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The HOPS multisubunit tethering factor (MTC) is a macromolecular protein complex composed of
six different subunits. It is one of the key components in the perception and subsequent fusion of
multivesicular bodies and vacuoles. Electron microscopy studies indicate structural flexibility of
the purified HOPS complex. Inducing higher rigidity into HOPS by biochemically modifying the com-
plex declines the potential to mediate SNARE-driven membrane fusion. Thus, we propose that inte-
gral flexibility seems to be not only a feature, but of essential need for the function of HOPS. This
review focuses on the general features of membrane tethering and fusion. For this purpose, we com-
pare the structure and mode of action of different tethering factors to highlight their common cen-
tral features and mechanisms.
� 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
1. Introduction

Vesicles play a central role in eukaryotic cells, where they act as
major vehicles for organic and inorganic compounds to be
exchanged between the cellular compartments, the plasma mem-
brane and the extracellular space. Thus, diverse transport vesicles
connect organelles of the secretory and endocytic pathways,
including vacuoles or lysosomes. A complex coordination of the
cytoskeleton, motor proteins, vesicular coat proteins as well as
Rab-GTPases, tethering factors, SNAREs and specific lipids is
responsible for vesicle formation, stability, specific targeting and
fusion. The most prominent organelle specific markers are Rab pro-
teins. They are anchored to membranes and bind to various effec-
tors, among them tethering factors [1–3]. These in turn seem to
initially recognize incoming vesicles by specific Rabs. At the fusion
site tethers then cooperate with membrane-bound SNAREs found
on both vesicle and organelle membrane, and can promote their
assembly. Subsequent tight folding of a ternary SNARE complex
is then sufficient to promote bilayer mixing and delivery of the
vesicle content to the target organelle [4].

Various families of tethering factors that localize on the mem-
brane surface are essential for target-specific membrane fusion.
Although they do not share any sequence homology and have con-
siderably different structures, their function is similar. For example
golgins act as homodimeric proteins and form long coiled-coils [5]
whereas tethering factors of the CATCHR-family and the class C
Vps (vacuolar sorting proteins) complexes HOPS (homotypic fusion
and vacuole protein sorting) and CORVET (class C core vac-
uole/endosome tethering) form large multisubunit tethering com-
plexes (MTCs) (reviewed in [6]). Our scientific focus is on the HOPS
and CORVET complexes, which coordinate endosomal and lysoso-
mal fusion processes. We therefore use the HOPS complex as prime
example to discuss the need of conformational changes and pro-
tein flexibility during the process of membrane tethering and
fusion. In addition, we will highlight and discuss the importance
of structural flexibility in other known tethering events.

2. Architecture of HOPS

The HOPS complex consists of six different subunits, Vps11,
Vps16, Vps18, Vps33, Vps39 and Vps41. Their sizes range from 79
to 123 kDa. Besides Vps33 (Fig. 1A), which belongs to the family of
Sec1/Munc18 (SM) proteins, all other subunits share a similar
domain architecture, each containing an N-terminal b-propeller
and a C-terminal a-solenoid domain [7,8]. The other class C protein
complex known, CORVET, shares four of the HOPS subunits, namely
Vps11, Vps16, Vps18 and Vps33. Here Vps3 (in metazoans
TRAP-1/Tgfbrap1) and Vps8 take the space of Vps39 and Vps41,
respectively. We thus propose that the two complexes have a similar
structure and common modes of action, but differ in the specificity
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for their binding partners, which define their function in endosomal
trafficking.

HOPS and CORVET were initially identified in yeast [9–11],
though the same complexes also exist in metazoan cells [12–14].
As almost all mechanistic studies were conducted with the yeast
complexes, we will keep here to the yeast nomenclature.

Single particle negative stain EM data showed that the hetero-
hexameric HOPS complex exists in different conformations result-
ing in elongated and more compact structures similar to an open
and partly closed clamp ([34], Fig. 2A and E). There are no distinct
intermediate states, indicating that the complex can take any con-
formational states between a 28 nm short and a 40 nm long
extreme. The backbone of the complex formed by Vps11 and 18 is
rather stiff whereas the head and tail comprising Vps16–Vps33–
Vps41 and Vps39, respectively, appear to be flexible with possible
hinge regions at the junction between these parts and the backbone.
This results in a change of their inner distance between 7 and 14 nm
and can be observed in the absence of any partner.

To get some more insight into the underlying structural mech-
anism different buffer conditions, HOPS variants and subcom-
plexes have been tested. Even though high salt and the
introduction of different large tags on selected subunits increased
HOPS integral stability, it did not reduce its flexibility significantly
[34]. Vps16 and Vps33 can form a stable heterodimer localized in
the head part of HOPS (Fig. 1B, 2D, H and R), and Vps11, Vps18
and Vps39 a stable heterotrimer (Fig. 2B and F). Both subcom-
plexes assemble to a heterohexamer of about 650 kDa only in the
presence of Vps41 (Fig. 2A and E). Negative stain EM data showed
that the Vps16–Vps33 dimer as well as the Vps11–Vps18–Vps39
trimer and the Vps18–Vps39 dimer are highly flexible (Fig. 2B–D
and F–H). Corresponding to the complete HOPS complex, it was
not possible to define fixed intermediate states. Interestingly, some
of the hinges that are responsible for the smooth movement of the
HOPS complex are undisturbed in the subcomplexes and localize
within them (see also movies of [34]).

So far, there is very limited high-resolution structural informa-
tion available from the single HOPS subunits. Computational analy-
ses predict that their domain architecture (except Vps33) is similar
to known vesicular coat proteins such as clathrin, the COP-II compo-
nents, and coat nucleoporins [7,15–19]. However, only the structure
Fig. 1. Structural information on the HOPS complex. In (A) The domain structure of V
thermophilum (Ct) and H. sapiens (Hs) as presented in [27] with domain 1 (light grey), do
highlighted in orange, the hinge-proline [27] is labeled in green. (B) For Vps33 (grey) an
into the head part of the whole HOPS complex (Chimera, [156]). (C) The predicted posit
Vps33 then adapts to the groove in the HOPS-head. (D) The open and closed conformati
colour code for the domains refers to (A).
of the b-propeller of Vps18 from Saccharomyces cerevisiae could be
solved so far by X-ray crystallography [20].

Crystal structures of human Vps33 and its homologue from
Chaetomium thermophilum (pdb ID: 4JC8 and pdb ID: 4BX8, respec-
tively) clearly show that it differs from the other subunits and folds
like a SM protein. SM proteins are implicated in binding to SNAREs
[21–24] and were shown to exist in open and closed conformations
with a hinge region between the N-terminal domain 1 and the
C-terminal domains 2 and 3 ([25], Fig. 1A and D). When compared
to other structures of SM proteins, the Vps33 structures are similar
to the open conformations ([25,26], Fig. 1D). A model for the closed
conformation of Vps33 from C. thermophilum was built based on the
Munc18-1 syntaxin-1 complex, pointing to the possibility that the
Vps33 domain 3 could exist in an open and closed conformation [27].

In addition, both proteins were co-crystallized with a fragment
of Vps16 (pdb ID: 4BX9 and pdb ID: 4KMO, respectively) giving
first insights into the interaction between HOPS subunits [27,28].
The Vps16 fragment comprises amino acids 642–736 for the
human protein, and 505–834 for its homologue from C. ther-
mophilum, which corresponds to the second half of their
a-solenoid domain. The structure shows a relatively small inter-
face between both subunits, which is mainly dependent on the
contact made by the a4-helix of Vps16. Already the mutation of
two distinct residues of Vps33 (A411D/H451D or A411D/L454E in
Vps33 from C. thermophilum; K429D, Y438D/P or I441K in human
Vps33) or Vps16 (A669/R725 in human Vps16) is sufficient to dis-
rupt this interaction (Fig. 1A, [29]). It has so far not been possible to
obtain high-resolution structural data of any of the other subunits
or subcomplexes [28]. One explanation for that could be a possible
intrinsic flexibility of subunits and a reduced stability of the single
subunits in solution. The question now is whether biologically rel-
evant binding partners might be able to stabilize the complex.

3. HOPS and interactors

3.1. HOPS recognizes small GTPases

Eukaryotic cells express various small, membrane-associated
GTPases, so called Rab proteins that are involved in intercellular
vesicular transport. They are rate limiting for vesicular fusion
ps33 is shown with an alignment of protein sequences from S. cerevisiae (Sc), C.
main 2 (grey), domain 3 (dark grey). Critical amino acids for Vps16 interaction are

d Vps16 (blue) densities calculated from crystal structures (pdb-ID: 4KMO) were fit
ion of the SNARE complex (brown, density calculated from pdb-ID: 1FSC) bound to
on of Vps33 with the ternary SNARE complex is presented as modelled by [27]. The



Fig. 2. Negative stain EM of different HOPS constructs, conditions and with known interactors. (A–D) The class sums of HOPS (A) and the subcomplexes, Vps39–11–18 (B),
Vps39–11 (C), and Vps16–33 (D). Two extreme conformations are depicted in the upper and lower panel, respectively. (E–H) Models corresponding to class sums shown in
(A–D) [34]. (I–L) Raw particle images of HOPS (I), HOPS-Ypt7 (J), HOPS-Habc(Qa) (K), and HOPS-Ykt6(R-SNARE) (L). The respective interactors were immuno-gold labeled
(black dots). Addition of diverse factors destabilizes the complex. (M-N) Models corresponding to raw particle images shown in (J–L). (O–R) Addition of lipids as PI(3)P (O),
PI(4,5)P2 (P) or cardiolipin (Q) has no effect on HOPS flexibility. Two extreme conformations are depicted in the upper and lower panel, respectively. (R) Subunit organization
within the HOPS complex. All scale bars are 10 nm.
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processes and – as recruiting factors for tethering proteins and
their associated SM proteins - of essential need for the assembly
of SNAREs, which drive lipid bilayer mixing. To date, 11 Rabs are
known in yeast and about 60 in humans (reviewed in [4]). They
function as molecular switches by cycling between the active
GTP- and inactive GDP-bound form. The release of GDP and
thereby the binding of GTP is catalyzed through the action of gua-
nine nucleotide exchange factors (GEFs) (reviewed in [4,30]). Rabs
associate reversibly with organelles via their C-terminal lipid
prenyl-anchor [2] and allow, once activated, the specific recruit-
ment of various effector molecules, like tethering factors, to orga-
nelle surfaces [1–3]. These can bridge the distance between
vesicle and organelle membrane prior to SNARE-driven fusion
[4]. The most prominent Rab on late endosomes and lysosomes is
Rab7 (Ypt7 in yeast, [31]). A major role of Ypt7 is to support
HOPS association with vacuole membranes during fusion [32],
and only the presence of HOPS allows the fusion of Ypt7- and
SNARE-containing vesicles [9]. Ypt7-GTP directly binds selectively
to HOPS at two opposing ends, Vps39 and Vps41 ([10,33,34], Fig. 2J
and M). The initial idea that Vps39 also functions as a GEF [10] was
disproven by the identification of the Mon1-Ccz1 complex as the
GEF of Ypt7 [35].

Phosphorylation of HOPS by the casein kinase Yck3 is required
for its function in the AP-3 pathway [36–38]. Yck3 targets the ALPS
(amphipathic lipid-packaging sensor) motif, an a-helical segment,
within the N-terminal domain of Vps41 [38]. Consequently, phos-
phorylated Vps41 is then able to bind to the AP-3 complex (dis-
cussed below). In vitro phosphorylation of purified HOPS by Yck3
makes HOPS binding to Ypt7 strongly dependent on GTP [32,39],
likely by lowering the intrinsic membrane affinity after phosphory-
lation of the ALPS motif. All these findings led to the hypothesis
that HOPS bridges membranes by binding the activated (GTP)
Ypt7 [34]. Although we expected that binding of the Rab would
decrease the flexibility of HOPS, negative stain EM showed that this
Fig. 3. Model of HOPS flexibility during the tethering process in yeast. HOPS assembles at
multivesicular bodies (MVB). In its stretched conformation it could bridge Ypt7 posi
Structural bending could allow guiding the vesicle closer to the target membrane. In th
SNARE is brought close to the SNARE binding site. HOPS catalyses the formation of the
membrane and HOPS can dissociate from this side supported by Rab-deactivation (Rab-
is not the case. Instead the overall conformation of the head and
tail domains seem to change by a rearrangement of the respective
subunits altering their relative distance ([34], compare Fig. 2I and
J). It is possible that a Ypt7-induced conformational change results
in the exposure of respective binding sites for other HOPS interac-
tors (Fig. 3).

In human cells, Rab7 is also essential for the localization of the
small GTPase Arl8 to phagosomes, and loss-of-function mutants in
the HOPS subunits Vps39 or Vps41 lead to accumulation of Rab7
phagosomes. GTP-bound Arl8 physically interacts with HOPS via
Vps41 in Caenorhabditis elegans and mammalian cells [40,41].
HOPS might also promote fusion between phagosomes and lyso-
somes by being recruited to Rab7-positive lysosomes as well as
Arl8 containing lysosomes in higher eukaryotes [40]. Recent data
cast doubt on the Rab7-HOPS connection in metazoan cells.
Taking Drosophila as a model system to monitor Rab-interactions,
Munro and colleagues detected only weak binding of HOPS to
Rab7, whereas Rab2 was identified as the preferred interaction
partner in pull-down assays [42]. The authors argue that Rab2, as
well as Arl8, are highly conserved in higher eukaryotes, but got lost
in budding yeast [42], which might have changed the Rab prefer-
ence of the HOPS complex. Future studies have to unravel if the
tethering mechanism promoted via Rab proteins is conserved
between different species, and if different Rabs are involved in dis-
tinct substeps of this process.

3.2. HOPS recruitment of SNAREs

Subsequent to tethering the fusion of donor and acceptor mem-
brane has to be catalyzed. This requires the assembly of a ternary
SNARE (soluble N-ethylmaleimide-sensitive-factor attachment
protein receptor) complex composed of subunits from both oppos-
ing membranes. SNARE-mediated fusion requires four comple-
mentary domains termed R, Qa, Qb, and Qc, depending on the
the vacuole [157]. It can bind on Ypt7-GTP positive and highly curved membranes of
tive membranes selectively, connecting late endosomes and vacuoles/lysosomes.
e presence of Q-SNAREs HOPS can bind these to the head part and the vesicular R-
ternary SNARE complex. SNARE assembly induces vesicular fusion with the target
GDP).
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presence of Arg or Gln within the central ‘0-layer’ of the SNARE
domain [43]. The assembly of the membrane-bound proteins to a
quarternary complex is supposed to function in trans like a zipper
that eventually results in lipid bilayer mixing [43–46]. There are 25
SNAREs annotated in S. cerevisiae, 36 members in humans and 54
variants in Arabidopsis thaliana (reviewed in [43]). Like
Rab-GTPases SNAREs vary depending on the sort of vesicle they
localize to [47,48]. It could be shown that yeast HOPS associates
with SNAREs [32,49], and also prevents the disassembly of a
formed SNARE complex [50]. Preincubation of HOPS with individ-
ual vacuolar SNAREs can inhibit binding to the SNARE complex,
suggesting that its affinity to the single subunits might be higher
than for the assembled ternary complex [51]. The SM-like Vps33
subunit is responsible for not only binding but also mediating
SNARE assembly and stabilizing the SNARE complex [50–52]. In
contrast to class I SM proteins such as the metazoan Munc18-1,
the class II SM protein Vps33 does not bind to the Qa-SNARE
domain [53], but only the ternary Q- and quaternary Q/R-SNARE
complex [51,52]. Human Vps33A as well as the C. thermophilum
Vps33 lack the pocket for binding the N-terminal peptide of the
Qa-SNARE [27,28]. Most likely this is due to the position of domain
1, and amino acids in the binding pocket are different to the one
found in rat Munc18 [27]. With the help of structural information
it was possible to model SNARE proteins into the CtVps33 binding
pocket of the open and closed Vps33 domain 3 ([27], Fig. 1C and D).
The core helices of domain 3, 3a and 3b, are conserved between
different eukaryotic species like unicellular flagellates, fungi,
insects and vertebrates including the residues that bind to the
closed conformation of the remaining SNARE including the
Habc-domain [22,27,54]. Pull-down experiments, vesicular fusion
assays, and negative stain electron microscopy data provided evi-
dence that also yeast HOPS interacts with the Qa-SNARE Vam3,
assembled Q-SNAREs consisting of the SNARE domains of Vam3
(Qa), Vam7 (Qc), and Vti1 (Qb), and the R-SNARE Ykt6 [55]. All
SNAREs are required for fusion of vesicles with the vacuole mem-
brane [56–58]. Interestingly, HOPS binds efficiently to the
N-terminal Habc-domain of Vam3, but not the SNARE domain
[59]. All interactions occur in the large head part of the complex,
where Vps33 and Vps16 are localized ([34], Fig. 2K, L and N,
Fig. 1C). The binding of the Vam3 Habc-domain seems to happen
selectively via Vps16, whereas Vps33 binds the assembled
Q-SNAREs and the quarternary SNARE complex [52,59]. In vitro
binding of SNARE components to HOPS resulted in structural
destabilization rather than reduced flexibility (Fig. 2K and L).
How HOPS binding to the SNARE complex and the individual
Habc domain are coordinated is not yet clear. We suggest that
HOPS serves as an assembly platform to promote SNARE function
in fusion.

3.3. Further interactors of HOPS

Beside the Rab GTPase Ypt7 and SNARE proteins additional
interactors of the HOPS complex could be identified. One promi-
nent example is the Apl5 motif of the AP-3 delta subunit, which
directly binds Vps41 [60,61]. The interaction depends on the con-
served hydrophobic residues L100 and L101 within Vps41 [38].
This points toward HOPS function in the recruitment of AP-3
coated vesicles to the vacuole [62]. Whether AP-3 binding to
HOPS alters HOPS flexibility is not yet clear, but unlikely, consider-
ing the previous experiences. Furthermore, yeast HOPS specifically
binds certain lipids [49]. Extensive screens have shown that the
complex preferably binds phosphoinositides and acidic lipids
[49,63,64]. The Vps41 subunit contains an helical ALPS motif,
which is likely present within a loop region the putative
b-propeller, and which is known to bind to highly curved
membranes [65,66]. This feature is also known from Golgins [67].
As long as the membrane is highly curved, the ALPS motif is hidden
in the lipid bilayer. At the less curved vacuolar membrane, the
Vps41 ALPS motif is exposed and can be phosphorylated by the
casein kinase Yck3. Conformational changes now allow
Apl5-mediated binding of AP-3 vesicles [6,38]. The binding of
HOPS to AP-3 is not dependent on the phosphorylation state, but
the phosphorylation of the ALPS motif most likely prevents reverse
binding to the lipid bilayer. During the tethering of AP-3 vesicles
HOPS needs to be as flexible as in recruiting Ypt7-positive late
endosomes. Therefore, it is likely that lipids and AP-3 binding do
not decrease the flexibility of HOPS. Electron microscopy images
indeed confirmed that the addition of lipids had no significant
effect on HOPS flexibility (Fig. 2O, P and Q). Further studies have
to shed light on the mechanism in detail.

We would like to note that some studies suggest a role of Vps41
independent of its function within HOPS. Yeast Vps41 was also
identified on Golgi-derived AP-3 vesicles [60]. More recently,
human Vps41 was shown to localizes to a vesicle population
named LAMP carriers that eventually fuse with late endosomes
or lysosomes [68]. Moreover, metazoan Vps41 can self-assemble
into a putative coat, and might thus provide the missing
clathrin-like layer that cooperates with AP-3 adapter complex
[69]. Future studies will be necessary to address the physiological
relevance of the observed lattice formation of Vps41.

4. Molecular function of other tethering factors

Based on the knowledge we gained on the HOPS complex so far,
we conclude that binding of lipids, Rab and SNARE proteins as well
as its flexibility we observe in vitro might also be of importance
during the tethering process in vivo. Other tethering factors prob-
ably exhibit similar features to allow vesicle recruitment to the tar-
get membrane, but since they differ in their structure, the
underlying mechanisms might be different from the one observed
for HOPS.

4.1. Function of coiled-coil tethering factors (CCT)

The most prominent coiled-coil tethers are golgins, rabaptin or
GM130, as well as giantin. Although they belong to the same class
of proteins their mode of action is quite different (reviewed in
[70]).

Golgins are composed of very long homodimeric coiled-coil
dimers. For the yeast Uso1, this length extends about 150 nm
[71]. Its human orthologue p115 can bind to giantin, extending
its length about 200–250 nm, based on sedimentation analysis
and structural models [72–74]. Golgins are anchored to the
Golgi-membrane via the interaction of their GRAB/GRIP domain
with Arf or Arl GTPases ([75,76], Fig. 4A). It was also shown that
Rabs like Rab1 can bind coiled-coil tethers [77]. Some CCTs even
contain multiple binding sites for small GTPase [78–80]. Vice versa,
one Rab can also bind to different golgins, although this spectrum
is rather limited [81–83]. By forming a meshwork, they are pro-
posed to prevent vesicles from escaping while trafficking between
the cisternae of the Golgi stack. It has been proposed that sequen-
tial binding events then bring the vesicle close to the target mem-
brane to permit SNARE binding and ternary complex assembly
[80]. The golgin GMAP-210 uses a different feature for the tether-
ing process [67]. It is also anchored to the membrane via its
GRAB-domain that binds Arf-GTP, but seems to bind vesicles via
an APLS motif on the opposite end of the molecule, which has a
preference for highly curved membranes ([65], Fig. 4A, introduced
in Section 3.1). Thus, GMAP-210 needs to undergo a conforma-
tional change to recruit vesicles to the Golgi membrane.



Fig. 4. Intrinsic flexibility of different tethering factors. (A) Simplified models for the influence of flexibility during membrane tethering. Golgins sequentially recruit vesicles
to their specific Rab binding sites (orange and blue circles) whereas GMAP-210 uses hinge regions to guide vesicles close to the Golgi (figures adapted from [70]). There they
can be taken over e.g. by COG (Cog1 blue, Cog2 brown, Cog3 sandy brown, Cog4 green, Cog8 pink, Cog5–6–7 light grey based on [116]). COG is able to bind Q- and R-SNAREs
with Cog4, 6 and 8 as well as the Rab Ypt1 at Cog2/3 to tether membranes [87,126]. The Dsl complex (Sec39p (green), Dsl1p (blue) and Tip20p (sandy brown)) uses flexibility
to recruit the SNARE proteins Use1 and Sec20 at the ER membrane and COPI on coated vesicles via its flexible loop. HOPS (subunits are colored as described in Fig. 2R) bridges
opposing membranes via Ypt7 and brings them close enough together to catalyze SNARE complex assembly. (B–E) The proposed mechanisms are partially based on rotary
shadowing or negative stain electron microscopic data that show the different tethering factors Cog1–2-3GFP-4 (C, [116]), Dsl1–Sec39 (D, [132]) and HOPS (E, [34]) in either
open (left) or closed (right) conformation. Scale bars are 50 nm. (F–H) Models corresponding to the class sums depicted in (C–E).
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Sequence analysis show that the coiled-coil domains of golgins are
not as continuous as predicted, but are interrupted by unstruc-
tured parts that allow strong bending and kink formation [84].
This was also nicely shown for Uso1 by rotary shadowing electron
microscopy (Fig. 4B, [71]). At the N-terminal head domain an
armadillo-like, tether repeat, a-helical tripod motif interrupts the
structure, which can also bind Rab-GTPases [85,86]. These features
might also apply to other golgins. Taken together, golgins seem to
catch GTPase-coated vesicles at long distance with the help of mul-
tiple binding sites along their coiled-coil domains. These can either
be achieved by the same or by coiled-coil domains of neighboring
golgins. Vesicles might get close to the Golgi-membrane by bend-
ing of the golgin-rod [71,84]. At the Golgi, the vesicle will be
released from golgins by either changes in membrane curvature
after fusion [66], or by release from the Rab with the help of a
GAP protein. There they could be taken over from other tethering
factors like the COG complex that catalyzes SNARE complex forma-
tion (see also Chapter 4.2; Fig. 4 A, C and F; [87]).

To complete the section on coiled-coil tethering factors we will
finally focus on Rabaptin-5, which binds Rab5-GTP via its
C-terminal part, and the Rab5 GEF Rabex-5 by its C2-1 domain,
and the Rab4 and Rab8 via its N-terminal domain [3,88–93].
Since Rab4 is required for the transport of endosomes to
cell-surface, and Rab5 is needed for endocytosis, rabaptin-5 likely
coordinates between both pathways [89]. Interestingly,
Rabaptin-5 also contains a large linker between its two predicted
coiled-coil domains [93]. This linker could not be crystallized and
is likely very flexible. Movement of this part could guide
Rab-loaded vesicles to the target membrane. Rabaptin-5 as an
effector of Rab5 forms a complex with Rabex-5, the GEF of Rab5.
Upon binding to Rab5, the C2-1 domain of Rabaptin-5 switches
from the V-state to an elongated form, which facilitates access of
the bound GEF Rabex-5 to Rab5 and promotes further Rab5 recruit-
ment [93]. Future studies have to show, if conformational changes
in other tethering factors also recruit GEF-proteins to enhance Rab
binding in the active state [93].

4.2. Function of other MTCs than HOPS (CATCHR families)

The second group of tethering factors is formed by the MTCs.
Known representatives are composed of three (Dsl) to eight (exo-
cyst) subunits with a molecular mass ranging from 250 kDa to
1 MDa. In contrast to the dimeric coiled-coil tethers they are span-
ning distances of less than 50 nm and therefore most likely rather
control specific vesicle recognition and membrane fusion than
their long distance recruitment. The known MTCs are grouped into
the CATCHR (complex associated with tethering containing helical
rods) family and the already discussed class C tethering factors
HOPS and CORVET. For a long time the TRAPP complexes, which
function as GEFs, have been discussed to also exhibit tethering
activity, though it is likely that their proposed tethering activity
is due to the activation of their target Rab, which then cooperates
with its tether such as p115 [4,94,95].

Members of the CATCHR family (also known as DCGE subfam-
ily), as the Dsl (transport from Golgi to endoplasmic reticulum
(ER)), COG (intra-Golgi trafficking), GARP (endosomes to the
trans-Golgi network) and exocyst complexes (post-Golgi vesicles
to the plasma membrane), have originally been clustered due to
their sequence homology [96,97]. Later, structural data demon-
strated that they share common tertiary structure motifs [98,99].
Until today, (partial) structures of different subunits have been
published containing one (Cog2), two (Sec15, Exo84), three
(Sec6) or four (Exo70) helix bundle domains [82,98,100–105].
Another two subunits of the Dsl complex, Tip20 and Dsl1, have
similar structures like subunits of the exocyst complex [99].

The model for the octameric 750 kDa exocyst complex (com-
posed of Sec3, 5, 6, 8, 10, 15; Exo70 and Exo84) resembles a
Y-shaped structure, with a central bundle of rods forming a
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scaffold and arms, which bridges different GTPase-containing
membranes [106]. The exocyst complex interacts with the
GTP-bound form of two small GTPases, Rho3 and Cdc42
[107,108]. The single subunits consist of tandem repeats of
a-helix bundles [101–106]. Interestingly, it can form two stable
subcomplexes. The subunits Exo70 and Sec3 are anchored to the
plasma membrane via Rab and Rho GTPases and the phosphoinosi-
tide PI(4,5)P2, whereas the hexameric subcomplex of the other six
subunits is thought to bind via Sec4 to the vesicle [109–111].
Therefore, it was postulated that assembly of both subcomplexes
to the holocomplex leads to tethering of secretory vesicles and
control of SNARE assembly [112–114]. The exocyst Sec6 interacts
with Sec9 Qbc-SNARE [113]. The tethering mechanism of exocyst
thereby seems to be similar to the HOPS-recruitment of the
Vam7-(Qc)SNARE, even though Vam7 is not part of the HOPS com-
plex. For exocyst, the interacting class II SM protein Sec1 may fulfill
the same function as Vps33 in HOPS [27,114]. Interestingly, the
Exo70 subunit exhibits flexibility [102]. Its domain 1 can bend
up to 14,6� relative to domain 2 and some residues in loop regions
between helices could not be resolved in the crystal structure (resi-
dues 63–72, 224–235 and 528–543) and are likely disordered or
flexible. How these features are of functional relevance has to be
examined in the future.

The COG (conserved oligomeric Golgi) complex has a central
role in intra-Golgi transport. With its three flexible legs COG seems
to be more like a coat, but could also span membranes with its
length of about 40 nm ([115,116], Fig. 4A, C and F). Depending on
the species, the octameric core complex has a size of 590–
750 kDa [117]. While the subunits Cog1–4 form a stable functional
unit with their absence leading to lethality [96,118–122], a Cog5–8
quadruple knockout caused no severe growth defect in yeast
[96,116]. The expression of single subunits failed for all but for
Cog2. Only a partial crystal structure could be obtained for human
Cog4 (residues 537–785; [98]) and an NMR structure of yeast Cog2
(residues 109–262; [100]). In contrast, coexpression of Cog2–4 and
Cog1–4 gave suitable amounts of stable monodispersed complex
for analysis via negative stain electron microscopy [116], which
showed both complexes forming a Y-shape structure with moving
arms (see also Fig. 4C). The highest flexibility can be found in the
joints linking these arms. Mapping of the C- and N-termini of each
subunit by fusion to GFP-protein resolved that one arm is formed
by the C-terminus of Cog4 and the second one by the C-terminus
of Cog3. Remarkably, in the third arm the N-terminal parts of
Cog1–4 overlap in a 10 nm segment without increased thickness
compared to the other arms. This indicates that they most likely
form a bundle of antiparallel a-helices ([44], Fig. 4F). Cog8 seems
to connect Cog1–4 with the Cog5–8 network, though it has not
been possible to reconstitute the octameric complex
(Fig. 4A and F). Lees at al. [116] mention that the human Cog2
sequence is significantly longer than its yeast homolog, and thus
predict that the shape of human COG tetrameric complex is rather
H-shaped. So far, detailed structural data of most parts are still
missing, but shared homology on the ternary structural level could
be found with exocyst.

Initially, COG was localized to the rims of the Golgi cisternae as
well as to vesicular structures of the cis- and trans-Golgi network
[84,96,115,123–125]. COG is important for the retrograde
intra-Golgi trafficking, but may also function as a tether in traffick-
ing between Golgi and endosomes, and anterograde ER-to-Golgi
transport [115,118,126–129]. Also for COG some essential interac-
tion partners could be identified. Yeast Cog2 interacts with c-COPI
in a yeast-two-hybrid assay [126], while antibodies to human Cog3
co-precipitate b-COPI [82,127]. The COG complex also interacts
with SNAREs; Cog4 binds the cis-Golgi t-SNARE Sed5 and enhances
the stability of intra-Golgi SNARE complexes [87]. Cog4 also inter-
acts via its N-terminal part with syntaxin-5 partner Sly1, a member
of the Sec1/Munc18 (SM) protein family [130]. The mode of action
is most likely comparable to the one proposed for exocyst, where
the flexibility could be a feature to facilitate the recruitment of
its interactors.

In comparison to the previously described tethering complexes,
the Dsl complex (dependence on SLY1–20) is with 250 kDa the
smallest of the known MTCs. It consists of three subunits Tip20
and Sec39/Dsl3, which are most likely bridged by Dsl1 based on
the interaction of the CATCHR domains from Dsl1 and Tip20
[131–133]. Dsl also interacts with the COPI coat of Golgi-derived
vesicles by Dsl1 binding the d-COP [134] and a-COP [135] subunits
of the COPI vesicle coat. Sec39 and Tip20 bind the ER-SNAREs Use1
and Sec20 [99,132,136]. Interestingly, Tip20 binds the regulatory
part of Sec20, but not the SNARE-motif, which undergoes dramatic
conformational changes during SNARE assembly. The Dsl complex
interacts with ER standing Q-SNARE proteins and allows formation
of a stable heptameric complex, Tip20–Dsl1–Sec39–Use1–Sec20–
Ufe1–Sec22 [131,132,137,138]. This assembly is dependent on
the whole intact Dsl complex. Together with Sly1, it then seems
to chaperone the assembly of a SNARE complex, thus presumably
facilitating membrane fusion. Electron microscopy data showed
that the Dsl complex has a stiff, rod-like conformation with flexible
arms [132], Fig. 4D and G). Hughson and colleagues were able to
obtain structural data for parts of Dsl1 and Dsl1 in complex with
Sec39 as well as Tip20. The whole complex mainly consists of
a-helices. Crystallographic experiments unraveled that Dsl1 is
organized like other MTC subunits as Exo70 or Tip20 [98,100–
105]. It interacts with Sec39 via two helices. Destruction of the
interface affects cell viability, whereas interference of the Dsl1–
Tip20 interface had only mild effects [99,131,132]. Dsl1 contains
a region that is not well-folded (S. cerevisiae residues 378–488,
Kluyveromyces lactis amino acids 367–423, [99,132,139]), and does
not result in interpretable electron density. Since the region was
previously described to bind to vesicular coats [135,140,141], it
is interpreted to catch COPI vesicles like a ‘‘lasso’’, being able to
extend for 10 nm or more (Fig. 4A). Beside this feature, Dsl1 also
shows flexibility between amino acids 333 and 355. This part
resembles a kind of hinge region, which was nicely visualized by
single particle electron microscopy ([132], Fig. 4D). The position
of Dsl1 N-terminal part varies dramatically at its position between
open and closed conformation, and it has been suggested that the
‘‘lasso’’ region could influence this movement upon COPI binding.
Since Tip20 and Sec39 do not interact directly, it is likely that the
movement of both Dsl1 domains is physiologically relevant in
the functional cycle during vesicle tethering. There are additionally
hints that also the Dsl1–Tip20 linkage might be bendable [99].
Although Exo70 and Tip20 contain a similar architecture, they lack
these flexible regions and appear to be comparably stiff [101–
103,132]. Forming a tower-like structure of approximately 20 nm
in height, the Dsl complex could bridge up to 30 nm by extension
of the flexible loop. The movement of Dsl1 N-terminal part (amino
acids 1–339) with Tip20 however is probably needed to recruit
Sec20 to catalyze SNARE complex formation. Thus, Dsl flexibility
is essential for its function as a tethering complex.

The fourth CATCHR complex, GARP (Golgi-associated retrograde
protein), is composed of four subunits, Vps51, 52, 53 and 54, with a
size of 125–320 (Vps51) or 700–1700 amino acids (Vps52, 53, 54)
[142–144]. The 360 kDa holocomplex interacts via Vps52 with the
Rab Ypt6-GTP and with Vps53 with Arl1-GTP [145–147]. Vps51
specifically binds the Habc domain of the t-SNARE [143,146]. For
human Vps53 and Vps54 it was found that they can also bind
the SNAREs Syntaxin6, Syntaxin16 and VAMP4 [148]. The single
subunits contain alternating short coiled-coils connecting
a-helical stretches [96,142,143,146,149–151] with homology to
other CATCHR members as Dsl, COG or exocyst [96,97], and their
N-terminal regions are responsible for complex assembly



2494 A. Kuhlee et al. / FEBS Letters 589 (2015) 2487–2497
[146,148,150,152,153]. GARP is thought to form a core with four
arms built of the C-termini interacting with Rab or SNARE proteins
[144]. For S. cerevisiae Vps53 [154] and Homo sapiens Vps54 [150]
crystal structures could be resolved, resembling a-helical bundles
with similarity to the D- and E-like domains of exocyst Sec6
[104]. Structure predictions for Vps51 and 52 also suggest this
CATCHR-fold [155]. Due to this one proposes a function similar
to Dsl and COG complex [144].

5. Concluding remarks

Although being structurally quite different tethering factors have
a lot in common. Some subunits form active complexes, while others
seem to have rather regulatory functions, since their deletion only
mildly impairs the targeted transport pathway (e.g. COG; [96]).
They all specifically bind small GTPases, mostly Rabs, in their GTP
form, sometimes as a prerequisite to interact with Arl GTPases,
and may also recruit GEFs. This could allow selective binding of
GTPases by controlling their affinity based on the nucleotide status.
At least for HOPS it was shown that the Rab Ypt7 affects the area of
the complex that it binds to. This could cause disassembly of the
complex, but might theoretically also allow binding of the equiva-
lent GAP. In principle, this could deactivate the Rab-GTP to prevent
its rebinding to the tethering factors once the complex has been
released. All MTCs are also able to bind SNARE proteins and for some
the catalytic effect on formation of the ternary SNARE complex could
be shown. For HOPS, it was possible to show that structural flexibil-
ity is important for binding SNARE components [27].

Single subunits of MTCs are very often unstable or cannot be
expressed, whereas expression of subcomplexes is possible for
some of them. Interaction between subunits depend very often
only on a few amino acid residues (see HOPS Vps33–Vps16, Dsl
Dsl1–Sec39). Although it is yet unclear if they form a functional
unit on their own, for some tethering factors stable subcomplexes
have been identified. For instance, HOPS falls apart into Vps16–33
and Vps39–11–18, once Vps41 has been depleted, and for exocyst
tethering is proposed to be catalyzed by the assembly of the hex-
americ complex. There is still no evidence for increased affinity
amongst the subcomplexes, once they are bound to Rabs, coat pro-
teins or assembled SNAREs. At least for the HOPS complex, binding
of any other protein tested had exactly the opposite effect. Even
though the different subcomplexes could reflect possible dynamics
of the HOPS complex during the fusion cycle, we currently consider
subcomplexes as intermediates in the assembly of the holocom-
plex with no functional role on their own.

There are different modes of intrinsic molecular flexibility. On
the one hand flexible loops like the ‘‘lasso’’ found in Dsl1 could
be useful to interact with potential binding partners such as coat
proteins [99,132,135,139–141]. This is suitable in some cases since
most tethering factors are already anchored at least on one side,
limiting their ability to move towards their opposing target. It
has to be studied whether some of the flexible loops found in other
tethering factors might also be directly responsible to recruit
interactors.

A second feature are hinge regions within complexes and sub-
units. Here we distinguish between the ones functioning at rather
local/short distance and the ones causing large global movements.
The first ones resemble clamp-like movements within or between
single subunits. Opening up of clefts may allow binding of SNAREs
or Rabs as found for HOPS complex. These movements may allow
for the accessibility of binding sites. However, an induced flexibil-
ity/instability of the complex upon binding could also ease the
release of associated factors, once the tethering process continues.
One could think of the tethering factors as a flexible platform that
allows for binding of SNAREs to catalyze their assembly, whereas
it is released after that to promote the progression of the fusion
process.

As already mentioned some of the observed movements cause
quite large, global conformational changes. This could be observed
for almost all tethering factors. Although it is not likely, it cannot
be ruled out that some of these effects are caused by the lack of
components, binding partners or artifacts caused by the detection
method (in most cases negative stain electron microscopy).
However, such features could nicely explain the fishing and
recruitment of vesicles to the target membrane. The
accordion-like shape of Uso1 and structural features of other gol-
gins allows strong bending and kink formation. Movement of arms
as observed for the Dsl and COG complexes could allow assembly
of components into close vicinity. Smaller movements as observed
for HOPS (Fig. 4E and H) could catalyze SNARE assembly and mem-
brane fusion.

In summary, structural flexibility is not a mere side effect, but of
essential need during membrane tethering. This is supported by
the fact that induced rigidity causes lack of function [34]. All of
the known tethering complexes show one or more of the men-
tioned features, which could explain how they reach for partners,
bind them selectively, recruit them to the potential fusion locus,
catalyze the formation of fusion complexes, and possibly dissociate
to give way for subsequent membrane fusion. Although extensive
work was done to obtain structural data and information on inter-
actors, to date models for the fusion process are incomplete and
time-resolved experiments are missing. It will be very exiting to
unravel the detailed mechanisms in the future.
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