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A new class of bivariate survival distributions is constructed from a given family
of survival distributions. The properties of these distributions are analyzed. It is
shown that the same bivariate survival function can be derived using two radically
different concepts: one involves transformation of the well-known bivariate survival
function; the other involves correlated stochastic hazards. The new conditions that
guarantee negative associations of life spans are derived. An exponential representa-
tion of the survival function for two related individuals is derived in terms of the
conditional distribution of the stochastic hazards among survivors. Versions of the
multivariate correlated gamma-frailty model are investigated. � 1999 Academic Press
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1. INTRODUCTION

Survival data used in epidemiology, demography, and biostatistics are
often censored or truncated. In case of survival data for dependent life
spans the problem is even more complicated since one has to consider
simultaneous censoring and truncation for several individuals or units. For
example, in the case of Swedish (Cederlo� f and Lorich, 1978) and Finnish
(Kaprio et al., 1978) twin survival data, both twins had to be alive in a cer-
tain year in order to be included in the sample. Right censoring occurs
when twins are alive at the time of the study or when they are lost from
a follow-up study.

The classical approach to the censoring and truncation problem
(Kalbfleish and Prentice, 1980) is based on some regularity assumptions
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about the censoring and truncation mechanism (i.e., independent censoring
and non-informative censoring). A similar approach may be used for the
multivariate situation (Miller, 1981). It turns out that in this case the
likelihood of the survival data can be represented in terms of the multi-
variate survival function S(x1 , ...xn)=P(T1>x1 , ...Tn>xn) and its partial
derivatives. A specification of the multivariate survival model in terms of
the survival function therefore eases the computational burden of handling
right-censoring and truncation in a maximum likelihood framework.

Let T1 , T2 be dependent life spans, and let Si (xi)=P(Ti>xi), and
S(x1 , x2)=P(T1>x1 , T2>x2) be absolutely continuous univariate and
bivariate survival functions, respectively. The hazard rates +� i (x)=
&d�dx ln S i (x), i=1, 2 are often used in demography, survival analysis,
and biostatistics when analyzing univariate survival data. Two conditional
hazards associated with S(x1 , x2) play an important role in applications
related to the analysis of data involving dependent durations. These are
+� i (xi , xj), which is the hazard of failure for Ti given Tj>xj ; i, j=1, 2; i{ j
defined as

+� i (xi , x j)= lim
2x � 0

1
2x

P(xi�Ti<xi+2x | Ti>x i , Tj>xj)

=&
�

�xi
ln S(xi , xj) (1)

i=1, 2; and +~ i (xi ; x j), which is the hazard of failure for Ti given T j=xj ,

+~ i (xi ; x j)= lim
2x � 0

1
2x

P(xi�Ti<xi+2x | Ti>x i , Tj=xj)

=&
�

�xi
ln \&

�
�xj

S(xi , x j)+ (2)

with i, j=1, 2; i{ j. These hazards describe the chances of failure at age x
for the ith unit given the failure history of jth unit; hazard (1) uses the con-
dition [Tj>xj], (i.e., the j th unit is functioning at age xj), and hazard (2)
is conditional on [Tj=xj], (i.e., the j th unit fails at age xj). The deviation
of the ratio of these hazards from 1 characterizes the measure of mutual
dependence of respective life spans (Oakes, 1989). One way of deriving a
bivariate survival model is based on the introduction of relations between
these hazards. For example, the condition

+~ i (xi ; x j)=(1+%) +� i (xi , x j) (3)
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uniquely (up to the marginal distributions) defines a bivariate survival
function S(x1 , x2) (Clayton, 1978; Cox and Oakes, 1984) as

S(x1 , x2)=(S1(x1)&%+S2(x2)&%&1)&1�%. (4)

An advantage of model (4) is that the value of (1+%) has an appealing
interpretation, in that it is the relative risk associated with the history of a
non-surviving relative or unit.

A different approach used for deriving multivariate survival model is
based on the notion of a random hazard. In many applications, chances of
failure for related units are described in terms of random hazards and their
joint distribution function. Frequently the random hazard structure is
induced by dependence of the hazard functions on some unobserved ran-
dom variables. For example, in genetic epidemiology the random hazard
rates +i (x, Yi), i=1, 2, for two related individuals (e.g., twins) depend on
``liability'' variables Yi , which follow a bivariate normal distribution
(Meyer and Eaves, 1988; Meyer et al., 1991). In this case the relationship
between this and marginal hazard +� i (x) is +� i (x)=E(+i (x, Yi) | Ti>x),
i=1, 2. To analyse data on matched-pair experiments in epidemiology and
biostatistics, models of gamma-distributed shared frailty with hazards
+i (Z, x)=Z+0i (x), i=1, 2, where Z is called ``frailty'' and +0i (x) is the
underlying hazard, are often used (Holt and Prentice, 1974; Clayton, 1978).
In genetic studies of aging and longevity, correlated frailty models with
hazard rates +i (Zi , x)=Zi +0i (x) are used (Yashin and Iachine, 1997). In
the case of two gamma-distributed frailties with both means equal to one,
equal variances _2

1=_2
2=% and correlation coefficient \z�0, the bivariate

survival function is

S(x1 , x2)=S1(x1)1&\z S2(x2)1&\z (S1(x1)&%+S2(x2)&%&1)&\z�%. (5)

This is the case of the correlated gamma-frailty model used in the analysis
of survival data on related individuals (Yashin and Iachine, 1997). The
family of probability distributions characterized by (5) belongs to a large
class of distributions determined up to their marginals (e.g., Schweizer and
Sklar, 1983). When frailties of related individuals are equal (i.e.,
Z1=Z2=Z), Eq. (5) represents the survival function for the shared
gamma-frailty model. In this case \z=1, and (5) coincides with (4). Thus,
there are two derivations of (4) based on radically different concepts: one
exploits assumption (3), which concerns proportionality of conditional
hazards +� i (xi , xj) and +~ i (xi ; xj); the other uses the concept of random
hazards with gamma-distributed shared frailty.

An interesting question concerning representation (5) is whether it can
be derived without the use of the concept of frailty. To answer this ques-
tion, a deeper investigation of the relation between the hazards (1), (2) and
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the random hazards +i (Zi , x), i=1, 2, is needed. Another important ques-
tion is whether equation (5) can determine bivariate survival functions for
negative values of \z . (The derivation of (5) based on the idea of correlated
frailty involves the condition \�0 (Yashin et al., 1995).) It is also impor-
tant to have a multivariate extension of (5), which might be applied to the
analysis of survival data for more than two related individuals (e.g.,
genealogical or pedigree data).

The concept of dependent random hazards is important since it provides
for a multivariate extension of the traditional univariate demographic
models of frailty (Vaupel and Yashin, 1985) and it allows us to take mutual
dependence of life spans of related individuals into account in the analysis
of survival data. Survival models for dependent life spans are useful since
they allow us to address more sophisticated questions about the nature of
human aging and mortality processes. Correlated frailty models contain
association characteristics of frailty among other model parameters (e.g.,
correlation coefficients), which makes them convenient for genetic studies
of individual susceptibility to disease and death. In particular, questions
about the role of genes and the environment in human longevity can be
addressed (Yashin and Iachine, 1995a, 1995b). The structure of correlated
frailty models makes them convenient for the development of semi-
parametric estimation algorithms (Iachine, 1995). The models can also be used
in the studies of dependent competing risks (Yashin and Iachine, 1996).

In this paper, we derive several new random-effect multivariate survival
models. First, we examine a general model of bivariate survival with an
arbitrary structure of random hazards. Then we explore the idea of
correlated frailties. We give an alternative derivation of (5), which does not
make use of the concept of frailty. We also show that representation (5)
can describe negative correlations between life spans, for negative \z . Then
we investigate multivariate extensions of the correlated frailty model.

2. BIVARIATE SURVIVAL MODELS WITH RANDOM HAZARDS

Survival models utilizing properties of random hazards, known as
``heterogeneity,'' ``random effect,'' ``liability,'' or ``frailty'' models, have
become popular in the demographic and epidemiological literature (Vaupel
et al., 1979; Manton et al., 1981; Heckman and Singer, 1984; Hougaard,
1986; Aalen, 1988; Hoem, 1990). Multivariate (bivariate) versions of these
models are known as shared relative risk or shared frailty models (Clayton,
1978; Cook and Johnson, 1981; Clayton and Cuzick, 1985; Hougaard,
1987; Marshall and Olkin, 1988; Thomas et al., 1990; Vaupel et al., 1992;
Guo and Rodri� guez, 1992; Guo, 1993), liability models (Meyer and Eaves,
1988; Meyer et al., 1991), or correlated frailty models (Yashin and Iachine,
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1994, 1995a, 1995b, 1995c). Non-parametric estimates of bivariate survival
functions are studied by Dabrowska (1988). Some general properties of
these models can be analyzed in the framework of the following scheme.

Let T1 , T2 be two dependent life spans, and S(x1 , x2)=P(T1>x1 , T2>x2)
be a bivariate survival function. Any such function can be represented as

S(x1 , x2)=S1(x1) S2(x2) eA(x1, x2) (6)

with A(x1 , x2)=ln(S(x1 , x2)�S1(x1) S2(x2)). If a bivariate density distribu-
tion function for T1 , T2 exists, then there is a function .(u, v) such that

A(x1 , x2)=|
x1

0
|

x2

0
.(u, v) du dv. (7)

Representation (6) is called the exponential representation of a bivariate
survival function. It turns out that in the case of random hazards, the func-
tion .(u, v) in (7) can be calculated using the bivariate conditional dis-
tribution of these hazards. Let Zi , i=1, 2 be two random variables. We
assume that the survival chances of the ith individual depend on Zi , i.e.,
the conditional survival function Si (xi | Zi)=P(Ti>xi | Zi) is

Si (xi | Zi)=e&�0
xi +i (Zi , u) du

with individual hazard +i (Zi , x), i=1, 2. We assume that given Z1 , Z2 the
random variables T1 , T2 are conditionally independent. Yashin and Iachine
(1995c) show that in this case

.(x1 , x2)=Cov(+1(Z1 , x1), +2(Z2 , x2) | T1>x1 , T2>x2)

=E(+1(Z1 , x1) +2(Z2 , x2)&+� 1(x1 , x2) +� 2(x1 , x2) | T1>x1 , T2>x2),

(8)

where +� i (u, v) (defined by (1)) can also be calculated as

+� i (u, v)=E(+i (Zi , u) | T1>u, T2>v), i=1, 2. (9)

Remark 1. Representation (8) holds when random variables Z1 , Z2 in
the individual hazards are replaced by stochastic processes, Z1t , Z2t , t�0,
such that conditional mathematical expectations in (8) and (9) exist.

Remark 2. The hazards +� i (u, v), i=1, 2 in (9), which are associated
with the bivariate survival function S(x1 , x2) by (1), in general differ from
the hazards +� i (u), i=1, 2

+� i (u)=&
d

du
ln Si (u)=E(+i (Zi , u) | Ti>u)=+� i (u, 0), i=1, 2 (10)
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which are associated with univariate survival function Si (u) (Vaupel and
Yashin, 1985). Both hazards (9) and (10) are conditional means of the
same random hazard, but the respective mathematical expectations are
calculated under two different conditions. The difference between these
hazards will be illustrated in Subsection 2.3, where the correlated gamma-
frailty model is discussed.

2.1. A New Family of Correlated Durations

An important feature of the correlated hazards model is that using the
exponential representation (6) for the bivariate survival function, one can
construct a new family of correlated survival times. This result is for-
mulated in the following statement.

Theorem 1. Let S(x1 , x2) be the bivariate survival function of survival
times T1 , T2 given by (6) such that S1(x1), S2(x2) are the marginal survival
functions and A(x1 , x2)=�x1

0 �x2
0 .(u, v) du dv, with .(x1 , x2)�0 for all

x1�0, x2�0. Then for any 0�#�1, the expression

S� (x1 , x2)=S1(x1) S2(x2) e#A(x1, x2) (11)

determines a bivariate survival function for some survival times T� 1 , T� 2 . For
each i=1, 2 the marginal distributions of T� i and Ti are identical.

The proof of Theorem 1 is given in the Appendix.

Corollary. Let S(x1 , x2) be given by (4). Then the exponential
representation (6), (7) of this function is characterized by the function
.(x1 , x2) of the form

.(x1 , x2)=
%+� 1(x1) +� 2(x2)(S1(x1) S2(x2))&%

(S &%
1 (x1)+S &%

2 (x2)&1)2 >0 (12)

and, hence, by Theorem 1, S� (x1 , x2) in (11) is a bivariate survival function
with .~ (x1 , x2)=#.(x1 , x2) and S� 1(x1)=S1(x1), S� 2(x2)=S2(x2). Further-
more, since

A� (x1 , x2)=#A(x1 , x2)=# ln \ S(x1 , x2)
S1(x1) S2(x2)+

=&
#
%

ln (S1(x1)&%+S2(x2)&%&1),
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the representation for S� (x1 , x2) is

S� (x1 , x2)=S1(x1)1&# S2(x2)1&#(S1(x1)&%+S2(x2)&%&1)&#�%. (13)

It is clear that (13) is exactly the survival function corresponding to the
bivariate correlated gamma-frailty models (5) when #=\z .

Remark 3. Theorem 1 does not, in general, guarantee the existence of
random hazards with proportional structure for durations T� 1 and T� 2 (i.e.,
it does not guarantee the existence of random variables Z� 1 , Z� 2 and hazard
functions +1(x), +2(x) such that

S� (x1 , x2)=E[e&Z� 1 �0
x1 +1(u) du&Z� 2 �0

x2 +2(u) du]).

The new bivariate survival function S� (x1 , x2) obtained in Theorem 1 is a
geometric mean of two survival functions; one corresponds to independent
survival times, another deals with dependent survival times associated with
S(x1 , x2), i.e., S� (x1 , x2)=[S1(x1) S2(x2)]1&# [S(x1 , x2)]#. The parameter
# may be therefore viewed as an association parameter determining the
``location'' of the survival function S� (x1 , x2) between survival functions
S(x1) S(x2) and S(x1 , x2).

2.2. Bivariate Survival Functions with Negatively Correlated Life Spans

It turns out that transformation (11) may be used to construct bivariate
survival functions with negatively correlated life spans.

Theorem 2. Let us assume that the conditions of Theorem 1 hold. Then
for any # satisfying

max
x1, x2 \&

+� 1(x1) +� 2(x2)
.(x1 , x2) +<#<0 (14)

the function S� (x1 , x2) given by (11) determines a bivariate distribution of
negatively correlated survival times.

The proof is given in the Appendix.
The ability to use negative values of # in (11) is significant for several

reasons. First, the models with negatively correlated lifespans can be used
in the analysis of any dependent survival times where both positive and
negative correlation may occur. In particular, this may be the case for the
problem of dependent competing risks (Gavrilov and Gavrilova, 1991) and
in the analysis of survival data on adopted children (Nielsen et al., 1992;
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Andersen et al., 1992, p. 671). Traditional correlated frailty models based
on sums of independent non-negative random variables are only able to
produce positive correlations.

Another important reason for allowing #<0 is related to the statistical
problem of hypotheses testing. When # is interpreted as an association
parameter (in fact, for the case of gamma-frailty 0�#�1 describes the
correlation between the frailties) one is frequently interested in testing the
null hypothesis H0 : #=0, i.e., whether or not the life spans are dependent.
The classical likelihood based approach requires the point #=0 to be an
internal point of the parameter space (Azzalini, 1996) in order for the
likelihood ratio test statistics to have an asymptotic /2-distribution. By
allowing #<0 we effectively make the point #=0 an internal point of the
parameter space thereby permitting the classical inference methods to be
applied.

2.3. The Bivariate Correlated Gamma-Frailty Model
Let Ti , i=1, 2 be the life spans of two related individuals, with

+(Zi , x)=Zi +0i (x) being their conditional individual hazards given frailties
Zi , i=1, 2, where +0i (x), i=1, 2 are the underlying hazards, and let life
spans T1 , T2 be conditionally independent given frailties Z1 , Z2 . The
bivariate survival function is then given by

S(x1 , x2)=E \exp {&Z1 |
x1

0
+01(t) dt&Z2 |

x2

0
+02(t) dt=+

=L \|
x1

0
+01(t) dt, |

x2

0
+02(t) dt+ ,

where L(t1 , t2) is the joint Laplace transform of the distribution of
(Z1 , Z2). The above representation provides a flexible tool for construction
of bivariate survival models; assuming a particular parametric family of
Laplace transforms for the frailty distribution yields a parametric family of
bivariate survival models.

In some applications, it is important to specify different marginal frailty
distributions for related individuals (see Remark 7 below). It turns out that
in the case of gamma-distributed frailties such a bivariate frailty distribu-
tion can be constructed. In this case the frailties of the two related
individuals may have different variances _2

1 , _2
2 and correlation coefficient

\z . The following statement specifies the form of the respective multivariate
survival function.

Theorem 3. In the case of the proportional hazards model of bivariate
survival described above, there exists a bivariate gamma-frailty distribution

248 YASHIN AND IACHINE



with different marginals that allows for representation of the bivariate
survival function S(x1 , x2) as

S(x1 , x2)=S1(x1)1&(_1 �_2) \z S2(x2)1&(_2 �_1) \z

_(S1(x1)&_1
2
+S2(x2)&_2

2
&1)&\z�_1_2 (15)

with the correlation coefficient of frailty distribution satisfying

0�\z�min \_1

_2

,
_2

_1+ .

The proof of this statement is provided in Yashin and Iachine (1994,
1997).

Remark 4. When _2
1=_2

2=_2, the correlated frailty model is charac-
terized by (5), with _2#%. This model has been used in the analysis of
survival data on Danish twins (Yashin and Iachine, 1997).

Remark 5. Comparison of (5) and (13) shows that the semiparametric
representation (5) can be derived using two radically different concepts;
One uses the #-transformation of the bivariate survival function (4). The
other uses the correlated gamma-frailty model.

Remark 6. Let S� (x1 , x2) be defined by (13). Then condition (14)
becomes

&
1
_2<#<0, (14')

and hence, for such #, survival function S� (x1 , x2) corresponds to negatively
correlated life spans. Thus for \z>%&1, Eq. (5) determines the bivariate
survival function with such life spans. Figure 1 shows three graphs of the
probability density function for model (5) with %=1, and \z=0.99 (top left
panel), \z=0 (bottom right panel), and \z=&0.99 (bottom left panel).
The effect of different frailty variances on the survival time distribution
(model (15)) is shown on the top right panel of Fig. 1 for _1=1, _2=2,
and \z=0.5. In all versions of the model the marginal survival function

S(x)=_1+s2 \c(x&x0)+
a
b

(ebx&ebx0)+&
&1�s2

, (16)

with a=5_10&5, b=0.1, c=0.003, s=0.3, x0=0 is used. One can see
from these graphs that the higher the values of \z , the closer the life spans of
related individuals to each other. This effect is further illustrated on Fig. 2,
which depicts the dependence of correlation between the life spans on the
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FIG. 1. Contour maps of the bivarite probability density functions corresponding to
model (15) where S(x)=S1(x)=S2(x) is defined by (16) with a=S_10&5, b=0.1, c=0.003,
s=0.3, x0=0. The parameters of the frailty distribution are _1=_2=1, \z=0.99 (top left
panel), _1=_2=1, \z=&0.99 (bottom left panel), _1=_2=1, \z=0 (bottom right panel),
and _1=1, _2=2, \z=0.5 (top right panel). Each contour line corresponds to a change in the
probability density function of 0.0001.

association parameter # for different values of parameter %, which in the
case #�0 is equal to the variance of the frailty distribution _2

Z . Here we
use a=2.5_10&5, b=0.11, c=0.002, s=0.3, x0=30 for the marginal dis-
tributions. The _z parameter is set to 0.5 (thick line), 1.0 (standard thick-
ness line) and 1.5 (thin line) respectively. One can see from these graphs,
that there is a monotonic relation between the correlation in lifespans and
#, with #=0 corresponding to zero correlation. Also, the effect of # on the
correlation depends on the value of _z , with greater effect for larger values
of _z .
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FIG. 2. Graphs of correlation coefficients between the survival times in model (13) as
function of parameter #, where S(x)=S1(x)=S2(x) is defined by (16) with a=2.5_10&5,
b=0.11, c=0.002, s=0.3, x0=30. The \z parameter (_z=%1�2) is set to 0.5 (thick line), 1.0
(standard thickness line) and 1.5 (thin line), respectively.

Remark 7. The survival function (15) can be used in the analysis of
survival data on unlike-sex twins, brothers and sisters, relatives from dif-
ferent generations, etc. This is because the distribution of individual frailty
(susceptibility to death) may be different for males and females, or for
individuals taken from different generations.

Remark 8. Using the definitions of hazards +� i (x1 , x2) and +~ i (x1 , x2)
given by (1) and (2) we get in the case of correlated frailty model (15) with
_1=_2=_,

+� i (x1 , x2)=+� i (xi) \1&\z
1&Sj (xj)

&_2

1&S1(x1)&_2
&S2(x2)&_2+

and

+~ i (x1 ; x2)=+� i (x1 , x2)&+� i (xi) \z_2

_
S1(x1)&_2 S2(x2)&_2

((1&\z)(Si (xi)
&_2

&1)+Sj (xj)
&_2

)&1

1&S1(x1)&_2
&S2(x2)&_2
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FIG. 3. Plots of marginal and conditional hazards (10), (1) and (2) respectively in the
case of the correlated gamma-frailty model (5) where S(x)=S1(x)=S2(x) is defined by (16)
with a=2.5_10&5, b=0.11, c=0.002, s=0.3, x0=30, and _1=_2=1.35. The correlation
coefficients of the frailty distribution are \z=1.00 (top left panel), \z=0.90 (top right panel),
\z=0.75 (bottom left panel), and \z=0.5 (bottom right panel). Logarithmic scale is used for
the y-axis. The graph of the marginal hazard +� 1(x) is plotted with thick solid line, the graph
of the conditional hazard +� 1(x, 90) is plotted with thin dashed line and the graph of the condi-
tional hazard +~ 1(x, 90) is plotted with thin solid line.
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i, j=1, 2; i{ j. The graphs of ln +� 1(x1 , x2), ln +~ 1(x1 ; x2) and ln +� 1(x1) are
shown in Fig. 3 as functions of x1 for the correlated gamma frailty model
(13), with #=\z , %=_2=1, x2=90 for four different values of \z : \z=1.00
(top left panel), \z=0.90 (top right panel), \z=0.75 (bottom left panel),
and \z=0.50 (bottom right panel). In these graphs, the marginal survival
function (16) with parameter values as given in Remark 6 is used. The
graphs show how mortality rate of one related individual (e.g., twin) may
depend on survival status of other related individual (e.g., co-twin). One
can see that when \z=1 (i.e., in the case of the shared frailty model) the
distance between ln +� i (x1 , x2) and ln +~ i (x1 ; x2) is constant (top left
panel). Hence, these hazards are proportional (see Eq. (3)). There is no
proportionality between these hazards, however (see three other panels in
Fig. 3), when \z<1 (i.e., in the case of correlated frailty model). We see
that the differences between the three conditional hazards, as expected,
decrease with \z , since lower values of \z correspond to less dependence
between the life spans. Also, the fact that one related individual (e.g., co-
twin in the twin studies) survived beyond age 90 lowers the conditional
hazard for the other twin at lower ages; however, the conditional hazard
at ages higher than 90 virtually coincides with the marginal hazard.

3. MULTIVARIATE SURVIVAL FUNCTIONS

Multivariate survival functions for more than two survival times are
often used in the analysis of dependent competing risks problem (David
and Moeschberger, 1978). They are also important in the analysis of life
(health) history data with several events (transitions between health states)
and in the survival analysis of related individuals (e.g., twins and their
relatives, family members, etc.). For example, the analysis of survival data
on adopted children and their biological and adoptive parents requires a
five-dimensional survival model (Nielsen et al., 1992). It is clear that this
model has to allow for different marginal survival functions for related
individuals. For such multivariate situation the gamma frailty models can
easily be extended.

3.1. The Multivariate Correlated Gamma-Frailty Model

Let Ti , i=1, 2, ..., n, be the life spans of n related individuals, +(Zi , x)=
Zi+0i (x) be their conditional individual hazards given frailties Zi , i=1, 2, ..., n,
where +0i (x) are the underlying hazards with H i (x)=�x

0 +0i (u) du,
i=1, 2, ..., n, and let life spans T1 , ..., Tn be conditionally independent given
frailties Z1 , ..., Zn . The following statement gives the form of the multi-
variate survival function in one special case of multivariate frailty distribution.
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Theorem 4. In the case of the proportional hazards of the n-variate sur-
vival model described above, there exists an n-variate frailty distribution with
different marginals which allows for representation of the survival function
S(x1 , x2 , ..., xn) as

S(x1 , ..., xn)=\1+ :
n

i=1

_2
i Hi (x i)+

&\ij �_i _j

`
n

i=1

(1+_2
i H i (xi))&(1�_2

i&\ij �_i_j)

(17)

or in terms of the marginal univariate survival functions

S(x1 , ..., xn)=\ :
n

i=1

Si (x i)
&_2

i&n+1+ `
n

i=1

S i (x i)
1&_i (\ij �_j). (18)

Here \ij are the correlation coefficients between Zi and Zj , and _2
i are the

variances of Zi , i, j=1, 2, ..., n; i{ j and \ij �_ i_ j is, in fact, a constant not
depending on i, j.

Remark 9. Representation (15) is a special case of (18) with n=2.

Proof of Theorem 4. Let Y0 , Y1 , ..., Yn be n+1 independent gamma-
distributed (G(ki , *), i=0, ..., n) random variables. Let us define a set of
other random variables Zi , i=1, 2, ..., n as follows: Zi=:i (Y0+Yi),
i=1, ..., n, where :i are positive real numbers with :1=1. It is easy to see
that all Zi are gamma-distributed dependent random variables. Let the dis-
tribution parameters for Yi be k0=\ij �_ i _j , i, j>0, i{ j, ki=1�_2

i &
\ij �_i _j , i, j>0, i{ j, *=1�_2

1 , :i=_2
i �_2

1 , where \ij # [0, 1] and \ ij �_i _j=
\kl �_k_ l , i{ j, k{l, i, j, k, l=1, 2, ..., n. The it can easily be shown that
E(Zi)=1, Var(Zi)=_2

i , Corr(Zi , Z j)=\ ij , i{ j. The requirement ki>0,
i=0, ..., n implies that \ij �_ j_j<min[1�_2

i , i=1, 2, ..., n]. Since for each T i ,
i=1, 2, ..., n, the conditional survival function given Zi , i=1, 2, ..., n is

S(xi | Zi)=e&ZiHi (xi)=e&:i (Y0+Yi) Hi (x),

and Ti , i=1, 2, ..., n are conditionally independent given Z i , i=1, 2, ..., n,
the multivariate survival function can be calculated as a mathematical
expectation

S(x1 , x2 , ..., xn)=E(S(x1 , x2 , ..., xn | Z1 , Z2 , ..., Zn))

=E(e&�n
i=1 :i Hi (x) Y0&�n

i=1 :iHi (x) Yi).

This latter term is a product of the Laplace transforms of independent
gamma-distributed random variables:

S(x1 , ..., xn)=\1+
1
*

:
n

i=1

:i Hi (xi)+
&k0

`
n

i=1
\1+

1
*

: iHi (x i)+
&ki

. (19)
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After re-parametrization we get (17). Note that each marginal univariate
survival function here can be represented as

Si (xi)=(1+_2
i Hi (xi))&1�_2

i. (20)

Replacing Hi (xi) in (17) by the expressions calculated from (20) yields
(18).

Remark 10. Note that a relationship between variances and correlation
coefficients of vector Z=(Z1 , Z2 , ..., Zn)* stems from the fact that the
covariance matrix for Z is nonnegative-definite. An additional requirement,
\ij �_i _j=\kl �_k_l , i, j, k, l=1, 2, ..., n, follows from the derivation of (17).
Such a requirement may be rather restrictive when estimating life span
correlations from real data for n>2. This means that when maximizing the
likelihood function of multivariate survival data, one must take into
account the constraints, which relate different correlation coefficients and
standard deviations of multivariate frailty distribution. One of such con-
straints is illustrated by the graph in Fig. 4 for the case n=2. This graph
shows the maximum allowed correlation coefficient of frailty for different
values of _1 , _2 . One can see from the graph, that maximum range of the
correlation is attained when the standard deviations of frailty have the

FIG. 4. Three-dimensional plot of the maximal possible value of the correlation coef-
ficient in frailty \max in model (15) as function of standard deviations of frailty _1 , _2 ,
calculated using the equation \max=min(_1�_2 , _2�_1).
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same magnitudes and that this range decreases rapidly when _1 , _2 become
different.

Remark 11. When the marginal frailty distributions in model (17) are
identical (i.e., _i=_, i=1, ..., n), and all associations among frailty
variables in the multivariate frailty model are described by one parameter
\z , representations (17) and (18) become

S(x1 , x2 , ..., xn)= `
n

i=1

(1+_2Hi (xi))&(1&\z)�_2 \1+_2 :
n

i=1

H i (xi)+
&\z�_

2

(21)

and

S(x1 , x2 , ..., xn)= `
n

i=1

Si (xi)
1&\z \ :

n

i=1

Si (x i)
&_2

&n+1+
&\z�_

2

. (22)

The frailty model corresponding to the survival function (21) was also con-
sidered by Petersen et al. (1996) who used an alternative parameterization
of the multivariate frailty distribution in terms of the variances of the
additive components of frailty. A parameterization in terms of the correla-
tion coefficient \z and total variance _2, however, may be more advan-
tageous in genetic studies of longevity, where analysis of correlations plays
a crucial role (Yashin and Iachine, 1995b). In particular, representation
(21) allows for direct computation of likelihood based confidence intervals
for \z .

Remark 12. Formulas (21) and (22) extend the multivariate shared
frailty model (\z=1) used by Cook and Johnson (1981) to the correlated
frailty case.

The approximations of S(x1 , ..., xn) for small and large values of _2 can
be obtained using the following statement.

Theorem 5. Assume that in the representation (22) _2 a 0. Then

S(x1 , x2 , ..., xn) ww�
_2 a 0

S1(x1) S2(x2) . . .Sn(xn). (23)

If _2 A �, then

S(x1 , x2 , ..., xn) ww�
_2 A �

`
n

i=1

Si (xi)
1&\z (min(S1(x1), ..., Sn(xn)))\z. (24)

Proof of Theorem 5. To prove (23), it is enough to show that
ln S(x1 , x2 , ..., xn) ww�

_2 a 0
�n

i=1 ln S i (x i).
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We have

ln S(x1 , x2 , ..., xn)=(1&\z) :
n

i=1

ln Si (xi)&
\z

_2 ln \ :
n

i=1

S i (xi)
&_2

&n+1+ .

Result (23) follows from applying L'Hôpitale's rule to the term

&
\z

_2 ln \ :
n

i=1

Si (x i)
&_2

&n+1+ .

Let k be such that Sk(xk)�Sj (x j), j{k. Then

S(x1 , x2 , ..., xn)

= `
n

i{k

Si (x i)
1&\z Sk(xk) \ :

n

i{k \
Sk(xk)
Si (xi) +

_2

&(n&1) Sk(xk)_2
+1+

&\z�_
2

ww�
_2 A �

`
n

i{k

Si (xi)
1&\z Sk(xk)

which proves (24).

4. CONCLUSION

Multivariate survival distributions are used in the analysis of dependent
durations such as age at onset of diseases or life spans of related
individuals, spells of unemployment in economics, dependent competing
risks, etc. In a special class of such distributions, multivariate survival func-
tions are represented by their marginals. We show that an important class
of such functions can be derived using the concept of random hazards. We
suggest a simple transformation of bivariate survival functions which
preserves their marginal distributions, and show that the same semi-
parametric representation of bivariate survival functions can be derived
using radically different concepts. Using the suggested transformation we
extend the class of models with positive association between the random
hazards to allow for negatively correlated survival times. A multivariate
extension of the correlated frailty model is derived which can be used in the
analysis of survival data for several related individuals. The semiparametric
structure of the multivariate survival function allows for the development
of semiparametric estimation strategies, and the presence of the correlation
coefficients of frailty among the parameters of the models makes such
models appropriate for genetic-epidemiological studies of individual
susceptibility to disease and death.
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APPENDIX

Proof of Theorem 1. If follows from (10) that S� (x1 , 0)=S(x1) and
S� (0, x2)=S(x2), and that S� (x1 , �)=S� (�, x2)=S� (�, �)=0. Hence,
A� (x1 , x2)=#A(x1 , x2). To complete the proof it is enough to show that
�2S� (x1 , x2)��x1 �x2�0. From representation (11) we get

S� "12(x1 , x2)=S� (x1 , x2)

_[(#A$1(x1 , x2)&+� 1(x1))(#A$2(x1 , x2)&+� 2(x2))+#A"12(x1 , x2)],

(25)

where

S� "12(x1 , x2)=
�2S� (x1 , x2)

�x1 �x2

; A$i (x1 , x2)=
�A(x1 , x2)

�xi
, i=1, 2;

A"12(x1 , x2)=
�2A(x1 , x2)

�x1 �x2

,

and +� i (x i)=E(+i (Zi , xi) | Ti>xi), i=1, 2. The use of representation (6)
together with definitions (9) and (10) yields the following relationship
between two conditional hazards +� i (xi), +� i (x1 , x2), i=1, 2, and the partial
derivative of A(x1 , x2);

A$i (x1 , x2)=+� i (xi)&+� i (x1 , x2), i=1, 2. (26)

Note that if .(x1 , x2)>0, then +� i (xi)>+� i (x1 , x2).
Taking into account that A"12(x1 , x2)=.(x1 , x2), we can rewrite (25) in

the form

S� "12(x1 , x2)=S� (x1 , x2)

_[(#(+� 1(x1)&+� 1(x1 , x2))&+� 1(x1))

_(#(+� 2(x2)&+� 2(x1 , x2))&+� 2(x2))+#.(x1 , x2)]. (27)

Note that when #=1 the right hand side of (25) is non-negative for all
x1 , x2�0, since

(#(+� 1(x1)&+� 1(x1 , x2))&+� 1(x1))(#(+� 2(x2)&+� 2(x1 , x2))&+� 2(x2))| #=1

=+� 1(x1 , x2) +� 2(x1 , x2)�0 (28)

and by the assumption .(x1 , x2)�0 in the theorem. For any 0�#�1, the
terms #(+� i (x1)&+� i (x1 , x2))&+� i (x i), i=1, 2 are always non-positive. Hence
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their product (which appears in formula (25)) is non-negative, which com-
pletes the proof of Theorem 1.

Proof of Theorem 2. Note that for any #<0 we have

(#(+� 1(x1)&+� 1(x1 , x2))&+� 1(x1))(#(+� 2(x2)&+� 2(x1 , x2))&+� 2(x2))

�+� 1(x1) +� 2(x2)�0

and, hence (26) yields

S� "12(x1 , x2)�S� (x1 , x2)[+� 1(x1) +� 2(x2)+#.(x1 , x2)].

Thus, S� "12(x1 , x2) is non-negative when # satisfies (14), and hence, for the
negative values of # satisfying (14), S� (x1 , x2) is a bivariate survival func-
tion. The covariance of T� 1 , T� 2 is

Cov(T� 1 , T� 2)=|
�

0
|

�

0
S� (u, v) du dv&|

�

0
|

�

0
S1(u) S2(v) du dv.

Using representation (11) for S� (x1 , x2) we get

Cov(T� 1 , T� 2)=|
�

0
|

�

0
S1(u) S2(v)(e#A(u, v)&1) du dv.

So, if A(u, v)>0, then the sign of Cov(T� 1 , T� 2) coincides with the sign of #.
This completes the proof of Theorem 2.
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