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Imaginary-time Nambu–Bethe–Salpeter (NBS) wave function is introduced to extend our previous
approach for hadron–hadron interactions on the lattice. Scattering states of hadrons with different
energies encoded in the NBS wave function are utilized to extract non-local hadron–hadron potential.
“The ground state saturation”, which is commonly used in lattice QCD but is hard to be achieved
for multi-baryons, is not required. We demonstrate that the present method works efficiently for
the nucleon–nucleon interaction (the potential and the phase shift) in the 1 S0 channel.

© 2012 Elsevier B.V. Open access under CC BY license.
1. Introduction

Euclidean correlation functions are dominated by contributions
from the corresponding lowest-energy states at sufficiently large
time separation t . This property, called the ground state saturation,
is heavily used in lattice QCD to extract various hadronic observ-
ables such as masses, decay constants and other matrix elements.
The ground state saturation, however, is difficult to be achieved
for multi-baryon systems. For example, the signal-to-noise ratio for
the correlation of n-nucleons reads [1]:

(
S
N

)
n

∼ e−n(mN−3mπ /2)t, (1)

where mN and mπ are the nucleon mass and the pion mass, re-
spectively. This relative enhancement of statistical noise at large t
for mN − 3mπ/2 > 0 is a common problem for baryonic systems,
even for a single baryon (n = 1).
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In addition, there exists another problem for the multi-hadrons
at large t caused by the small splitting between the ground and the
1st excited states for large volume. For example, in the nucleon–
nucleon (NN) system, the minimum splitting is estimated as

�E � p2
min.

mN
= 1

mN

(2π)2

L2
, (2)

where L is a spatial extension of the lattice. If L � 6 fm and
mN � 1 GeV, we have �E � 43 MeV � 1/(4.6 fm). The ground
state saturation requires t � (�E)−1 � 4.6 fm, which corresponds
to t/a � 46 for the lattice spacing a � 0.1 fm. It is very difficult
to extract signals at such large t due to the bad behavior of statis-
tical noise in Eq. (1). To avoid these problems, techniques such as
the use of improved operators and/or the diagonalization of matrix
correlation functions [2] have been employed.1

Recently, a novel method to derive hadron–hadron interactions
from lattice QCD was developed by HAL QCD Collaboration [5–11],
where the Nambu–Bethe–Salpeter (NBS) wave function is utilized

1 For recent applications of these methods to multi-baryons, see e.g. Refs. [3,4].
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to extract the hadron–hadron potentials. Since its extraction from
hadronic correlation functions relies on the ground state satura-
tion, the problems mentioned above may exist in principle. In
this Letter, we introduce time-dependent Schrödinger-like equa-
tion which can utilize the information of moderate t and can avoid
the problem of ground state saturation. This allows one to de-
rive the hadron–hadron potentials as defined in the original HAL
QCD method with less systematic errors. The key observation is
that the scattering states with “different” energies on the lat-
tice are governed by the “same” non-local potential U (�r,�r′). The
present time-dependent method has already been applied success-
fully to the baryon–baryon (BB) potentials in the flavor-SU(3) limit
[12,13]. In the following, we give a full theoretical account of this
imaginary-time HAL QCD method by taking the NN scattering with
(2 + 1)-flavor lattice QCD as a concrete example.

2. Potential with ground state saturation

In the original HAL QCD method, the “time-independent”
NBS wave function was shown to satisfy the following “time-
independent” Schrödinger equation [7]:

(�k2/mN − H0
)
ψ�k(�r) =

∫
d3r′ U

(�r,�r′)ψ�k
(�r′), (3)

where H0 ≡ −	/mN with mN being the nucleon mass. The poten-
tial U (�r,�r′) is non-local but independent on k [7,14]. The equal-
time NBS wave function is given by

ψ�k(�x − �y) ≡ 〈0|N(�x)N(�y)
∣∣N(�k)N(−�k); in

〉
, (4)

where |0〉 and |N(�k)N(−�k); in〉 denote the vacuum and a two-
nucleon state with an asymptotic momentum �k, respectively, and
N(x) denotes a composite interpolating field for the nucleon. For
N(x) being local, the reduction formula for local composite oper-
ators [15] can be used to establish the relation between the NBS
wave function and the S-matrix: The asymptotic behavior of the
NBS wave function at long distance reads [7,16,17]

ψ�k(�r) = eiδ(k) sin(kr + δ(k))

kr
+ · · · , (5)

where δ(k) denotes the (scattering) phase of the S-matrix. There-
fore the NN potential in Eq. (3) gives correct phase shift δ(k) for
all k in the elastic region E < Eth ≡ 2mN + mπ , by construction.

In lattice QCD calculations, NBS wave functions are extracted
from the NN correlation function using the ground state saturation
as

CNN(�x − �y; t) ≡ 1

V

∑
�r

〈0|T [
N(�x +�r, t)N(�y +�r, t) · J̄ (0)

]|0〉

=
∑

n

ψn(�x − �y) · ane−Ent

→ ψ0(�x − �y)a0e−E0t (t → ∞), (6)

where J̄ (0) is a two-nucleon source located at t = 0, V denotes
the spatial volume, ψn(�x − �y) ≡ 〈0|N(�x)N(�y)|n〉 denotes an NBS
wave function for an intermediate state |n〉 with the energy En ,
and an ≡ 〈n|J̄ (0)|0〉. In the spin-singlet sector, for example, the
central potential V C(r) in the leading order of the velocity ex-
pansion, U (�r,�r′) = V (�r, �∇r)δ

3(�r − �r′) = {V C(r) + O (∇2)}δ3(�r − �r′),
is given by

V C(r) =
�k2

mN
− lim

t→∞
H0CNN(�r, t)

CNN(�r, t)
, (7)

where �k denotes the “asymptotic momentum” for the ground-state.
The ground state saturation is crucial here to extract the potential.
3. Potential without ground state saturation

In this section, we propose an alternative derivation of potential
without using the ground state saturation. For this purpose, we
consider the normalized NN correlation function

R(t,�r) ≡ CNN(�r, t)/
(
e−mN t)2

. (8)

We here assume that t is moderately large such that elastic con-
tributions (at E < Eth = 2mN + mπ ) dominate CNN(t,�r).

As before, we write

R(t,�r) �
∑

�k
ψ�k(�r) · a�k exp

(−t�W (�k)
)
, (9)

where

�W (�k) ≡ 2
√

m2
N + �k2 − 2mN

and

a�k ≡ 〈
N(�k)N(−�k); in

∣∣J (0)|0〉.
From an identity �W (�k) = �k2

mN
− �W (�k)2

4mN
, it is easy to see

− ∂

∂t
R(t,�r)

=
∑

�k

{ �k2

mN
− �W (�k)2

4mN

}
ψ�k(�r) · a�k exp

(−t�W (�k)
)
,

=
∑

�k

{
H0 + U − 1

4mN

∂2

∂t2

}
ψ�k(�r) · a�k exp

(−t�W (�k)
)
, (10)

where U is the integration kernel associated with the non-local
potential U (�r,�r′). Thanks to Eq. (3), �k2/mN in the first line can
be replaced by H0 + U in the second line. We then arrive at the
“time-dependent” Schrödinger-like equation,
{

1

4mN

∂2

∂t2
− ∂

∂t
− H0

}
R(t,�r) =

∫
d3r′ U

(�r,�r′)R
(
t,�r′), (11)

which shows that the same potential U (�r,�r′) as defined in Eq. (3)
can be obtained from R(t,�r). An advantage of this method is that
the ground state saturation (or more generally a single state satu-
ration) is not required for R(t,�r) to satisfy Eq. (11).

Several comments are in order here:

(i) For the present method to work, t has to be large enough such
that elastic contributions at E < Eth = 2mN + mπ dominate
R(t,�r). Note that such t is much smaller than that required for
the ground state saturation. This is especially so for the large
volume, since typical size of gaps between energy eigenvalues
shrinks as O (1/L2). While it becomes more and more difficult
to achieve the ground state saturation for larger volume, the
requirement of the elastic dominance E < Eth is less sensitive
to the volume size.

(ii) In the leading order of the velocity expansion, Eq. (11) leads
to a generalization of Eq. (7)

V C(r) = − H0 R(t,�r)
R(t,�r) − (∂/∂t)R(t,�r)

R(t,�r)
+ 1

4mN

(∂/∂t)2 R(t,�r)
R(t,�r) (12)

for the spin-singlet sector. We can also include the higher or-
der terms of the velocity expansion as discussed in Refs. [7,10].
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Fig. 1. (Left) CNN(�r, t) at t = 9. (Right) −H0CNN(�r, t)/CNN(�r, t) at t = 9.
Convergence of the velocity expansion in the original HAL QCD
method can be examined by comparing local potentials at two
different energies as discussed in Ref. [10]. Equivalently, in the
present method, the convergence can be examined by compar-
ing the local potentials obtained for different t ’s.

(iii) D ≡ 1
4mN

∂2

∂t2 − ∂
∂t in Eq. (11) plays a role of �k2/mN in Eq. (3).

For �E · t � 1 where the ground state saturation is achieved,
Eq. (11) reduces to Eq. (3). We therefore can regard the “time-
dependent” Schrödinger-like equation as an extension of the
time-independent Schrödinger equation (Eq. (3)).

(iv) In the non-relativistic limit where �W (�k) ≡ 2
√

m2
N + �k2 −

2mN � �k2

mN
, “time-dependent” Schrödinger-like equation leads

to{
− ∂

∂t
− H0

}
R(t,�r) =

∫
d3r′ U

(�r,�r′)R
(
t,�r′). (13)

Therefore, the 2nd derivative term of t in Eq. (11) corresponds
to the relativistic effect.

4. Numerical results

To test the present method, we employ (2 + 1)-flavor QCD
gauge configurations generated by PACS-CS Collaboration [18] on
323 × 64 lattice with the RG improved Iwasaki gauge action at
β = 1.9 and the non-perturbatively O (a) improved Wilson quark
action at (κud, κs) = (0.13700,0.13640) and CSW = 1.715. This
parameter set corresponds to the lattice spacing a � 0.091 fm
(a−1 = 2.176(31) GeV), the spatial extent L = 32a � 2.90 fm, mπ �
701 MeV and mN � 1583 MeV.

The periodic boundary condition is used for spatial directions,
while the Dirichlet boundary condition is taken for the temporal
direction at tDBC = 32a and −32a, to avoid opposite propagations
of two nucleons in temporal direction, i.e., one propagates forward
and the other propagates backward. From time-reversal and charge
conjugation symmetries, we can average over forward propaga-
tion at t > 0 and backward propagation at t < 0 with a source
at t = 0. By temporally shifting gauge configurations, 21 source
points are used per one configuration and 390 gauge configura-
tions are employed in total. Statistical errors are estimated by the
Jackknife method with a bin size of 10 configurations. Composite
operators for the proton and the neutron are taken to be p(x) ≡
εabc(uT

a (x)Cγ5db(x))uc(x) and n(x) ≡ εabc(uT
a (x)Cγ5db(x))dc(x), re-

spectively. In our actual calculation, we replace e−mN t in Eq. (8) by
the single-nucleon CN (t) ≡ ∑
�x〈0|T [N(x)N̄(0)]|0〉 to suppress sta-

tistical noises of R(t,�r). This replacement is permitted as long as
the ground state saturation for CN (t) is achieved. Time derivatives
in Eq. (12) are evaluated after applying the polynomial interpola-
tion of degree 5 to R(t,�r).

In order to see how excited states of the two nucleons affect
the final NN potential, we introduce a source function with a real
parameter α as

f (x, y, z) ≡ 1 + α
(
cos(2πx/L) + cos(2π y/L)

+ cos(2π z/L)
)
, (14)

which reduces to the wall source at α = 0. Two-nucleon source is
then defined by J̄ ( f ) ≡ p̄( f ) · n̄( f ), where p̄( f ) ≡
εabc(ūa( f )Cγ5d̄b( f ))ūc( f ) and n̄( f ) ≡ εabc(ūa( f )Cγ5d̄b( f ))d̄c( f )
with ū( f ) ≡ ∑

�x ū(�x) f (�x) and d̄( f ) ≡ ∑
�x d̄(�x) f (�x).

Fig. 1 (left) shows CNN(�r, t) at t = 9 for α = 0.00, 0.08 and 0.16.
If the ground state saturation were achieved, results with differ-
ent values of α should be the same up to overall normalizations.
Fig. 1 (left) reveals that contamination from the excited states is
non-negligible at t = 9. As shown in Fig. 1 (right), the contamina-
tion is transferred to the α dependence of [H0CNN(�r, t)]/CNN(�r, t).

Fig. 2 (left) shows V C(r) obtained from our present method
Eq. (12) for three values of α. The α dependence seen in
Fig. 1 (right) disappears within statistical errors. Three contribu-
tions to V C(r) in Eq. (12) are separately shown in Fig. 2 (right)
for α = 0. We observe that the first term of Eq. (12) (the red
points) determines the main trend, while the second term (the
blue points) gives an important correction. The third term (the
green points), on the other hand, is negligible, showing that the
non-relativistic approximation �W (�k) � �k2/mN works well in this
case. Note that the �r-dependence of the second term in Eq. (12),
− (∂/∂t)R(t,�r)

R(t,�r) = − ∂ log(R(t,�r))
∂t , is a useful measure of the departure

from the ground state saturation.

5. Scattering length and scattering phase shift

We now calculate the NN scattering phase shift, by solving
the Schrödinger equation with the potential V C(r) in the infinite
volume. For this purpose, as shown in Fig. 3 (left), the central
potential V C(r) is fitted with multi-Gaussian functions as g(r) ≡∑Ngauss

n=1 Vn · exp(−νnr2), where Vn and νn(> 0) are used as fit pa-
rameters, Ngauss denotes the number of Gaussian functions. We
then solve the Schrödinger equation in 1 S0 channel [19].



440 HAL QCD Collaboration / Physics Letters B 712 (2012) 437–441
Fig. 2. (Left) Central potentials obtained by our new method Eq. (12) at t = 9 for three values of α. (Right) Three contributions to V C(r) in Eq. (12) at t = 9 for α = 0. (For
interpretation of the references to color, the reader is referred to the web version of this Letter.)

Fig. 3. (Left) The multi-Gaussian fit of the central potential V C(r) with NGauss = 5 for α = 0 at t = 9. (Right) The scattering phase in 1 S0 channel in the laboratory frame
obtained from the lattice NN potential, together with experimental data [20].
Fig. 3 (right) shows the scattering phase δ(k) extracted from the
long distance behavior of the solution ψk(r), together with the ex-
perimental data for comparison. Qualitative feature of the phase
shift as a function of k is well reproduced, though the strength is
weaker, most likely due to the heavy pion mass (mπ � 701 MeV)
in this calculation. In fact, the recent 3-flavor QCD simulations
show that the NN phase shift approaches toward the physical
value as the quark mass decreases [13]. The scattering length for
mπ � 701 MeV in the present method, calculated from the deriva-
tive of the scattering phase shift at E lab = 0, leads to a(1 S0) =
limk→0 tan δ(k)/k = 1.6 ± 1.1 fm.

6. Non-local potential

By extending the present method further, one may directly ex-
tract the non-local potential. Let us introduce a more general NN
correlation function,

R�r,�r′(t)

= 1

V 2

∑
�x,�x′

〈0|T [N(�x +�r, t)N(�x, t)N̄(�x′ + �r′,0)N̄(�x′,0)]|0〉
(e−mN t)2

,

(15)
which is shown to satisfy

K (t) ≡
{

1

4mN

∂2

∂t2
− ∂

∂t
− H0

}
R(t) = U · R(t). (16)

Here the matrix indices �r,�r′ for K (t), R(t), U and a necessary
integration over spatial coordinates are implicit. The non-local
potential is then extracted as Ũ = K (t) · R̃−1(t), where an ap-
proximated inverse of the hermitian operator R(t) is defined by
R̃−1(t) = ∑

λn(t)�=0 λn(t)−1|n, t〉〈n, t|. Here λn(t) and |n, t〉 are an
eigenvalue of R(t) and its eigenvector, respectively. Zero eigenval-
ues are removed in the summation. Note that U which satisfies
Eq. (16) is not unique, since U = Ũ +∑

λn(t)=0 cn|n, t〉〈n, t| also sat-
isfies the same equation for arbitrary {cn}. This is related to the
fact that the zero-modes or nearly zero-modes are associated with
states above the inelastic threshold.

7. Summary and concluding remarks

A method to extract hadron–hadron interactions by generaliz-
ing the original HAL QCD method is proposed. We derived “time-
dependent” Schrödinger-like equation, a second order differential
equation in t , which enables us to construct NN potentials with-
out assuming the ground state saturation in the elastic region
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E < Eth = 2mN +mπ . We have shown that this method works well
for extracting the central NN potential in the 1 S0 channel: Identi-
cal potential is obtained for different source-operators within the
statistical error. Also, resultant NN potential, the scattering phase
shift and the scattering length are much improved both qualita-
tively and quantitatively from those obtained by assuming ground
state saturation.

While we have considered the system only in the elastic re-
gion so far, an extension to the inelastic region is also possible. In
Ref. [21], it has been shown that one can define and extract the
hadronic potentials above inelastic threshold. Together with the
framework proposed in this Letter, this could provide a novel pre-
scription to solve the S-matrix in QCD.
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