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A lower bound is obtained for the cardinahty of a blocking set in a non-sym- 
metric block design. The known lower bound for blocking sets in symmetric block 
designs is proved to hold (if and) only if the blocking set is a Baer subdesign. 
’ ’ 1985 Academic Press. Inc. 

A blocking set in an incidence structure C is a subset B of the point set of 
E such that every line of Z intersects both B and the complement of B. In 
1970 and 1971, Bruen proved the following theorem (see Theorems 1 and 2 
in [Z] and Theorem 3.9 in [3]). 

THEOREM 1 (Bruen). Let B be a blocking set of a projective plane II of 
order n. Then JBI >n+nn’2+ 1, and IB( =n+n”‘+ I ifandonly fB is the 
point set qf a Baer subplane of II. 

In 1982, de Resmini [4] generalized part of the Bruen theorem to sym- 
metric block designs. She proved 

THEOREM 2 (de Resmini). Let B be a blocking set in a symmetric block 
design with parameters v, k, A. Then 1 Bl 2 (k + n’!‘)/A, where n denotes k - %. 

de Resmini observed that “Baer subdesigns” are blocking sets whose car- 
dinalities satisfy the lower bound in Theorem 2. We prove (Theorem 6 
below) that the Baer subdesigns are the only blocking sets which satisfy the 
lower bound. This result completes the generalization of the Bruen theorem 
and yields a new characterization of Baer subdesigns. The main result of 
the paper (Theorem 3) generalizes Theorems 2 and 6 to designs C that are 
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not necessarily symmetric and to point sets B that may not cover all the 
lines of 1:. 

A finite incidence structure ,?I is called a group divisible design if the line 
set can be partitioned into a subset Y whose members are called groups and 
a subset 98 whose members are called blocks and if there exist integers 
g > 1, 13 2, iI, i,, such that the following conditions hold: ( 1) $9 is empty 
if g= 1, and the lines of fe partition the points of Z if g> 1; (2) /G/ =g for 
each G in ‘9; (3) IL1 = I for each L in 98; (4) each pair of points lies in 
i, - 1 common blocks if the points are contained in a common group and 
in ,I, common blocks if the points are not contained in a common group. 

A block design B(u, k, 1) is a group divisible design on I! > k + 2 points 
with g=l, k=l, and i.=&. It is well known that every point of a 
B(D, k, i) lies on exactly r = (I: - I )&‘(k - 1) lines and that the total number 
of lines is b = urjk. 

If S is a subset of the point set of an incidence structure C, one says that 
S covers a line L if and only if S contains a point of L. The substructure 
induced by C on S is the set S together with all lines of C that contain at 
least two points of S together with the induced incidence relation. 

THEOREM 3. Let C be a B(v, k, ;i). Let S be a subset of’ the point set of 
Z, jSI = w, m > maxISin LI as L varies over all lines of C. Let x, y be the 
integers that satisfy (w - 1) A = (m - 1) x + y, 0 < y 6 m - 2. Then S covers 
at most d lines of C, where 

(II- l)n-y 
m 

Furthermore, S covers exactly d hnes tf and only if ,?I induces on S a group 
divisible design with block size m, group size y + 1, and I, = A2 = %. 

Proof For each point p of S, define the weight of p, denoted by wt(p), 
to be the sum of the reciprocals of the integers JSn LI as L varies over all 
lines incident with p. If c denotes the number of lines of C covered by S, 
then 

c=Cl=C 1 (l/lSnLI). 
L L ptSnL 

Reversing the order of summation yields c = zP E .? wt( p). 
The largest possible weight of a point p occurs if x lines through p inter- 

sect S in m points and some line through p intersects S in y + 1 points. 
Thus each point p in S satisfies wt(p) de, where 

X 
e=--+ 

m &+ir-x- 1). 
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Further, wt(p) < e unless p does lie on x induced lines of size m and (unless 
y = 0) on one induced line of size ,v + 1. Then c = E wt(p) < we = d. It is 
also clear that c = d if and only if every point of S lies on x induced lines of 
size m and (if y # 0) on one line of size y + 1. If y # 0, the induced lines of 
size y + 1 partition the points of S, and, hence, may be taken to be the 
groups of a group divisible design. 

LEMMA 4. Let d’ denote w(r - (w - 1) A/m). Under the assumptions of 
Theorem 3, d= d’ if y = 0 and d< d’ if y # 0. In particular, tf S covers d 
lines, then y = 0, so C induces a block design on S. 

LEMMA 5. Let B he a blocking set in a B(v, k, ,i). [f j BI = w, then 
IBnLI <wA-r+ 1 ,for every line L. 

Proof Let L be a line of the block design, p be a point of L\B; let N 
denote the number of flags (x, X) with x in B and p in .X. One obtains 
wA=N>/BnLI+(r-1). 

A block design B(t), k, IL) is said to be symmetric if r = k; equivalently, if 
b = L’. A substructure 17 of a symmetric B(v, k, EL) is said to be a Baer sub- 
design (see Cl]) if Z7 is a symmetric B(v*, k*, ib) with k* = (k-1.)’ ’ + 1. 

THEOREM 6. Let C be a symmetric B(v, k, i) with a blocking set B. L# 
jBI =(k+n ’ ‘)/A, where n denotes k-A, then .Z induces a Baer subdesign 
on B. 

Proof of Theorems 2 and 6. Let B be a blocking set in C, a symmetric 
B(u, k, 3.). Apply Theorem 3 with Lemmas 4 and 5 to conclude that v d a, 
where d’ is evaluated by putting w equal to 1 BI and m equal to wi - k + 1. 
Using the fact that (v - 1) A= k(k - 1 ), one sees that v < d’ is equivalent to 

0 < w*E,* - 2wki + (k2 -k + A). 

Both or neither of the inequalities is strict. The roots are w * = (k + n”*)/i. 
Counting flags (x, X) with x in B yields wk B u, hence MJ > (k - 1 )/A > w 
Thus w*> w+, and the proof of Theorem 2 is complete. 

If M’= IV+, then u= d’; thus Lemma 4 yields the conclusion that ,Y 
induces a block design on B. By Theorem 3 the block size in the subdesign 
is m = (I*‘+ ) 1. -k + 1 = n”* + 1, so the induced design is a Baer subdesign. 
The proof of Theorem 6 is complete. 

THEOREM 7. Let C he a B(v, k, A) with a blocking set B of cardinality w. 
Then k # 3, and w 2 wO, where 

w”=f-;(v*k*-4v2k+4vk)“’ 
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Proof: Apply Theorem 3 and Lemma 4 with S = B, m = k -- 1. One 
obtains 

w2il+w(-rk+r-l)+(bk-h)<O. 

Using r = (u - 1) A/(k - 1) and h = vr/k and dividing by /2, one obtains 

v(v - 1) 
g(w):=w2-wv+ k - < 0. 

Then IBI must lie between the roots of g(w). Since w0 is the smaller root, 
the asserted inequality holds. If k = 3, the discriminant D is a positive mul- 
tiple of - v2 + 40. Since v 2 k + 2 = 5, D is negative. Then the roots of g are 
not real, so g(w) > 0 for all w. 

Remark 8. For k =4, the inequality of Theorem 7 simplifies to 
(BI > (v - v”2)/2. 
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