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a b s t r a c t

In this paper, we use the exp-function method to construct some new soliton solutions
of the Benjamin–Bona–Mahony and modified Benjamin–Bona–Mahony equations. These
equations have important and fundamental applications in mathematical physics and
engineering sciences. The exp-functionmethod is used to find the soliton solution of awide
class of nonlinear evolution equations with symbolic computation. This method provides
the concise and straightforward solution in a very easier way. The results obtained in this
paper can be viewed as a refinement and improvement of the previously known results.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Many phenomena in engineering and applied sciences are modeled by nonlinear evolution equations. Solitonary
solutions of nonlinear evolution equations provide better understanding of the physical mechanism of phenomena.
Nonlinear evolution equations also characterize the wave phenomena in fluid dynamics, hydro magnetic waves in cold
plasma, acoustic waves in crystals, elastic media, optical fiber and some other branches of engineering and applied sciences;
see [1–20] and the references therein. A substantial amount of work has been invested for solving such models. Several
analytical techniques for solving nonlinear evolution equations have been presented, such as the inverse scatteringmethod,
the perturbation method, the sine–cosine method, the homotopy perturbation method, Backlund transformation, Hirota’s
method, Darboux transformation, Painleve expansions, extended tanh-function, the F-expansion method, the extended F-
expansion method and so on.

In this paper, we consider a well-known nonlinear evolution equation which is also known as the generalized
Benjamin–Bona–Mahony equation [4]:

ut + ux + aunux + uxxt = 0, n ≥ 1, (1)

where a is a constant and n is the order of nonlinearity involved in the equation. We consider its two special cases which
are widely used in nonlinear phenomena. The case n = 1, was proposed by Benjamin et al. [4] in 1972. It describes the
unidirectional propagation of long waves in certain nonlinear dispersive media. The second case n = 2, is the modified
Benjamin–Bona–Mahony equation. Due to the importance of the generalized Benjamin–Bona–Mahony equation, a great
deal of research work has been carried out to find solitonary, periodic and exact traveling wave solutions of this equation.
Several effective techniques including the homogeneous balance method [1] by Abdel Rady et al., an algebraic method [16]
by Tang et al., the variable-coefficient balancing-act method [21] by Chen et al., the factorization technique [6] by Estevez
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et al. and the Jacobi elliptic function expansion method [3] by An and Zhang have been investigated for the solitonary
periodic and exact traveling wave solutions of this equation. Mammeri [9] found some long time bounds for the periodic
Benjamin–Bona–Mahony equation by using a transformation. Gomez et al. [7] have applied tanh–coth method for finding
some new periodic and soliton solutions for the generalized BBM and Burgers-BBM equation. Recently, the variational
iteration method and the exp-function method have been coupled together by Gomez and Salas [8] to construct traveling
wave solutions of this equation.

He and Wu [22] developed the exp-function method and has been used extensively to seek the solitonary, periodic and
compacton like solutions of nonlinear differential equations; see [2,5,22,10–15,23–25,17,18] and the references therein.
The expression of the exp-function method is more general than the tanh-function method [25]; the solution procedure
using Maple, Matlab or Mathematica, is of utter simplicity and the exp-function method is more convenient and effective
than other analytic techniques. Noor et al. [11–15,23] have successfully applied the exp-functionmethod for finding soliton,
periodic and exact traveling wave solutions of several known partial differential equations like Boussinesq equation, good
Boussinesq equation, master partial differential equation, Calogero–Degasperis–Fokas equation, Lax equation and nonlinear
evolution equations.

In this paper, we use the exp-function method to construct some new solitonary solutions of the known nonlinear
evolution equation such as the Benjamin–Bona–Mahony equation and its variant forms. We present the graphical
representation of the soliton solution of Benjamin–Bona–Mahony equations.We hope that this technique can be applied for
finding the soliton solutions of other nonlinear evolution equations. It is worth mentioning that the exp-function method
has been modified using some novel ideas and techniques; see, for example, [18–20].

2. Exp-function method

We consider the general nonlinear partial differential equation of the type:

P (u, ut , ux, ut , uxx, uxt , uxxt , . . .) = 0. (2)

Using a transformation

η = kx + ωt, (3)

where k and ω are real constants. We can rewrite Eq. (2) in the following form of nonlinear ordinary differential equation:

Q

u, u′, u′′, u′′′, . . .


= 0, (4)

where the prime denotes derivative with respect to η. According to the exp-function method, which was developed by He
and Wu [22], we assume that the wave solution can be expressed in the following form:

u(η) =

d∑
n=−c

an exp[nη]

q∑
m=−p

bm exp[mη]

(5)

where p, q, c and d are unknown parameters which can be further determined. an and bm are unknown constants. We can
rewrite Eq. (5) in the following equivalent form:

u(η) =
ac exp[cη] + · · · + a−d exp[−dη]

bp exp[pη] + · · · + b−q exp[−qη]
. (6)

This equivalent formulation plays an important and fundamental role for finding the analytic solutions of problems. To
determine the value of c and p, we balance the linear term of highest order of Eq. (4) with the highest order nonlinear term.
Similarly, to determine the value of d and q, we balance the linear term of lowest order of Eq. (4) with lowest order nonlinear
term.

3. Numerical applications

In this section, we apply the exp-function method to construct some new soliton solutions of the Benjamin–Bona–
Mahony and modified Benjamin–Bona–Mahony equations.

Example 3.1 ([1,3,4,6–9,16]). Consider the generalized Benjamin–Bona–Mahony equation (1) with n = 1, known as
Benjamin–Bona–Mahony equation:

ut + ux + auux + uxxt = 0. (7)

Introducing a transformation as η = kx + ωt , we can covert Eq. (7) into the following ordinary differential equation:

(ω + k) u′
+ a k uu′

+ ω k2u′′′
= 0. (8)
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The trial solution of Eq. (8) can be expressed in the form of (6)

u (η) =
ac exp [η] + · · · + a−d exp [−dη]
bp exp [pη] + · · · + b−q exp [−qη]

.

To determine the value of c and p, we balance the linear term of highest order of Eq. (8) with the highest order nonlinear
term

u′′′
=

c1 exp [(7p + c) η] + · · ·

c2 exp [8pη] + · · ·
, (9)

and

uu′
=

c3 exp [(4p + 2c) η] + · · ·

c4 exp [6pη] + · · ·
=

c3 exp [(6p + 2c) η] + · · ·

c4 exp+ [8pη] · · ·
, (10)

where ci are constants depending on a1, k, ω etc. Balancing the highest order of exp-function in (9) and (10), we have

p = c. (11)

To determine the value of d and q, we balance the linear term of lowest order of Eq. (8) with the lowest order nonlinear term

u′′′
=

· · · + d1 exp [(−d − 7q) η]
· · · + d2 exp [−8qη]

, (12)

and

u′u′′
=

· · · + d3 exp [(−4q − 2d) η]
· · · + d4 exp [−6qη]

=
· · · + d3 exp [(−2d − 6q) η]

· · · + d4 exp [−8qη]
, (13)

where di are determined coefficients. Now, balancing the lowest order of exp-function in (12) and (13), we have

q = d. (14)

We consider the following case.

Case 3.1.1. (p = c = q = d = 1).

Taking p = c = 1 and q = d = 1 in (6), we obtain the trial solution in following form:

u (η) =
a1 exp [η] + a0 + a−1 exp [−η]
b1 exp [η] + a0 + b−1 exp [−η]

. (15)

By substituting the trial solution (15) into Eq. (8), we have

1
A
[C3 exp (3η) + C2 exp (2η) + C1 exp (η) + C0 + C−1 exp (−η) + C−2 exp (−2η) + C−3 exp (−3η)] = 0 (16)

where A = (b1 exp (η) + b0 + b−1 exp (−η))4, Ci (i = −3, −2, . . . , 2, 3) are coefficients that are obtained by using Maple
7.

Equating the coefficients of exp (nη) to zero, we obtain a system of equations
{C−3 = 0, C−2 = 0, C−1 = 0, C0 = 0, C1 = 0, C2 = 0, C3 = 0}. (17)

By solving (17), we have the following values
b1 =

1
4

b20
b−1

, b−1 = b−1, b0 = b0, a−1 = −
b−1(ω + ωk2 + k)

ak
,

a1 = −
1
4
b20(ω + ωk2 + k)

akb−1
, a0 =

b0(−ω + 5ωk2 − k)
ak


. (18)

By substituting the values from (18) into trail solution (15), we have the following soliton solution u (x, t) of Eq. (7):

u (x, t) =

−
1
4
b20(ω+ωk2+k)e(kx+ωt)

akb−1
+

b0(−ω+5ωk2−k)
ak −

b−1(ω+ωk2+k)e(−kx−ωt)

ak

1
4
b20e

(kx+ωt)

b−1
+ b0 + b−1e(−kx−ωt)

, (19)

where b−1, b0, a, ω and k are real numbers (Fig. 3.1).

Example 3.2 ([3,4,6–8,16,17]). Consider the generalized Benjamin–Bona–Mahony equation (1) with n = 2, which is also
known as the modified Benjamin–Bona–Mahony equation

ut + ux + au2ux + uxxt = 0. (20)
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Fig. 3.1. Soliton solution of Eq. (7) with b−1 = b0 = a = k = ω = 1.

Introducing the same transformation as in the previous example, i.e η = kx+ωt , we have the following ordinary differential
equation from Eq. (20):

(ω + k) u′
+ a k u2u′

+ ω k2u′′′
= 0. (21)

The trail solution of Eq. (21) can be expressed in the following form:

u(η) =
ac exp[cη] + · · · + a−d exp[−dη]

bp exp[pη] + · · · + b−q exp[−qη]
.

Proceeding as before, we have the following results, p = c and q = d.

Case 3.2.1. (p = c = q = d = 1).

By setting p = c = 1 and q = d = 1, we have the following trial solution as obtained before in (15):

u (η) =
a1 exp [η] + a0 + a−1 exp [−η]
b1 exp [η] + a0 + b−1 exp [−η]

.

By substituting the trial solution into Eq. (21), we have

1
A
[C4 exp (4η) + C3 exp (3η) + C2 exp (2η) + C1 exp (η) + C0 + C−1 exp (−η)

+ C−2 exp (−2η) + C−3 exp (−3η) + C−4 exp (−4η)] = 0 (22)

where A = (b1 exp (η) + b0 + b−1 exp (−η))4 , Ci (i = −4, −3, . . . , 3, 4) are coefficients that are obtained by using
Maple 7.

Equating the coefficients of exp (nη) equal to zero, we have the following system of equations

{C−4 = 0, C−3 = 0, C−2 = 0, C−1 = 0, C0 = 0, C1 = 0, C2 = 0, C3 = 0, C4 = 0}. (23)

From (23), we have the following two sets of unknown values:
b1 = −

1
24

aa20(k
2
+ 1)

b−1k2
, b−1 = b−1, b0 = 0, a−1 = 0, a1 = 0, ω = −

k
1 + k2

, a0 = a0


, (24)

and 
b1 = −

1
8
b20(3k

2b2
−1 + a2

−1ak
2
− 2aa2

−1)

aa2
−1b−1(k2 + 1)

, a0 = −
b0(3k2b2−1 + 2a2

−1ak
2
− aa2

−1)

aa−1b−1(k2 + 1)
, b−1 = b−1,

a1 = −
1
8
b20(3k

2b2
−1 + a2

−1ak
2
− 2aa2

−1)

aa−1b2−1(k2 + 1)
, ω = −

k(b2
−1 + a2

−1a)

(1 + k2)b2
−1

, b0 = b0, a−1 = a−1


. (25)
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Fig. 3.2.1. Soliton solution of the modified BBM equation (20) with b−1 = a0 = a = k = 1.

Fig. 3.2.2. Soliton solution of the modified BBM equation (20) with b−1 = b0 = a = k = a−1 = 1.

By substituting the values from (24) into the trial solution, we have the following soliton solution of the modified
Benjamin–Bona–Mahony equation (20):

u (x, t) =
a0

−
1
24

a20a(k
2+1)e


kx− k

k2+1
t


b−1k2
+ b−1e


−kx+ k

k2+1
t
 . (26)

Now by using the values from (25), we have another soliton solution of the modified Benjamin–Bona–Mahony equation
(20):

u (η) =

−
1
8

b20

3k2b2

−1+a2
−1ak

2
−2aa2

−1


eη

aa2
−1b−1(k2+1)

−
b0


3k2b2

−1+2a2
−1ak

2
−aa2

−1


eη

aa−1b−1(k2+1)
+ a−1e−η

−
1
8

b20

3k2b2

−1+a2
−1ak

2−2aa2
−1


eη

aa2
−1b−1(k2+1)

+ b0 + b−1e−η

, (27)

where η = kx −
k

b2
−1+a2

−1a


(1+k2)b2−1
t , and b−1, b0, a, a−1 and k are real numbers (Figs. 3.2.1 and 3.2.2).



M.A. Noor et al. / Computers and Mathematics with Applications 62 (2011) 2126–2131 2131

4. Conclusion

In this paper, we have applied the exp-function method with computerized symbolic computation to obtain some
new soliton solutions of the Benjamin–Bona–Mahony equation and the modified Benjamin–Bona–Mahony equation. The
obtained solutions satisfy both the Benjamin–Bona–Mahony equation and themodified Benjamin–Bona–Mahony equation.
Graphical representation of the results is also given. It is noticed that Zhang [18,19] has applied the exp-functionmethod for
finding soliton solutions of some evolution and higher-dimensional evolution equations.Wewould also like tomention that
Zhang et al. [20] have used the exp-function method in a new dimension for solving fractional Riccati differential equation.
It is also noticed that the modified exp-function method of Zhang et al. [19,20] can easily be extended for solving a wide
class of nonlinear evolution equations. We remark that the exp-function method is a very powerful mathematical tool for
solving nonlinear evolution equations in particular and many other nonlinear partial differential equations.
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