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Coevolution is a short-distance force at the protein interaction level
and correlates with the modular organization of protein networks
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We investigated what roles coevolution plays in shaping yeast protein interaction network (PIN). We
found that the extent of coevolution between two proteins decreases rapidly as their interacting dis-
tance on the PIN increases, suggesting coevolutionary constraint is a short-distance force at the
molecular level. We also found that protein–protein interactions (PPIs) with strong coevolution
tend to be enriched in interconnected clusters, whereas PPIs with weak coevolution are more fre-
quently present at inter-cluster region. The findings indicate the close relationship between coevo-
lution and modular organization of PINs, and may provide insights into evolution and modularity of
cellular networks.
� 2010 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
1. Introduction

Protein–protein interactions (PPIs) are involved in almost all
biological processes and are crucial to cellular functions. Knowl-
edge of the evolution of PPIs is critical to the understanding of
the principles on the construction, function and evolution of bio-
logical systems. One important theoretical problem, yet still poorly
understood, related to PPIs is the coevolution of proteins. As an
evolutionary process, coevolution occurs at all biological levels. It
is an important force that functions in the evolution of species
and their communities [1]. Well characterized examples described
by ecologists include the mutualistic relationship between hum-
mingbirds and ornithophilous flowers [2]; the antagonism be-
tween predator and prey species, for example, garter snake and
rough-skinned newt [3]. Coevolution also takes place at the molec-
ular level as demonstrated by the strongly correlated behavior of
the evolutionary histories between proteins and their interacting
DNA, RNA and proteins in a variety of scenarios [4–6], for instance,
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protein ligands and their receptors such as the TGF-b/TGF-b recep-
tor family [7]. Two general hypotheses have been proposed to ex-
plain the coevolution of proteins [8,9]. The first states that the
similarity of the evolutionary pressure exerted on proteins results
in the observed coevolution. The alternative hypothesis argues that
it is physical coadaptation between interacting proteins via com-
pensatory changes that causes protein coevolution. Both hypothe-
ses are supported by evidences. Despite recent advances, many
problems in the field need further investigation [8,9]. With the pro-
gresses in high-throughput biotechnology, a large amount of PPI
data has been accumulated, which enables a shift toward the study
of protein interaction networks (PINs) from analysis of individual
proteins. Here, we address how coevolution interplays with the
organization of PINs based on yeast PPI data. We found that coevo-
lutionary constraint is a short-distance force at the PPI level and is
highly associated with the modular organization of yeast PIN.

2. Materials and methods

2.1. Protein interaction data

We generated a ‘merged yeast PIN’ (MYP) by integrating the fol-
lowing high-quality PPI data: (1) the ‘‘Y2H-union”, ‘‘combined-AP/
MS” and ‘‘LC-multiple” data sets from [10]; (2) the list of PPIs anno-
tated as high confidence in [11]; (3) the MIPS physical interactions
from small-scale experiments[12].
lsevier B.V. All rights reserved.
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Fig. 1. The correlation between coevolution and interacting distance between a pair
of yeast proteins. For a pair of proteins, the length of the shortest path connecting
them is defined to be their interacting distance. The extent of coevolution between
two proteins decreases rapidly with increase of their distance on the yeast PIN. The
red triangles and line show the median Res of different distance categories for the
yeast PIN, and the green dots and line indicate the distribution of median Res
(mean ± s.d.) of different distance categories for randomized networks (see Section
2 and Supplementary material).
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2.2. Sequence data

The sequence data of Saccharomyces cerevisiae was downloaded
from SGD on Sep 1, 2008. The genome sequences of other 12 fungal
species were downloaded from different databases on the same
day: Genolevures: Candida glabrata, Debaryomyces hansenii, Kluy-
veromyces lactis, Yarrowia lipolytica; EBI: Ashbya gossypii; MIT Broad
Institute: Candida albicans, Neurospora crassa, Coccidioides posadasii,
Aspergillus clavatus, Sclerotinia sclerotiorum, Fusarium graminearum,
Schizosaccharomyces pombe. Assignments of orthology were per-
formed using InParanoid algorithm [13].

2.3. Assessment of protein coevolution

We used the mirror-tree approach to quantify coevolution be-
tween a pair of proteins [14–16]. Briefly, for a S. cerevisiae protein,
if its orthologs was present in all the above 12 fungal species, the
set of orthologous genes were aligned with CLUSTALW and a dis-
tance matrix was computed by using PROTDIST with the Jones–Tay-
lor–Thornton model. For a pair of S. cerevisiae proteins having
distance matrix available, the Pearson correlation coefficient (PCC)
between the corresponding two matrices was determined [14].
The PCCs constituted a symmetric matrix, each row/column of
which contained correlation values for a given protein with all of
the others. Following Juan et al.’s protocol, the PCC profiles of two
S. cerevisiae proteins were used to calculate a new correlation coef-
ficient, which was taken as the final coevolutionary score Re [15].

2.4. Statistical test for coevolution-distance relationship

To evaluate the significance of the observed coevolution-dis-
tance relationship, we measured the deviation of the observation
from its random expectation. Two kinds of network null models
were used [17]. The first is randomized networks with the same
degree distribution as the original network, which were generated
by keeping node labels constant while swapping edges randomly
but preserving the degree of each node. The second is randomized
networks isomorphic to the original network, which was generated
by shuffling the node labels while keeping the network topology
unchanged. These two null models gave similar results. We com-
puted the shortest path length between every pair of nodes on
the randomized networks and generated a random median Re
score distribution for each distance category. Based on the random
distribution constructed by network null models, we used Z scores
to evaluate the significance. Positive Z scores indicate that the
observations are more frequent than random expectations,
whereas negative Z scores indicate the opposite.

2.5. Fragmentation of network

We introduced a quantity f to evaluate the degree of fragmenta-
tion of a network.
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Ncc is the number of connected components in a network, si is
the number of nodes in connected component i, V is the total num-
ber of nodes in a network. f ranges from 1/V(�0, V is usually pretty
large) for a fully disconnected network consisting of only isolated
nodes to 1 for a completely connected network (i.e. with only
one component). For a partially disintegrated network, f takes be-
tween 0 and 1: the larger the extent of disintegration, the smaller
the f, vice verse. So, when the edges are gradually removed from an
intact network as we did in this analysis, f runs from 1 to 0, the
trend of which indicates the locations of edges on a network. Since
the computation of f is very fast, it allows the estimation of an
effective interval for the edge attack.

3. Results and discussion

3.1. Coevolutionary constraint is a short-distance force at the
molecular level

We first generated a MYP by combining several highly reliable
PPI data sets (see Section 2). The resulting MYP contains 14,644
non-self PPIs involving 3466 proteins. To quantify the extent of
coevolution between a pair of S. cerevisiae proteins, we used the
well-established mirror-tree approach to compute a coevolution-
ary score Re (see Section 2). The closer the value of Re is to 1, the
higher the extent of coevolution. We identified 1365 proteins in
the MYP which were Re computable, and obtained the Re scores
for all the 930,930 non-self protein pairs formed by them, among
which 5833 pairs involving 1213 proteins corresponded to PPIs
in the MYP and was annotated as ‘MYP with Re’ (MYP-R).

We compared the Re score distribution of the 5833 PPIs in MYP-
R with that of all the possible 729,245 non-PPI protein pairs
involving the same 1213 proteins. These two distributions are
significantly different from one another, as measured by the Kol-
mogorov–Smirnov (KS) test (P < 10�15). The former has a signifi-
cantly higher mean Re of 0.72 than the 0.54 of the latter (t-test,
P < 10�15). The result indicates that interacting proteins are closely
tied in evolution. We further addressed the question whether
coevolution between a pair of proteins was correlated with their
distance on the PIN. For every pair of the 1365 proteins having
Re scores available, we computed the shortest path length between
them on the MYP. The result showed that the value of Re decreases
rapidly when the interacting distance between proteins increases
(Fig. 1). To evaluate the significance of this observation, we
checked the same relationship measured in randomized networks
(see Section 2). It was shown that, on average, when the interacting
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distance between a pair of proteins was equal to or more than
about 3, their extent of coevolution could not be distinguished
with random protein pairs (Fig. 1 and Supplementary Fig. 1). Taken
together, these results suggest that coevolutionary constraint is a
short-distance force at the molecular level.

Since interacting proteins on the PIN are more likely to be re-
lated in biological functions, these proteins might undergo similar
regulation, resulting in similar evolutionary constraint. This argu-
ment was supported by the studies that coevolution of interacting
proteins could result from similar functional constraint and evolu-
tionary pressure [18,19]. Therefore, the distance-cutoff for coevo-
lution derived from our work may be an average measure of the
range that functional constraints can propagate through PPIs in
yeast. On the other hand, the short-distance property of coevolu-
tionary constraint could also be explained from a structural sce-
nario, i.e. the physical coadaptation between protein structures,
which argues that a deleterious mutation in one protein can be
compensated by a mutation in its interacting partner in order to
maintain the functional interaction [20–22]. Therefore, the ob-
served rapid attenuate of coevolution with the interacting distance
implies that the influence of a destabilizing change in one protein
can spread at most to its vicinity. In another word, the effects of a
genetic perturbation should damp quickly with the interacting dis-
tance away from the perturbed node, which might be due to the
flexibility of protein structures and reflect the robustness of yeast
PIN at the long-time scale of evolution. This observation comple-
ments a recent report that the concentration perturbations on
the yeast PIN were strongly localized and exponentially decayed
with distance [23], which operates at the short time scale of bio-
chemical reactions.

3.2. Coevolution is associated with the modular organization of yeast
PIN

If coevolution works in local as described above, we are curious
about whether coevolution plays a role in the organization of PINs,
particularly in modularity [24]. It is possible that PPIs with differ-
ent extent of coevolution could distribute homogeneously on PINs.
In such case, inter-module PPIs should have the same extent of
coevolution as intra-module PPIs have, and coevolution might have
nothing to do with modularity. Alternatively, since coevolution
works in a short distance, the PPIs with strong coevolution could
Fig. 2. PPIs with different extent of coevolution have different topological distributions
network topology, as strongly coevolving PPIs are to the local. (A) The mean Re scores (±
two types of PPIs are significantly different from one another (KS test, P < 10�13) and
bottleneck PPIs (t-test, P < 10�12). (B) The effect of PPI removal on the network integri
ascendant and descendant order based on Re scores, respectively. Gray area shows the
become a driving force for the modularity in PINs, whereas the PPIs
with weak coevolution might disperse between these modules.

To distinguish these two hypotheses, we investigated the possi-
ble location distribution of PPIs with different extents of coevolu-
tion by comparing their edge betweenness, which measures the
number of shortest paths between all node pairs that traverse a gi-
ven edge [25]. Edges between highly interconnected clusters were
proposed to have high edge betweenness [25,26]. Therefore, if the
first model is true, we should expect no coevolution differences be-
tween PPIs with high and low edge betweenness, whereas for the
second model, we should expect stronger coevolution for PPIs with
low edge betweenness than that for PPIs with high edge between-
ness. We defined the top 10% of PPIs with the highest betweenness
in the MYP as bottlenecks and the rest as non-bottlenecks. It was
found that the bottleneck PPIs had a significantly lower mean Re
of 0.60 than the 0.73 of the non-bottleneck PPIs (Fig. 2A; t-test
P < 10�12), which supports the second model and suggests that
the PPIs with low extent of coevolution show their tendency to
be outside of densely interconnected clusters, whereas the PPIs
with high extent of coevolution are highly enriched inside these
clusters. We repeated the analysis with different parameter set-
tings for the bottlenecks and non-bottlenecks, and the similar re-
sults were obtained (see Supplementary Table 3).

To further confirm our above observations, we applied a decom-
posing approach in network analysis [27]. We removed PPIs from
the largest connected component (including 1089 proteins and
5716 PPIs) of MYP-R in an ascendant, descendant and random or-
der based on their Re scores, respectively. At each round of attack,
we computed a score f which quantifies the fragmentation of net-
work topology (see Section 2). Distinct effects were observed for
different removing experiments (Fig. 2B and Supplementary
Fig. 2). Ascendant attack has the most deleterious effect on the net-
work integrity, descendant attack has the least and random attack
locates between. These results suggest that PPIs with high extent of
coevolution tend to be enriched in the interconnected clusters and
thus their removals have small effect on the network integrity,
whereas PPIs with low extent of coevolution have the tendency
to be located between those clusters and thus their removals break
the network quickly. These results are in agreement with the above
edge betweenness analysis. The results indicate that the short-dis-
tance property of coevolution is associated with the modular orga-
nization of yeast PIN. All results were robust to different data sets
on the yeast PIN. Weakly coevolving PPIs are central to the global organization of
s.e.) for bottleneck and non-bottleneck PPIs. The distributions of Re scores for these
the bottleneck PPIs has a significantly lower mean Re value than that of the non-

ty. Lines in red and blue depict the disintegration of network due to PPI attack in
effective interval of random attacks.
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and parameter selections in our computation (see Supplementary
material).
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