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Unlike stochasttc ordering (s”), which is preserved under convolution (i.e., summation of 

independent random variables), so far it is only known that likelihood ratio ordering (2”) is 

preserved under convolution of log-concave (IF,) random variables. In this paper we define a 

stronger version of likelihood ratio ordering, termed shifted likelihood ratio ordering (2:) and 

show that it is preserved. under convolution. An application of this closure property to closed 

queueing network is given. Other properties of shifted likelihood ratio ordering are also discussed. 

AMS Subject Classijications: Primary 6OG99; Secondary 15A45. 
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tional stochastic order 

1. Introduction 

Likelihood ratio ordering (Karlin, 1957; Lehmann, 1959) prevalent in stochastic 

processes is very usefu! in developing bounds and approximation for performance 

measures of stochastic systems. Two random variables X and Y are ordered in the 

sense of likelihood ratio ordering (i.e. X >lr Y) when the ratio fx (x)/fy (x) of their 

probability density functions is non-decreasing in x. Several useful properties of 

likelihood ratio ordering, its equivalence to uniform stochastic ordering and its 

extension to the multivariate setting can be found in Karlin and Rinott (1980), 

Keilson and Sumita (1982), and Whitt (1980, 1982). In our attempt to develop 

bounds for the throughput of closed queueing networks, we needed to consider the 
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sums of such ordered pairs of independent random variables, say (Xi zlr Yi), 

i=l,2,..., m. Therefore it is of interest to know whether or not the following is true: 

; xi 9 ; r;. 
i=* i=l 

(1.1) 

Without additional condition on (Xi, Y,), i = 1,2,. . . , m, the above inequality need 

not be true. From Keilson and Sumita (1982, Theorem 2.1(d)) it is known that if 

2 has a log-concave density function and X zlr Y, then X + 2 >lr Y f 2. If Xi 2” Yi, 

i = 1,2 and both Y, and X, have log-concave density functions one easily sees that 

x,+x2 *lr y1+x2 air Y, + Y2. Using this and the preservation of the log-concavity 

under convolution (Karlin and Proschan, 1960), one has 

Lemma 1.1. Suppose (Xi, Yi), i= 1,2,. . . , m, are independent pairs of random 

variables such that: 

(a) Xi zlr x, i = 1,2,. . . , m, and 

(b) X,, yI, i = 1,2,. . . , m, all have log-concave density function, except for possibly 

one X, and one Yk (lf k). Then (1.1) is true. 

In this paper we define a stronger version of likelihood ratio ordering called 

shifted likelihood ratio ordering (2 F) and show that it is closed under convolution. 

The condition needed for this closure property is, however, weaker than (b). 

In Section 2 we give some preliminaries needed in our analysis. The main results 

of this paper are presented in Section 3. Section 4 contains an application of our 

main result to closed queueing networks. 

2. Preliminaries 

The following notations and conventions will be used throughout this paper. 

N(N+, N++) denotes the set of (non-negative, positive) integers; R(R+, R++) 

denotes the set of (non-negative, positive) real numbers. Two functions f, g : R + R 

satisfying f(x) 2 g(x) for all x in the definition domain will be denoted by fag. 

ft (fi) means that f is an increasing (decreasing) function. The terms increasing 

and decreasing are not used in the strict sense. Let S(X) denote the support of a 

random variable X, i.e. S(X) = {x:fx(x) >O, x E R} where fx is the probability 

density function of X. Except in Remark 3.5, for any random variable X under 

consideration, S(X) = (0, 1,2, . . . , N} where N is a finite or an infinite integer. 

Definition 2.1. The equilibrium rate of a random variable X, rx(n), is a function: 

S(X) + R, , defined as 

rx (0) = 0, rx(n) = P[X = n - l]/P[X = n], n E S(X)-(O). 

Definition 2.2. A random variable X (or its distribution) is said to be log-concave 

or PF2 (Polya frequency of order 2), denoted as X E PF, , if rx t. 
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Definition 2.3. Two random variables X and Y have a common support. X domi- 

nates Y in the sense of likelihood ratio, denoted as X sir Y if r, 5 ry. 

Remark 2.4. It is known that X 2 lr Y+ X 3 St Y while the reverse need not be true 

(Ross, 1983, Chapter 8; pSf denotes stochastic ordering). 

The next definition and lemma will be needed to define and characterize the 

shifted likelihood ratio ordering. 

Definition 2.5. f; g : R + R are two functions. Define f ar g if for any x, y in their 

definition domain x 2 y *f(x) 2 g(y). 

Lemma 2.6. (i) fat g+f zg. 

(ii) If either f? or gt (or both) then f at g-f 2 g. 

(iii) f Zrg++f(x+y)3g(y), x30. 

(iv) f st gt, there exists an hT such that f 2 h 2 g. 

Proof. (i), (ii) and (iii) are obvious. For (iv) + , let h(x) = maxysx g(y), and for (iv) 

t observe that for any x 2 y, f(x) 2 h(x) 2 h(y) 2 g(y). 

Combining Definitions 2.1, 2.3 and 2.5, we define a stronger version of likelihood 

ratio ordering. 

Definition 2.7. X and Y are two random variable with the same support. X is larger 

than Y in the shifted likelihood ratio ordering (denoted X >)r Y) if rY 2? rx. 

Taking into account Definitions 2.2, 2.3 and 2.5, we have, parallel to Lemma 2.6. 

Theorem 2.8. (i) X 2 f Y + X air Y. 

(ii) IfeirherXEPF, or YEPF~ (orboth) thenX3: YHXL”Y. 

(iii) X a’f jr Y-X sir {Y-yjYZy}, YEN+, iV=+oo. 

(iv) X 2: Y c, there exists a Z E PF, such that X >‘I Z zLr Y 

3. The main results 

We will first establish a stochastic monotonicity property of birth-death processes. 

We will use this result to establish the closure property of shifted likelihood ratio 

ordering under convolution. Furthermore, this monotonicity property complements 

the results of Keilson and Kester (1977, 1978) and Keilson and Sumita (1982) for 

birth-death processes and may be of independent interest on its own. 
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Theorem 3.1. {N’(t)} is a birth-death process on (0, 1, . . . , n} governed by downward 
transition rates pi(k) = rf(k) (0~ ks n) [r;(O) = 0] and upward transition rates 
A’(k)=rk(n-k)(OSkSn) [r:(O)=O]f or i = 1,2. Let D;(t) be the number ofdown- 
ward (j = 1) and upward (j =2) transitions of {N’(t)} in the interval (0, t]. Then 

{(N(t), G(t))) >“‘{(mt), @(t))I, if 
(i) rj2afr!,j=l,2, and 

(ii) N’(0) =st N2(0). 

Proof. For notational convenience let Xi(t) = N’(t), X:(t) = n -Xi(t), Xi(t) = 
(Xf(t),X:(t)) and Di(f)=(#(t), D;(t)), ts0 (i=l,2). We shall construct the 

processes {(i(t), 8’(t))} (i = 1,2) on the same probability space (0, F, P), such 

that they have the same probability distributions as {(Xi(t), Di( t))} (i = 1,2). The 

conclusion of Theorem 3.1 will then be proved by proving the pathwise probability- 

one dominance b2( t) 2 I?‘(t). 

Let T = ( Tk);P=,, (To = 0) be the sequence of arrival epochs of a Poisson process 

with rate A = 2 max,,,,, {rj(k)li=l,2;j=l,2},and U,=(U,,)~=‘=,(1=1,2)betwo 

sequences of i.i.d. random variables uniformly distributed on (0,l). For w E a, let 

rk = Tk(w) and u,~U,~(W) (I = 1,2; k = 1,2,. . .) be the sample points of T and U,. 

For t,, = 0, set 

i’(O) = i’(O) and I?‘(O) = b2(0) = (0,O). 

Consider w E 0. For the processes to be constructed, possible changes of states can 

only occur at time points t, (k = 1,2,. . .). Given the states of gi and fii (i = 1,2) 

at tk-r, we specify in the following the states at rk. At fkpl, the downward and 

upward transition rates are rj(??j( tk_l)), j = 1,2, for i = 1,2; denote these simply as 

rj. Let Rj =max{rj, r,?} (j = 1,2). The specifications of 2; and 6: (at tk) are 

summarized in Table 1 (for the time being, ignore the last four columns in the table). 

Table 1 
State transitions (from t,_, to tJ. 

1 
Situation Changes (at tk) 

(1) (R,+R,)lA<u,, 0 0 0 0 0 0 0 0 0 0 0 0 

(11) WA < utli s (4 + &)I A 
(i) R, = rz > ri, ri/ rz 2 uZk +1 0 +1 0 -1 +1 -1 +1 0 0 0 0 
(ii) R, = r$2 r:, r:/r$ < uzk 0 0 +1 0 0 0 -1 +1 -1 0 +1 +1 
(iii) R, = r: > r:, rz/ ri 3 uZk +1 0 +1 0 -1 +1 -1 +1 0 0 0 0 
(iv) R, = r: > r:, r:f ri < uzk +1 0 0 0 -1 +1 0 0 +1 0 -1 -1 

(III) &IA 3 qlr 
(i) R,=rf>ri,ri/r:~=u~~ -1 +1 -1 +1 +1 0+1 0 0 0 0 0 
(ii) R,=rf2r~,r~/rf<u,, 0 0 -1 +1 0 0 +1 0 +1 +1 -1 0 
(iii) R, = r: > r:, rf/r: 2 ulk -1 +1 -1 +1 +1 0+1 0 0 0 0 0 
(iv) R, = r: > rf, rf/r: < uZk -1 +1 0 0+1 0 0 0 -1 -1 +1 0 
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For instance, situation II(i) corresponds to the case that in both birth-death processes 

an upward transition occurs. (“0” indicates no change.) 

It can be readily verified that the processes so constructed, {(i’(t), fi’(t))} (i = 

1,2), have the same transition rates and hence the same probability laws as ({Xi(t)}, 

{oi(t)}) (i = 1,2), respectively. 

Let S,( fk) = ri,‘( tk) - g;( tk) and Aj( tk) = rif( tk) - fij(t,), for all k = 1,2, . . . , and 

j = 1,2. To prove the proposition, it suffices to prove Aj(fk) 3 0 for j = 1,2 and all 

k. We prove, instead, the following stronger result: 

Aj(tk)zmax{Sj(tk), 0). (3.1) 

We use induction. Changes of Sj and A, (j = 1,2) at tk (from tk_,) are summarized 

in the last four columns of Table 1. The validity of (3.1) at t, is readily checked 

based on the initial conditions and Table 1 (in this case, situations II and III(iv) 

cannot happen, due to assumption (i)). Suppose (3.1) is valid at tk_l, then it is 

obviously valid at tk under all situations in Table 1, except (perhaps not so obviously) 

II and III(iv). Consider II( because of (i) at t&l we must have *:> 2: or 

equivalently 2: < rZ:, i.e., 6i( t&i) < 0 and 6,( t&l) > 0. Therefore 6r( tk) = 

8,(tk_j)+lco and 82(tk)=&(tk_1)-1BO, and hence dl(tk)=dl(t~k-l)~O= 

max{&( tk), o}, and A2( tk) = A,( tk-l) - 1 = max{&( tk_l), 0) - 1 = max{&( tk), 0). That 

is, (3.1) is valid at tk. Situation III(iv) can be similarly argued. 

This completes the induction and concludes the proof of the proposition. 0 

Before proceeding to present our main results we will see how Theorem 3.1 can 

be applied to closed queueing networks. Consider a cyclic queueing network with 

two stations (j = 1,2) and n jobs which cyclically go through the two stations for 

services. Service times at both stations are exponentially distributed and the queue 

discipline is first-come-first-served (FCFS). For station j (j = 1,2), the service rate 

is a function of the queue length nj (i.e., the number of jobs in queue and in service 

at station j), pj(nj). Assume O< pj(nj) < 00 for all nj 2 1 and j = 1,2. Denote the 

network by C( n, p,, pJ. This is a special case of the closed queueing network of 

Gordon and Newell (1967). Observe that the number of jobs at station 1 follows a 

birth-death process with downward transition rates PI(k) (OS k s n) and upward 

transition rates &n -k) (OS k s n) when there are k jobs. Since the number of 

downward transitions Dr( t) is the number of jobs serviced by station 1 during (0, t], 

and the throughput of this network is TH[ C( n, p,, p2)] = lim,,, Oi( t)/ t, one has, 

from Theorem 3.1, 

Corollary 3.2. For the cyclic queueing network as described above t.~; st t_~,!, j = 1,2, 

implies 

TH[C(n, P:, P:)I 2 TH[C(n, CL:, /&I, n 2 1. 

We will next present a lemma that appears to be weaker than the closure property 

we are after. However, we will soon see that this lemma is indeed equivalent to our 

main theorem to follow. 
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Lemma 3.3. Yi and Y: (i = 1,2) are two pairs of independent random variables. 

Yj 2; Yj’ (j=1,2) + y:+ Y; z=‘I Y:+ Y:. 

Proof. To prove Lemma 3.3, we use the construction of a cyclic queueing network. 

Consider two independent random variables Y1 and Y2 with common support 

S={O,l,..., N} (N~oo). First notice the following relation: 

ry+~(n)=~~I:IP[Y,=klPIY2=n-1-kl 
I 2 C;=, P[ YI = k]P[ Y2 = n -k] 

=~~IbFI(k)?;(n-l-k) 

C~=,F,(k)F,(n-k) (n21) (3.2) 

whereforj=1,2, c(k)=[r,(l)**.ry(k)]-’ (kal)and i;j(O)=l. 

Let X = (X,, X,) denote the equilibrium joint queue lengths of the two station 

cyclic queueing network described earlier. It is known that 

p[(X,, X2) = (nl, 41 =fi(nAfi(nz)lG(n) (n, + n2 = n), (3.3) 

where, for j = 1,2, 

A(5)= [ $I h(k)]-’ (njz 1) and A(O) = 1, 

and 

G(n) = i f,(k)fAn -k) 
k=O 

is a normalizing constant. 

The throughput of the network, TH[C(n, F~, &] can be derived as follows: 

WC(n, I+, dl= i dk)PIXI = kl= i dk)p[& = kl 
k=O k=O 

=C;:bf,(k)f,(n-l-k) 

C;=ofi(k)fi(n -k) (n 2 ‘)’ 
(3.4) 

Comparing (3.4) and (3.2), we have 

ry,+-u,(n) =TH[C(n, ry,, ry,)l (n 3 1). (3.5) 

That is, the equilibrium rate of the convolution Y,+ Y2 is equal to the throughput 

of a two-station cyclic queueing network with ryI and ry, being the service rate 

functions of the two stations. This combined with Corollary 3.2 and Definition 2.3 

completes the proof. q 

Now we can present the closure property of shifted likelihood ratio ordering 

under convolution. 
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Theorem 3.4. { Yj; j = 1, . . . , m} (i = 1,2) are two families of independent random 

variables. Then 

YJSFYT(j=1,2 ,..., m)+f Yjzpf YT. 
j=l j=l 

Proof. Consider Theorem 3.4 for m = 2. From Theorem 2.8 (iv), we know that, for 

j=l,2, 

Y; 2; Y,f + y; 9 zj 9 y;, 

where 2, E PF, and 2, E PF, are independent. From Theorem 2.8(ii), this then leads 

to Yj 2 F Zj 2 f Yj’. Therefore, 

Y;+ Y: 9z,+z* 9 Y;+ Y;, 

according to Lemma 3.3, and hence, from Theorem 2.8(iv), 

Y;+ Y: 2:” y:+ Y:, 

since Z, + Z, E PF,. Repeated use of this result (for m = 2) establishes the closure 

property for general m. 0 

Remark 3.5. Let p and 4 be the probability mass vectors (row vectors) of X and 

Y respectively. Then, from Definition 2.7, we have 

(3.6) 

The continuous version of (3.6) is 

x+y* g(x+a) g(y+a) 
f(x) g(Y) 

30 forallx~yanda~0. 

where f ( - ) and g( - ) are densities of X and Y, respectively. Therefore, Theorem 

3.4 also holds in the continuous case through discretization and taking limit. 

4. An application 

One application of the results developed here is to bound the throughput of 

product-form closed queueing networks (CQN). Consider such a CQN with N jobs 

and A4 stations. Let Vi and pi(ni) denote the visit ratio and the service rate (which 

is a function of the queue length) of station i (i = 1, . . . , M). Here, we allow pi(. ) 

to be any function of the queue length at station i (i = 1,. . . , M): increasing, 

decreasing, non-monotonic, and etc. We only require 0 < pi(ni) < 00 for all n, 2 1 

and for all i. Notice that to date all bounds on the throughput of CQN’s have been 



266 J.G. Shanthikumar, D.D. Yao / Likelihood ratio ordering 

restricted to networks with fixed service rates, i.e., the pi’s are fixed constants. Refer 
to Eager and Sevcik (1983), for instance. For all i, define 

and let pi(n) = p ,v for all n > N. Suppose the visit ratios are adequately normalized 
suchthat vi<pfforall i.Let{Y,(i=l,... , M)} be a set of independent random 
variables with the common support S={O, 1,. . . , N, . . .}, and equilibrium rates 
ry,(n)=/&(n)/Vi (i= 1,. . . , M). It is known (Shanthikumar and Yao, 1986) that 
the throughput of the CQN described above, TH(N), is equal to the equilibrium 
rate of CE, k;. That is, for any NZ I, 

(4.1) 

NOW, if we write TH(N) as TH({pi(n)}), where {pi(n)} denotes the set of queue- 
length dependent service rates of the CQN, and define accordingly TH{py} and 
TH{pk} (the throughputs of two CQN’s with fixed service rates, {cl?} and {CL:}, 
respectively), then based on the results developed earlier in this paper, we have 

TH{/J~}~TH{,u~(~)}~TH{/J~}. (4.2) 

The existing bounds for CQN’s with fixed service rates can then be used to bound 
TH{pk} and TH{py}, and hence TH{Fi(n)}. 

In some special cases, e.g., when the stations have multiple parallel servers, bounds 
tighter than those in (4.2) can be developed. For details, refer to Shanthikumar and 

Yao (1985). 
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