumor development is its association with genomic instability,

through the deregulation of transposable elements, pericentro-

meric regions, or activation of endoparasitic sequences.

However, the range of affected loci also includes growth regula-

tory genes, imprinted genes, developmentally critical genes, and
D

tissue-specific genes. Of the latter, the best characterized are

the germ-cell-specific tumor antigen genes such as the MAGE,

BAGE, LAGE, and GAGE gene families. Repression of these

germline-specific genes (CG genes) in normal somatic tissues

is because of DNA methylation (De Smet et al., 1999), but these

CG genes are expressed in histologically distinct types of malig-

nant human tumors and transcriptional activation is correlated

with hypomethylation (Weber et al., 2007; Almeida et al., 2009).

The main consequence of the activation of CG genes in cancer

is the production of tumor-specific antigens leading to immune

rejection. Examples of CG genes hypomethylated in cancer are

widely reported in the literature, including theMAGE gene family

in testicular and hepatocellular cancer (De Smet et al., 2004; Qiu

et al., 2006) and the BAGE loci in breast, ovarian, and myeloma

cancer (Grunau et al., 2005).

Although other genes—such as synuclein gamma (associated

with metastasis; Gupta et al., 2003), S100P, and claudin-4 (Sato

et al., 2004)—are known to be hypomethylated in cancers, the

correlation between promoter hypermethylation and gene

repression seems less straightforward in these cases (Dokun

et al., 2008).

Deregulation of miRNAs in Cancer Cells

The deregulation of miRNA expression has also been linked

to human developmental defects and to tumor progression.

miRNAs can function as tumor suppressors or oncogenes,

depending upon their target genes. Changes in miRNA expres-

sion can be achieved through various mechanisms, including

chromosomal abnormalities, transcription factor binding, and

genetic alterations (Deng et al., 2008). For example, miRNA

expression and activity can be influenced by impairment of

miRNA processing machinery, such as the recently identified

mutations of TRBP2 (an essential functional partner of the

DICER1 complex) in sporadic and hereditary carcinomas with

microsatellite instability (Melo et al., 2009).

In addition, the expression of miRNAs may be affected by

epigenetic changes, such as the methylation of CpG islands

and accompanying changes in histone modifications. The initial

report by Saito et al. (2006) demonstrated that mir-127, which

has tumor-suppressor properties, was suppressed by promoter

hypermethylation in cancer cells from different tissue types.

Furthermore, this epigenetic repression of mir-127 was associ-

ated with changes in histone modifications and may be reversed

by adding chromatin-modifying drugs (Saito et al., 2006) in T24

bladder cancer cells. Subsequently, using DNA methyltransfer-

ase DNMT1 and 3b mutant cells, mir-124a was identified as an

epigenetically regulated modulator of the expression of the

CDK6 tumor-suppressor, which phosphorylates Rb. mir-124a

CpG hypermethylation recruits MeCp2 and MBD2 transcrip-

tional repressors and is associated with a reduction in active

histone marks, such as acetylation of histones H3 and H4 and

trimethylation of histone H3 (lysine 4) in human cancer cells.

DNA demethylation drugs could revert this phenotype (Lujambio

et al., 2007). Indeed, several groups have now used strategies

based on the treatment of cancer cell lineswithDNA-demethylat-

ing reagents and/or histone deacetylase inhibitors in vitro to

study changes inmiRNAexpression (Lujambio et al., 2008;Grady

et al., 2008; Kozaki et al., 2008; Furuta et al., 2010). These works

enabled awide range of tumor-suppressormiRNAswith aberrant

hypermethylation to be identified in several types of cancer,
evelopmental Cell 19, November 16, 2010 ª2010 Elsevier Inc. 703
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such as mir-9-1 (Lehmann et al., 2008), mir-193a (Kozaki

et al., 2008), mir-137 (Kozaki et al., 2008), mir-342 (Grady et al.,

2008), mir-203 (Bueno et al., 2008), mir-34b/c (Toyota et al.,

2008), and mir-1 (Datta et al., 2008). These miRNAs are, in turn,

associated with the deregulation of key genes such as CDK6,

TGIF2 (Lujambio et al., 2008), or centralmediators ofp53 function

(Bommer et al., 2007). Likewise, the SOX4 oncogene is the

target of mir-129-2 and is overexpressed in endometrial cancer

when mir-129-2 is aberrantly hypermethylated (Huang et al.,

2009). These findings suggest that the profile of miRNAmethyla-

tion could be a useful tool in cancer diagnosis and prognosis.

Interestingly, as seen during normal development (q.v. mir-137

and EzH2 discussed above), cancers can also use miRNAs

reciprocally to target the epigenetic machinery. For example, in

prostate and bladder tumors (Varambally et al., 2008), EzH2 is

regulated by mir-101 instead of mir-137. Prostate cancer cells

(Noonan et al., 2009) control HDAC1 via mir-449a. And mir-29b

directly represses expression of DNMT3A and DNMT3B, result-

ing in DNA hypomethylation in acute myeloid leukemia (Garzon

et al., 2009). Re-expression of mir-143, which also controls

DNMT3A expression, reduces tumor cell proliferation in in vitro

colon cancer cells (Ng et al., 2009). All of these reports strongly

suggest important mechanisms of crosstalk between miRNAs,

DNA methylation, and histone modifications. Indeed, there is

increasing information about the specific epigenetic control of

miRNA clusters, defined as a set of miRNAs grouped by their

close proximity or sequence conservation (Tsai et al., 2009). A

comprehensive analysis showed that approximately 37% of all

known human miRNAs appear in clusters (Altuvia et al., 2005).

Expression of a large miRNA cluster located on human chromo-

some 19 (C19MC) was observed in normal placental tissue but

was repressed in cervical cancer cell lines and gastric cancer

cells. These differential patterns of expression correlate well

with the hypomethylated or hypermethylated status in normal

or cancer cells, respectively (Tsai et al., 2009).

Tissue-Specific Aberrations of Histone

Modifications in Cancer

Although alterations in the levels of DNA methylation are

commonly observed in cancer, no clear genetic lesions have

been described in the DNA-methylation machinery in cancer

cells. However, histone-modifier genes have tissue-type-

specific patterns of expression in cancer, which could explain

the differences in specific histone modifications between tumor

types (Ozda�g et al., 2006). Interestingly, genetic alterations of

histone modifiers enzymes are detected in a tissue-specific

manner, and the landscape varies if solid tumors or hematolog-

ical malignancies are compared (Table 1).

For instance, inappropriate silencing of the Nuclear receptor

SET domain protein 1 (NSD1) gene by CpG hypermethylation

of its promoter results in decreases of H3K36me3 and

H4K20me3; this phenomenon plays an important role in the

Sotos overgrowth syndrome and in tumors of the nervous

system (neuroblastomas and gliomas) but is conspicuously

absent from leukemia, lymphoma, and colon or breast cancers

(Berdasco et al., 2009). CpG island hypermethylation has been

also described for the histone methyltransferase RIZ1 in several

types of human cancer (Du et al., 2001). For more information on

the wide variety of genetic alterations in histone modifiers that

have now been observed, see Table 1.
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It is intriguing to note that solid tumors are more commonly

associated with point mutations, deletions, gene amplification,

and alterations in expression levels; however, occasional chro-

mosomal translocations are observed. One example is the zinc

finger gene SUZ12 (suppressor of zeste 12 homolog), which

has been identified at the breakpoints of a recurrent chromo-

somal translocation reported in endometrial stromal sarcoma

(Panagopoulos et al., 2008). The protein is a component of

the PRC2/EED/EZH2 complex, which methylates H3K9 and

H3K27 and is also a recruiting platform for DNA methyltrans-

ferases, leading to the transcriptional repression of affected

target genes (such as HOXC8, HOXA9, MYT1, and CDKN2A).

Recombination of SUZ12 results in fusion with the zinc finger

domain protein JAZF1, affecting cell proliferation and survival

through a pathway that depends on H3K27me3 levels (Li et al.,

2007).

Such chromosomal translocations are much more common in

hematological malignancies than in solid tumors. The mixed-

lineage leukemia 1 (MLL1/ALL-1/HRX) histone methyltransfer-

ase is commonly found fused by translocation to one of more

than 50 known partners in aggressive myeloid and lymphoid

leukemias (Canaani et al., 2004). MLL1 regulates transcription

at least in part by means of H3K4 methylation, and it controls

the expression of HOX genes (Mishra et al., 2009) and NF-kB

pathway genes (Robert et al., 2009). Other histone methyltrans-

ferases are also affected by chromosomal translocations, such

as NSD1 (Cerveira et al., 2003) or DOT1L (Okada et al., 2005).

The human DOT1L interacts with AF10, an MLL fusion partner,

causing leukemic transformation in an hDOT1L methyltransfer-

ase activity-dependent manner (Okada et al., 2005), resulting

in the upregulation of several leukemia-relevant genes, such as

HoxA9 (Okada et al., 2005). Interestingly, DOT1L is not recruited

to the promoters that are DNA promoter demethylated after

5-aza-deoxycytidine treatment or genetic deletion of DNAmeth-

yltransferases (Jacinto et al., 2009), suggesting that DNA deme-

thylating interventions alone are not able to restore complete

euchromatic status and full transcriptional reactivation of the

epigenetically silenced tumor-suppressor genes. Regarding

aberrant lysine acetylation, the genes encoding p300, CBP

(CREB binding protein), MOZ, and MORF histone acetyltrans-

ferases are frequently rearranged in recurrent leukemia-associ-

ated chromosomal abnormalities (Yang, 2004). Mistargeting

of such translocations contributes to global alterations in

histone acetylation patterns. In addition, at a specific level, this

leukemia-associated MOZ-CBP fusion protein inhibits p53-

mediated transcription (Rokudai et al., 2009). So far, no roles

for MLL1 and MOZ disruptions have been proposed in solid

tumors. A more detailed list of chromosomal translocations

affecting histone modifiers could be found in Table 1.

Induced-Cell Differentiation Mediated

by Epigenetic Therapy

Unlike genetic alterations, epigenetic changes are potentially

reversible. Reactivation of epigenetically silenced genes has

been possible for years by treatment with DNA demethylation

drugs, such as zebularine and 5-aza-20- deoxycytidine (5-ADC),

or with histone deacetylase (HDACs) inhibitors, including SAHA

(suberoylanilide hydroxamic acid), valproic acid (VPA), and

trichostatin A (TSA). Indeed, some of these drugs have shown

significant antitumor activity, and the US Food and Drug



Table 1. A Representative List of Histone Modifiers Disrupted in Cancers

Gene Name Substrate Specificity Genetic Defect

Gain or Loss

of Function Tumor Type References

PubMed

ID Numbers

Histone acetyltransferases (HATs)

*CBP (KAT3A) H2AK5, H2BK12,

H2BK15, H3K14,

H3K18, H4K5, H4K8

deletion loss ALL; lung Shigeno et al. (2004);

Kishimoto et al. (2005)

15312679;

15701835

CBP (KAT3A) H2AK5, H2BK12,

H2BK15, H3KI14,

H3K18, H4K5, H4K8

mutation loss lung; MSI+ Kishimoto et al. (2005);

Ionov et al. (2004)

15701835;

14732695

*CBP (KAT3A) H2AK5, H2BK12,

H2BK15, H3KI14,

H3K18, H4K5, H4K8

translocation loss AML Panagopoulos et al.

(2001, 2003)

11157802;

12461753

*p300 (KAT3B) H2AK5, H2BK12,

H2BK15

deletion loss cervix; ALL Ohshima et al. (2001);

Shigeno et al. (2004)

11181085;

15312679

p300 (KAT3B) H2AK5, H2BK12,

H2BK15

mutation loss breast; CRC Gayther et al. (2000) 10700188

*p300 (KAT3B) H2AK5, H2BK12,

H2BK15

translocation loss AML Ida et al. (1997);

Chaffanet et al. (2000)

9389684;

10824998

pCAF (KAT2B) H3K9, H3K14,

H3K18; H2B

mutation loss epithelial

cancer

Ozda�g et al. (2002);

Zhu et al. (2009)

12402157;

19525977

*MORF (KAT6B) H3K14; H4K16 translocation loss AML Panagopoulos et al. (2001) 11157802

*MOZ (KAT6A) H3K14; H4K16 translocation loss AML Chaffanet et al. (2000);

Panagopoulos et al. (2003)

10824998;

12461753

Histone Methyltransferases (HMTs)

*DOT1L (KMT4) H3K79 translocation loss AML Okada et al. (2005) 15851025

EZH2 (KMT6) H3K27 amplification gain prostate Bracken et al. (2003) 14532106

*EZH2 (KMT6) H3K27 mutation loss lymphoma Morin et al. (2010) 20081860

G9a (KMT1C) H3K9 overexpression gain HCC Kondo et al. (2000) 11050047

*MLL1 (KMT2A) H3K4 translocation loss AML, ALL reviewed in Miremadi

et al. (2007)

17613546

*MLL3 (KMT2C) H3K4 deletion loss leukemia Tan and Chow (2001) 11718452

NSD1 (KMT3B) H3K36, H4K20 CpG hypermethylation loss neuroblastoma,

glioma

Berdasco et al. (2009) 20018718

*NSD1 (KMT3B) H3K36, H4K20 translocation loss AML Jaju et al. (2001) 11493482

NSD3 H3K4, H3K27 amplification gain breast Angrand et al. (2001) 11374904

RIZ1 (KMT8) H3K9 CpG hypermethylation loss breast, liver Du et al. (2001) 11719434

SMYD2 (KMT3C) H3K36 amplification gain ESCS Komatsu et al. (2009) 19423649

SUZ12

(HMT complex)

H3K9, H3K27 translocation loss ESS Li et al. (2007);

Panagopoulos et al. (2008)

18077430,

18722875

Histone deacetylases (HDACs)

HDAC2 Many acetyl residues

(except H4K16)

mutation loss MSI+ Ropero et al. (2006);

Hanigan et al. (2008)

16642021;

18834886

Histone demethylase (HDMTs)

GASC1 (KDM4C) H3K9, H3K36 amplification gain ESCS; lung;

breast

Cloos et al. (2006);

Italiano et al. (2006);

Liu et al. (2009)

16732293;

16737911;

19784073

LSD1 ((KDM1) H3K4, H3K9 amplification gain prostate; bladder;

lung; CRC

Kahl et al. (2006);

Hayami et al. (2010)

17145880;

20333681

UTX (KDM6A) H3K27 mutation loss multiple types van Haaften et al. (2009) 19330029

Enzymes are grouped according to their catalytic activity, including histone acetyltransferases (HATs), histonemethyltransferases (HMTs), histone de-

acetylases (HDACs) and histone demethylases (HDMTs). Hematological malignancies commonly exhibit chromosomal translocations; while solid

tumors are more often affected by different genetic and epigenetic alterations, such as CpG promoter hypermethylation, deletions, point mutations

or gene amplification. ALL, acute lymphoblastic leukemia; AML, acute myeloid leukemia; CRC, colorectal carcinoma; ESCS, esophageal squamous

cell carcinoma; ESS, endometrial stromal sarcomas; HCC, hepatocellular carcinoma;MSI+, colorectal carcinomawith microsatellite instability. Genes

affected in leukemia are marked with an asterisk (*).
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Administration (FDA) has approved the use of some of them to

treat patients (Esteller, 2005; Kaminskas et al., 2005; Fiskus

et al., 2008; Scuto et al., 2008). However, as we have discussed

above, removing DNA methylation is often insufficient to reacti-

vate gene expression; further study of the interplay with other

chromatin modifications is, therefore, essential. Although this

process is far from trivial, the investment in high-throughput

genetic and biochemical analyses to identify the enzymatic path-

ways involved in the epigenetic machinery is further warranted

by evidence that epigenetic therapy may be applicable to other

disorders as well. As an example, the binding of histone acetyl-

transferase CBP (CREB-binding protein) promotes the activation

of neuronal, astrocytic, and oligodendroglial differentiation

genes (Wang et al., 2010). A recent study demonstrated that

CBP-knockdown mice exhibit a range of cognitive defects

because of impartial cortical precursor differentiation and,

most important, that this phenotype could be reversed by inhibi-

tion of HDACs with TSA (Wang et al., 2010). In addition, in vitro

treatment with chromatin-modifying drugs can alter the potential

of pluripotent and multipotent stem cells to differentiate in vitro

into several lineages. As just one example, the use of DNA deme-

thylation treatment (5-ADC) promotes differentiation of multipo-

tent cells into cardiac myogenic cells (Choi et al., 2004) and

drives the osteogenic differentiation of mesenchymal stem cells

(Zhou et al., 2009).

Bearing in mind this capacity for ‘‘resetting,’’ there are several

examples of how epigenetically deregulated tissue-specific

genes in cancer could restore their differentiated phenotype.

Two different strategies for correcting the aberrant patterns

may be employed: first, by treatment with an epigenetic drug

that directly restores the epigenetic alteration and, second, if

an epigenetic modifier is altered, it is possible to restore the

expression of the gene by genetic techniques. As an example

of the first strategy, an effective use of zebularine in the treatment

of T cell lymphoma has been proposed (Herranz et al., 2006). In

this study, all the animals presented large thymic T lymphomas

but only zebularine-treated mice were able to survive. Interest-

ingly, after treatment, the animals presented a thymus structure

and volume similar to those of normal (non-tumor-prone) mice

(Herranz et al., 2006). As an example of the second strategy,

the in vitro restoration of histonemethyltransferaseNSD1 activity

in neuroblastoma cells that do not express the enzyme was

associated with an increase of glial differentiation (Berdasco

et al., 2009). These results highlight the advantages of epigenetic

therapy in cancer treatment by restoring normal expression of

differentiation-related genes.

Concluding Remarks
It has become increasingly clear that epigenetic mechanisms

play a central role in cellular differentiation and that their dereg-

ulation can contribute to cancer development. In addition to the

epigenetic inactivation of classical tumor-suppressor genes,

there is new evidence that tissue-specific genes may also be

targets for epigenetic deregulation in cancer. Furthermore, aber-

rant profiles of CpG promoter hypermethylation and histone

marks in tumors are not exclusively observed in promoters of

tumor-suppressor genes because promoter hypermethylation

of miRNAs or even the epigenetic machinery itself (NSD1,

RIZ1) could be affected in a tissue-dependent manner. These
706 Developmental Cell 19, November 16, 2010 ª2010 Elsevier Inc.
findings underline the necessity of evaluating the potential of

epigenetic drugs to erase the pre-established patterns of epige-

netic marks in cancer therapy. Epigenetic factors are highly

dynamic, which means that they are stable, but not static, and

can be modulated by the environment. How dynamic are the

epigenetic profiles of adult differentiated cells? In differentiated

cells, epigenetic marks with short-term flexibility (which could

be removed after a few divisions) coexist with long-term and

more stable marks (maintained for many divisions). According

to Waddington’s epigenetic landscape, it has been accepted

that, during differentiation, there is an increased presence of

stable repressive marks in those genes that are no longer

required, such as pluripotency or nonessential tissue-specific

genes. Indeed, for somemultipotent progenitors, one of the hall-

marks of their plasticity lies in their ability to maintain simulta-

neous expression of diverse competing transcription factors

that would otherwise be tissue-specific and, indeed, drive diver-

gent modes of downstream differentiation (Chang et al., 2008).

Recent investigations have revealed a new complexity to the

concept of cell flexibility and differentiation in animals. Under

certain experimental conditions, differentiated cells can revert

to a less differentiated state in a process known as ‘‘reprogram-

ming.’’ A mature cell can be converted into a pluripotent state by

the in vitro application of a defined set of transcription factors,

creating induced pluripotent stem cells (iPSCs). Generation of

iPSCs has been possible inmany cell types derived from all three

germ layers, implying the operation of ‘‘epigenetic reprogram-

ming.’’ In fact, there is evidence that HDAC inhibitors and G9a

inhibitors are useful in this regard (Huangfu et al., 2008; Shi

et al., 2008). These studies have suggested that the roles of

such factors may be analogous in normal development and in

diseases associated with loss of differentiation, such as cancer.

Consequently, they provide new opportunities for therapy strat-

egies. Further understanding of the epigenetic regulation of

tissue-specific genes along with the development of more

specific epigenetic drugs may hold the key to our ability to

successfully reset the abnormal cancer epigenome.
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Induction of pluripotent stem cells from mouse embryonic fibroblasts by Oct4
and Klf4 with small-molecule compounds. Cell Stem Cell 3, 568–574.

Shigeno, K., Yoshida, H., Pan, L., Luo, J.M., Fujisawa, S., Naito, K., Nakamura,
S., Shinjo, K., Takeshita, A., Ohno, R., and Ohnishi, K. (2004). Disease-related
potential of mutations in transcriptional cofactors CREB-binding protein and
p300 in leukemias. Cancer Lett. 213, 11–20.

Silber, J., Lim, D.A., Petritsch, C., Persson, A.I., Maunakea, A.K., Yu, M., Van-
denberg, S.R., Ginzinger, D.G., James, C.D., Costello, J.F., et al. (2008). miR-
124 and miR-137 inhibit proliferation of glioblastoma multiforme cells and
induce differentiation of brain tumor stem cells. BMC Med. 6, 14.

Silbergeld, E.K., Waalkes, M., and Rice, J.M. (2000). Lead as a carcinogen:
experimental evidence and mechanisms of action. Am. J. Ind. Med. 38,
316–323.

Song, F., Smith, J.F., Kimura, M.T., Morrow, A.D., Matsuyama, T., Nagase, H.,
and Held, W.A. (2005). Association of tissue-specific differentially methylated
regions (TDMs) with differential gene expression. Proc. Natl. Acad. Sci. USA
102, 3336–3341.

Strathdee, G., Davies, B.R., Vass, J.K., Siddiqui, N., and Brown, R. (2004). Cell
type-specific methylation of an intronic CpG island controls expression of the
MCJ gene. Carcinogenesis 25, 693–701.



Developmental Cell

Review
Strathdee, G., Sim, A., Soutar, R., Holyoake, T.L., and Brown, R. (2007).
HOXA5 is targeted by cell-type-specific CpG islandmethylation in normal cells
and during the development of acute myeloid leukaemia. Carcinogenesis 28,
299–309.

Szulwach, K.E., Li, X., Smrt, R.D., Li, Y., Luo, Y., Lin, L., Santistevan, N.J., Li,
W., Zhao, X., and Jin, P. (2010). Cross talk between microRNA and epigenetic
regulation in adult neurogenesis. J. Cell Biol. 189, 127–141.

Tan, Y.C., and Chow, V.T. (2001). Novel human HALR (MLL3) gene encodes
a protein homologous to ALR and to ALL-1 involved in leukemia, and maps
to chromosome 7q36 associated with leukemia and developmental defects.
Cancer Detect. Prev. 25, 454–469.

Toyota, M., Suzuki, H., Sasaki, Y., Maruyama, R., Imai, K., Shinomura, Y., and
Tokino, T. (2008). Epigenetic silencing of microRNA-34b/c and B-cell translo-
cation gene 4 is associated with CpG island methylation in colorectal cancer.
Cancer Res. 68, 4123–4132.

Tsai, K.W., Kao, H.W., Chen, H.C., Chen, S.J., and Lin,W.C. (2009). Epigenetic
control of the expression of a primate-specific microRNA cluster in human
cancer cells. Epigenetics 4, 587–592.

Valley, C.M., Pertz, L.M., Balakumaran, B.S., and Willard, H.F. (2006). Chro-
mosome-wide, allele-specific analysis of the histone code on the human X
chromosome. Hum. Mol. Genet. 15, 2335–2347.

van Haaften, G., Dalgliesh, G.L., Davies, H., Chen, L., Bignell, G., Greenman,
C., Edkins, S., Hardy, C., O’Meara, S., Teague, J., et al. (2009). Somatic muta-
tions of the histone H3K27 demethylase gene UTX in human cancer. Nat.
Genet. 41, 521–523.

Varambally, S., Cao, Q., Mani, R.S., Shankar, S., Wang, X., Ateeq, B., Laxman,
B., Cao, X., Jing, X., Ramnarayanan, K., et al. (2008). Genomic loss of micro-
RNA-101 leads to overexpression of histone methyltransferase EZH2 in
cancer. Science 322, 1695–1699.

Wang, J., Weaver, I.C., Gauthier-Fisher, A., Wang, H., He, L., Yeomans, J.,
Wondisford, F., Kaplan, D.R., and Miller, F.D. (2010). CBP histone acetyltrans-
ferase activity regulates embryonic neural differentiation in the normal and
Rubinstein-Taybi syndrome brain. Dev. Cell 18, 114–125.

Waterland, R.A., Lin, J.R., Smith, C.A., and Jirtle, R.L. (2006). Post-weaning
diet affects genomic imprinting at the insulin-like growth factor 2 (Igf2) locus.
Hum. Mol. Genet. 15, 705–716.
D

Weber, M., Hellmann, I., Stadler, M.B., Ramos, L., Pääbo, S., Rebhan, M., and
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