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Abstract

A major challenge in software development process is to advance error detection to early phases of
the software life cycle. For this purpose, the Verification and Validation (V&V) of UML diagrams
play a very important role in detecting flaws at the design phase. It has a distinct importance for
software security, where it is crucial to detect security flaws before they can be exploited. This
paper presents a formal V&V technique for one of the most popular UML diagrams: sequence
diagrams. The proposed approach creates a PROMELA-based model from UML interactions
expressed in sequence diagrams, and uses SPIN model checker to simulate the execution and to
verify properties written in Linear Temporal Logic (LTL). The whole technique is implemented
as an Eclipse plugin, which hides the model-checking formalism from the user. The main
contribution of this work is to provide an efficient mechanism to be able to track the execution
state of an interaction, which allows designers to write relevant properties involving send/receive
events and source/destination of messages using LTL. Another important contribution is the
definition of the PROMELA structure that provides a precise semantics of most of the newly UML
2.0 introduced combined fragments, allowing the execution of complex interactions. Finally, we
illustrate the benefits of our approach through a security-related case study in a real world scenario.
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1 Introduction

A major challenge in software development process is to advance error detec-
tion to early phases of the software life cycle. For this purpose, the Verification
and Validation (V&V) of UML diagrams play a very important role in detect-
ing flaws at the design phase. It has a distinct importance for software security,
where it is crucial to detect security flaws before they can be exploited. Veri-
fication is defined as “the process of determining that a model or simulation
implementation accurately represents the developer’s conceptual description
and specification”. Whereas validation is defined as “the process of determin-
ing the degree to which a model or simulation is an accurate representation
of the real-world from the perspective of the intended uses of the model or
simulation” [21]. In this study, we focus on formal V&V of one type of UML
diagrams: sequence diagrams. UML sequence diagrams are behavioral dia-
grams used to specify interactions among system entities in many different
situations. They are used to get a better grip of an interaction situation for
an individual designer or for a group that needs to achieve a common un-
derstanding of the situation [10]. Along with class diagrams and use case
diagrams, sequence diagrams are the most popular diagrams of UML [23].

During the recent years, many techniques have been proposed for V&V
of UML diagrams, e.g., static analysis, theorem proving, model checking,
etc. Those approaches have different strengths in different areas. Since
model checkers provide automated tools for verification of a given behav-
ioral property, they have often been used in behavioral diagrams to ensure
whether the system meets the pre-defined requirements. Though, most of
the proposed approaches target only activity and state machine diagrams
[4, 8, 9, 12, 14, 16, 19, 20]. There are some approaches targeting sequence
diagram [2, 23]. However, when it comes to interactions, it is important to
analyze the type of messages being exchanged, as well as their source and
destination, and their send and receive events. The proposed approaches tar-
geting sequence diagram mainly focus on getting a formal representation of
interactions, and they miss a well-defined methodology to analyze all these
important elements. Moreover, those works either do not take into account
UML combined fragments (components newly introduced to UML 2.0 that
allow designers to describe a number of traces in a compact and concise man-
ner [17]) or their semantics models are not in accordance with the semantics
defined in the UML 2.0 specification.
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The main contribution of this work is to provide an efficient mechanism to
be able to track the execution state of an interaction, which allows designers to
write relevant properties involving send/receive events and source/destination
of messages using LTL. This mechanism was implemented in such a way that
allows the designers to select the portion of the information that is relevant
to their properties. Consequently, it gives them flexibility to write very ex-
pressive properties. Another important contribution is the definition of the
PROMELA structure that provides a precise semantics of most of the newly
UML 2.0 introduced combined fragments, allowing the execution of complex
interactions. It allows the developer to simulate much more complex sequence
diagrams, with non-straightforward execution trace. The result of these con-
tributions is an efficient approach which is capable of detecting more flaws on
more complete and complex interactions.

The proposed approach creates a PROMELA-based model from UML in-
teractions expressed in sequence diagrams, and uses SPIN model checker to
simulate the execution and to verify properties written in Linear Temporal
Logic (LTL). PROMELA/SPIN was chosen because it provides important
concepts (sending and receiving primitives, parallel and asynchronous compo-
sition of concurrent processes, and communication channels) that are neces-
sary to implement sequence diagrams [15]. This makes the implementation
easier since the communication primitives and channels are already available
in PROMELA and it does not need any extra effort to implement them. The
whole technique is implemented as an Eclipse 3 plugin, which hides the model-
checking formalism from the user and allows the V&V engine to be embedded
into the development environment.

The remainder of this paper is structured as follows. Section 2 discusses
how to get PROMELA code according to the semantics of UML 2.0 inter-
actions. In Section 3, the mechanism for V&V using source/destination and
send/receive events is presented. In Section 4, we present a scenario applying
our approach, as well as experimental results. Section 5 briefly presents details
about the tool implementing the V&V mechanism. In Section 6, we present
the related work. Finally, we conclude with some remarks and directions for
future work in Section 7.

3 http://www.eclipse.org/
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2 Translation of UML 2.0 Combined Fragments into
PROMELA

In this section, we briefly present the PROMELA representation of the basic
elements of sequence diagrams as defined in [15, 22]. Then we present the trace
semantics of the most popular combined fragments and their respective PRO-
MELA code that correctly simulates the execution traces. The composition of
the presented translation rules allows the simulation of complex interactions
with interesting and non-straightforward execution trace.

2.1 Basic Elements

The work presented in [15] specifies how to translate basic elements of MSCs
into PROMELA and [2] shows that this schema can be reused for basic el-
ements of sequence diagrams. The translation rules for basic elements pre-
sented here are based on the work proposed in those approaches, and they
will be the basis for the next (and more complex) interaction elements. The
PROMELA elements used for representing basic components of interactions
are: (1) proctype: it is used for declaring new process behaviour, (2) mtype:
it defines symbolic names of numeric constants that are used as messages
in the communicating process. (3) cham: it declares and initializes commu-
nication channels. Finally, (4) !/? operators: Theses symbols are used for
sending/receiving messages to/from channels, respectively.

Table 1 provides the PROMELA representation of the basic elements
shown in Fig. 1. The semantics of this interaction is the single trace 〈!m, ?m〉
[10].

a b

m

sd S1 Lifelines

Send

Event

Receive

Event
Connector

Message

Fig. 1. Simple Sequence Diagram

2.2 Interaction Fragments and Weak Sequencing Combined Fragments

An Interaction Fragment is an abstract notion of the most general interaction
unit. In other words, it is a piece of an interaction [17]. In Fig. 2(a) two
messages (p and q) are sent from a to b. Each message has the semantics
given for the message in Fig. 1. The vertical positions of events represent
their order on each lifeline. However, the two lifelines are independent [10].
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UML element PROMELA element PROMELA statement

Lifeline Process proctype{...}

Message Message mytpe = {m1,...mn}

Connector Communication channel for each
message arrow

chan chanName = [1] of {mtype}

Send and Receive
events

Send and Receive operations Send ⇒ ab!m, Receive ⇒ ab?m

Table 1
Mapping of basic UML Sequence Diagrams into PROMELA

Thus, the possible execution traces can be derived from Fig. 2(a) by using
the weak sequencing operator (seq) defined in [17]. This operator is also used
in weak sequencing combined fragment as shown in Fig. 2(b). The operator
seq defines the set of traces with the following constraints [10, 17]:

(i) The order of events within each of the operands is maintained in the
result.

(ii) Events on different lifelines from different operands may come in any
order.

(iii) Events on the same lifeline from different operands are ordered such that
an event of the first operand comes before that of the second operand.

For the interactions in Fig. 2(a) and 2(b), we get the following result:

S2 = 〈!p, ?p〉 seq 〈!q, ?q〉 = {〈!p, ?p, !q, ?q〉, 〈!p, !q, ?p, ?q〉} (1)

a b

p

sd S2

q

(a)

a b

p

sd S3

q

seq

(b)

1

3

6

9

/*                    */

/*                    */

/*                       */

/*                    */

Messages declaration

Channels declaration

Lifelines Specification

System Instantiation

2

4

5

7

8

10

mtype

chan                mtype

chan                mtype

proctype

proctype

init atomic

= {p,q};

ab_p = [1] of {     };
ab_q = [1] of {     };

a(){ab_p!p; ab_q!q;};
b(){ab_p?p; ab_q?q;};

{      {run a(); run b();}}

(c)

Fig. 2. (a) Simple Interaction Fragment, (b) Weak Sequencing Combined Fragment and (c) their
corresponding PROMELA Code

2.2.1 PROMELA Representation:

The communication primitives available in PROMELA naturally implements
the seq operator following the translation map shown in table 1. This is
one of the main reasons for choosing PROMELA/SPIN for model checking of
sequence diagrams. Fig 2(c) shows the PROMELA code for the interactions
in Fig. 2(a) and Fig. 2(b). In line 2 the messages are declared, lines 4 and 5
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represent the channels on which the messages are sent, lines 7 and 8 specify
the lifelines using process, and line 10 is the instruction to instantiate the
system.

2.3 Alternative and Option Combined Fragments

Alternative and Option combined fragments represent a choice of behaviour
in sequence diagrams. Alternative and Option operators are denoted as alt
and opt, respectively [17]. The opt operator designates that the combined
fragment represents a behaviour choice where either the sole operand happens
or nothing happens. An option is semantically equivalent to an alternative
combined fragment where there is one non-empty operand and the second
operand is empty [17]. The set of traces that defines a choice is the union
of the traces of the operands [10, 17]. Eq. 2 shows the set of traces of the
interaction in Fig. 3(a).

S4 = 〈!p, ?p〉 alt 〈!q, ?q〉 = {〈!p, ?p〉, 〈!q, ?q〉} (2)

2.3.1 PROMELA Representation:

Alternative and Option operator are represented as if condition in PRO-
MELA. The guard variable is declared globally to enforce all lifelines to get
the same decision at the choice point. The non-deterministic behaviour is im-
plemented at the set-up time by assigning different values to the guards using
if statement with two executable conditions (lines 13 and 14 of Fig. 3(b)). At
execution time, SPIN randomly chooses an option and continues the simula-
tion. In exhaustive mode, SPIN will simulate all possible system decisions and
it will provide all traces shown in Eq. 2. Fig. 3(b) presents the PROMELA
code corresponding to the model in Fig. 3(a).

a b

p

sd S4

q

alt
[guard]

[else]

(a)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

proctype

if

else

fi

proctype

if

else

fi

init

if

true true

true false

fi

a(){

::(guard) -> ab_p!p;
::     -> ab_q!q;
;}

b(){

::(guard) -> ab_p?p;
::     -> ab_q?q;
;}
{

::(    ) -> guard=    ;
::(    ) -> guard=     ;
;

...}

(b)

Fig. 3. (a) Alternative Combined Fragment, (b) Respective PROMELA code
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2.4 Parallel Combined Fragments

A Parallel Combined Fragment, denoted by par operator, represents a parallel
merge between the behaviours of the operands. The events of the different
operands can be interleaved in any way as long as the ordering imposed by
each operand as such is preserved [17]. Its set of traces describes all the ways
that events of the operands may be interleaved without obstructing the order
of the events within the operand [10]. Eq. 3 shows the set of possible traces
of the diagram in Fig. 4(a).

S5 = 〈!p, ?p〉 par 〈!q, ?q〉 ={〈!p, ?p, !q, ?q〉, 〈!p, !q, ?p, ?q〉, 〈!q, !p, ?q, ?p〉,
〈!q, ?q, !p, ?p〉, 〈!q, !p, ?p, ?q〉, 〈!q, !p, ?q, ?p〉} (3)

2.4.1 PROMELA Representation:

Parallel behaviour can be implemented using sub-instances of the lifelines
covered by the parallel fragment (Fig. 4(b), lines 9 and 11). The new element
is instantiated right before the main process starts the parallel activities. The
actions inside the parallel fragment are divided among the main process and
its sub-instances. Each one executes one operand. A synchronism mechanism
should be implemented to ensure that no event after a combined fragment will
overtake an event in it. This synchronism is done with token messages that
will be sent from the subprocess to the main process right before finishing its
execution (Fig. 4(b), lines 10 and 12). The main process must wait for all
tokens before continuing the execution (Fig. 4(b), lines 4 and 8). Fig. 4(b)
shows the PROMELA code of the model in Fig. 4(a).

a b

p

sd S5

q

par

(a)

1

2

3

4

5

6

7

8

9

10

11

12

proctype

run

proctype

run

proctype

atomic

proctype

atomic

a(){
sub_a()

ab_q!q;
aSubA?token;}

b(){
sub_b();

ab_q?q;
bSubB?token;}

sub_a(){
{ab_p!p; aSubA!token;};}
sub_b(){

{ab_p?p; aSubA!token;};}

(b)

Fig. 4. (a) Parallel Combined Fragment, (b) Respective PROMELA Code

2.5 Loop Combined Fragments

The operator loop indicates that the combined fragment represents a repeti-
tion structure. The loop operand will be repeated a certain number of times
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according to the values defined by the designer. The loop construct repre-
sents a recursive application of the seq operator where the loop operand is
sequenced after the result of earlier iterations [17].

a b

p

sd S6

loop [3,3]

(a)

1

2

3

4

5

6

7

8

9

10

11

12

proctype

byte

do

atomic

else break

od

proctype

byte

do

else break

od

a(){
i=0;

::(i<N) ->       {ab_m!m;i++;};
::     ->      ;
}

b(){
i=0;

::(i<N) -> atomic{ab_m?m;i++;};
::     ->      ;
}

(b)

Fig. 5. (a) Loop Combined Fragment, (b) Respective PROMELA Code

2.5.1 PROMELA Representation:

Our PROMELA implementation of loop works with a fixed number of repe-
tition. PROMELA defines do operator as a repetition construct. Loop frag-
ments are implemented by declaring a global variable with the total number
of repetition, and a do structure in each lifeline covered by the fragment. Fig
5(b) presents the PROMELA code of the model in Fig. 5(a).

2.6 Break Combined Fragments

The interaction operator break shows a combined fragment representing a
breaking scenario. If the guard condition is true, the operand scenario is
performed instead of the remainder of the enclosing interaction fragment [17].

a b

p

sd S7

q

break
[guard]

(a)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

proctype

if

atomic

goto

else skip

fi

skip

proctype

if

atomic

goto

else

fi

skip

a(){

::(guard) ->       {ab_p!p;
L0;};

::     ->     ;
;

ab_q!q;
L0:    ;}

b(){

::(guard) ->       {ab_p?p;
L1;};

::     ->     ;
;

ab_q?q;
L1:    ;}

skip

(b)

Fig. 6. (a) Break Combined Fragment, (b) Respective PROMELA Code

2.6.1 PROMELA Representation:

The break operator can be simulated with goto statements in PROMELA. If
the guard condition is true, the action inside the break combined fragment is
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performed, then the execution jumps to the end (lines 4 and 12 of Fig.6(b)).
The non-deterministic behavior is implemented in the same way as in alter-
native and option combined fragments. Fig. 6(b) shows the PROMELA code
for the break combined fragment in Fig. 6(a).

3 Using Source/Destination and Send/Receive Events
for Sequence Diagrams V&V

In the previous section, we provided what is needed to simulate the execution
of sequence diagrams by covering the most important combined fragments.
However, the main objective of using PROMELA-based model is not to sim-
ulate the execution of sequence diagrams, but the verification of formal prop-
erties. When it comes to verify formal properties on SPIN, it is impossible to
determine whether a send or receive event has occurred. Indeed, the system
state does not change when messages are sent over channels [23]. To overcome
this obstacle, [23] proposed a flag-based technique to mark an occurrence of a
send/receive event. This section presents an extension of this approach that
is able to determine who is sending/receiving what to/from whom at any time
of the execution. This information is very useful when one wants to write
properties to be verified. We also show how to write LTL properties using
this approach.

3.1 Tracking the execution state

The first step toward the formal V&V of sequence diagrams is to keep track of
the actions performed by the entities in the interaction. In other words, it is
essential to be aware of all event occurrences during the execution. In [23], the
authors suggest tracking of sending and receiving events of messages by using
flags associated with the respective event (e.g., using the flag “Sx” for “sending
message x”). In spite of the fact that they improved the set of properties that
can be verified, many other properties are still not covered since they require
the information of the entities the are interacting (e.g., the following constraint
could be specified to a particular system: “Alice is not supposed to receive
a request from Bob”). In [2], the authors define the concatenation of sender,
message and receiver as one action, but they do not include send and receive
events. Even though it provides the entities information, it does not give
the flexibility to write properties looking only at a particular element in the
model. (e.g., Server does not send anything to anyone without signing). This
flexibility is important because systems usually have many entities, but only
some of them are really critical. To address these weaknesses, we define a
state transition system such that the transitions are trigged by the send and
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receive events of the interaction and each state is characterized by a 4-tuple
consisting of the following fields:

(i) Lifeline that performed the last action.

(ii) Last performed action (send or receive).

(iii) Message used in the last action.

(iv) Lifeline to/from which the message was sent/received.

Each state contains the information we need to track, and each field can
be used separately.

In PROMELA, we represent each state as a set of flags. For each lifeline,
each message, and send/receive events a flag is declared. The values of these
flags are updated together with each send/receive event. The update is done
using a d step statement to make the assignment of all new values as one step
at the execution time. Fig. 7 shows the PROMELA code of the interaction
in Fig. 2(a) with its flags to represent states.

1

3

4

5

7

8

9

10

proctype

atomic d_step

d_step

proctype

atomic        d_step

d_step

a(){
{      {send=1; receive=0; msg_p=1; msg_q=0; proc1_a=1;

proc1_b=0; proc2_a=0; proc2_b=1;}; ab_p!p;};
{send=1; receive=0; msg_p=0; msg_q=1; proc1_a=1;
proc1_b=0; proc2_a=0; proc2_b=1;}; ab_q!q;};}

b(){
{ab_p?p;      {send=0; receive=1; msg_p=1; msg_q=0;proc1_a=0;

proc1_b=1; proc2_a=1; proc2_b=0;};};
ab_q?q;      {send=0; receive=1; msg_p=0; msg_q=1;proc1_a=0;

proc1_b=1; proc2_a=1; proc2_b=0;};};}

2

6

{

{

atomic

atomic

Fig. 7. PROMELA code of the diagram in Fig. 2(a)

3.2 Using flags to specify LTL properties

After defining a methodology to track the execution state, LTL formulas can
be written in terms of boolean expressions over the flags. For example, if
one wants to say “b sends p to a”, he/she should write the following expres-
sion: (proc1 b∧send∧msg p∧proc2 a). A very useful property of the flag-
based state is the ease of expressing sentence over all lifelines, or all messages,
or all actions only by omitting the respective element in the expression. For
example, if one wants to verify if “no lifeline receives messages from a”, the re-
spective expression is: ¬(receive∧proc2 a). This example also shows that the
proposed technique gives the flexibility to write properties looking at a par-
ticular element in the model (lifeline a in that case). Therefore, the proposed
flag-based mechanism to track execution state not only provides developers
with the information they need to write properties, but also it allows them
to specify properties in a very flexible way. Below, we present two examples
of LTL properties written using flags and their respective verifications using
SPIN model checker.
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• Example 1: Suppose one wants to verify in the sequence diagram from
Fig. 2(a) whether “no lifeline will send message q until b receives message
p”. The LTL formula corresponding to this property is:

¬(send ∧ msg q) U (proc1 b ∧ receive ∧ msg p) (4)

After model checking, SPIN reports that the property does not hold. The
counterexample that is returned is shown in Fig. 8(a).

• Example 2: In the model shown in Fig. 4(a), suppose one needs to verify
if “always, after b receives p, eventually b receives q from a”. The LTL
formula expressing this property is:

�((proc1 b∧receive∧msg p) → �(proc1 b∧receive∧msg q∧proc2 a)) (5)

After model checking, SPIN shows that this property does not hold. The
counterexample is presented in Fig. 8(b).

{a,send,p,b} {b,receive,p,a}

{a,send,q,b} {b,receive,q,a}

?p

!p

!q ?q

(a)

{a,send,p,b} {b,receive,p,a}

{a,send,q,b} {b,receive,q,a}?q

!p

!q
?p

(b)

Fig. 8. SPIN counterexamples

4 Case Study

This section presents part of the system presented in [1]. In that thesis, the
authors show the design of an Automated Teller Machine (ATM). The ATM
interacts with two other entities: The Customer (User) and the bank. Fig. 9
describes a use case where the user starts a request by inserting his/her card.
The ATM must verify the card and the personal identification number (PIN)
to proceed. If the verification fails the card should be ejected. Otherwise,
the user has the choice to perform some operations and the card is retained
in the machine until the user finishes the transactions. The first and second
combined fragments are dealing with the authentication of the card and the
PIN, respectively. The third one shows an interaction using “cash in advance”
operation.
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User ATM Bank

insertCard

cardStatus

verifyCard

waitPIN

PIN

[cardOK]

[else]

verifyPIN

cardStatus

ejectCard

alt

waitAccount

Account

waitOperation

opt

cashAdvance

checkBalance

balanceStatus

par

alt

alt

pickCash

debit

insufficientFunds

back

ejectCard

ejectCard

[cardOK&&PINok]

[option]

[balanceOK]

[else]

[else]

Fig. 9. ATM Sequence Diagram

4.1 LTL properties

(i) The first property states that the ATM cannot allow the user to request
an operation if either the card or the PIN is not valid:

�(x → ¬�y) (6)

where x = (start∧(¬cardOK∨¬PINok)), and y = (proc1 user∧receive∧
msg waitAccount).

(ii) The second property is needed to avoid inconsistencies between the money
given to the user and the amount debited in the bank. It asserts that the
ATM must first debit the amount in the bank, and then give the money
to the user. In other words, the user does not receive pickCash until the
bank receives debit:

¬x U y (7)

where x = (proc1 user∧ receive∧msg pickCash), and y = (proc1 bank∧
receive ∧ msg debit).

(iii) The fourth property deals with the usability of the ATM. It states that,
if the ATM receives insufficient funds, it should allow the user to choose
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other operation before finishing the session:

�(x → (¬y U w)) (8)

where x = (proc1 user ∧ receive ∧ msg insufficientFunds), y = (end),
and w = (proc1 atm ∧ send ∧ msg waitOperation).

(iv) The third property is to ensure the correct end of the session between
the ATM and the user. It says that, after the user receives ejectCard,
the ATM cannot send anything to the user:

�(x → ¬�y) (9)

where x = (proc1 user∧ receive∧msg ejectCard), and y = (porc1 atm∧
send ∧ proc2 user).

User ATM Bank

!
?

InsertCard

!
?

verifyCard

?
!

?
!

!
?

PIN

!
?

verifyPIN

?
!

?
!

!
?

Account

?
!

!
?

checkBalance

?
!

!
?

cashAdvance

!

?

debit
?

!

(a)

User ATM Bank

!
?

InsertCard

!
?

verifyCard

?
!

?
!

!
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Fig. 10. SPIN counterexamples for LTL properties: (a)counterexample of property ii, (b) coun-
terexample of property iii, (c) counterexample of property iv

4.2 ATM Case Study Results

Using SPIN to verify the properties described previously, we found that only
the first property is satisfied. The model checker was able to provide a coun-
terexample for each of the other properties. In the following, we present the
failing trace related to the verification of each property.

• Property ii Counterexample: In the trace shown in Fig. 10(a), it possi-
ble to see that there is at least one execution path on which the user receives
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the money before the bank receives the message to debit. If, for some rea-
son, the message to debit is not delivered, the ATM will be not able to ask
the user to give the money back.

• Property iii Counterexample: The counterexample of Fig. 10(b) shows
that, after receiving insufficient funds, the user does not have the oppor-
tunity to re-enter a different operation. It means that, if the user does a
mistake, he/she needs to restart the whole operation from the beginning.

• Property iv Counterexample: Fig. 10(c) presents a counterexample
where the ATM tries to eject the card twice. This inconsistent behavior
should be eliminated from the design.

In order to illustrate the performance of our approach regarding this case
study, Table 2 shows a summary of the results along with the number of states,
number of transitions, memory and time used by SPIN to perform the verifi-
cation. It is possible to see that the maximum time spent for verification was
0.132s, which is very reasonable. However, it is well-known that model check-
ers can have state explosion when verifying bigger models. There are some
techniques to optimize the PROMELA specification to avoid state explosion,
but those techniques will be considered in a future work.

Property Result Stored states Matched states Transitions Memory Usage Time

i Passed 10991 11389 22380 3.673MB 0.13s

ii Failed 88 4 92 2.501MB 0.06s

iii Failed 986 1211 2197 2.598MB 0.072s

iv Failed 7864 9344 17208 3.379MB 0.132s

Table 2
Summary of the results

5 Tool support

In this section, we provide details about the implementation of the tool to sup-
port the V&V of sequence diagrams. We have chosen IBM Rational Software
Architect 4 (RSA) as the environment for development, since it contains a very
powerful UML modeller. In addition, it can be augmented with Eclipse plug-
ins, which allows the verification engine to be embedded into the development
environment.

The tool is implemented as an Eclipse plugin composed of three main parts:

(i) A property editor to allow the developer to assign properties to UML
diagrams.

(ii) A UML translator to generate the PROMELA code from UML interac-
tion.

4 http://www.ibm.com/software/awdtools/architect/swarchitect/
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Fig. 11. Screenshot of the IBM RSA workspace

(iii) A result interpreter to read the output of the SPIN model checker and
translate it into an easy-to-understand graph to be analysed by the de-
veloper.

Fig. 11 shows a screenshot of the IBM RSA workspace. The labels 1
and 2 of this figure show the Project explorer and the UML diagram editor,
respectively, provided by the IBM RSA. The labels 3 and 4 show contributions
of our plugin to the workspace, where label 3 shows the summary of the
verification result displaying which properties failed or passed, and label 4
shows the graph of the counterexample that is automatically generated by
our tool.

It is important to mention that, for the developer point of view, there is
no need to understand the mechanism that performs the verification. The
translation to PROMELA, the execution SPIN and the interpretation of the
SPIN’s output are all done in background. The developer should only assign
properties to diagram, start the verification and assess the results.

6 Related Work

In the literature there is a considerable number of research works intending
to verify UML diagrams. In [2], a framework is proposed for V&V of some
popular UML diagrams (Class, State Machine, Activity and Sequence dia-
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grams). In this approach, a semantics model called configuration transition
system (CTS) is extracted from behavioral diagrams and then translated into
NuSMV [5] code. This approach allows V&V of behavioral models against
properties written in computational tree logic (CTL). Even though this ap-
proach is dealing with some UML 2.0 sequence diagrams elements, the pro-
posed semantics model is not in full accordance with the standard semantics
specified in [17] due to the lack of send and receive events. As a consequence,
some traces, like those shown in Eq. 1, Eq. 2 and Eq. 3, cannot be captured
in this approach. In [15], a detailed description of the translation of Message
Sequence Charts (MSCs) [11] into PROMELA is presented. Since the MSCs
are the basis of UML sequence diagrams [18], many of the proposed transla-
tion decisions can be applied to sequence diagrams. However, the proposed
approach deals only with the basic components and decisions; consequently,
its PROMELA representation of MSCs does not cover the behaviour of com-
bined fragments presented in the sections 2.4, 2.5 and 2.6. [22, 23] propose a
set of techniques to improve the quality of sequence diagrams. One of these
techniques is trace analysis by using model checkers. To get PROMELA code
from sequence diagrams, this technique provides a translation scheme that is
based on [15]. However, since this approach is intended to UML 1.5 diagrams,
combined fragments are not taken into account. In addition, the authors do
not propose a mechanism to use source and destination for writing formal
properties.

In [6, 13, 19], they determine whether a given interaction can be success-
fully executed in a system where the behaviour is specified using state ma-
chines. These works assume sequence diagrams as properties to be verified,
whereas our approach has sequence diagrams as the target of verification.

In [4, 8, 9] and [12, 14, 16, 20], the translation into PROMELA and V&V
using SPIN is presented for activity diagram and state machine diagram, re-
spectively. Those works might be used in the future when it is important to
consider the connection among different diagrams in the verification process.

7 Conclusion and Future Work

We present in this paper an efficient technique for formal V&V of UML 2.0
sequence diagrams. Since it takes into account the most popular UML com-
bined fragments, this approach allows the developer to detect flaw in more
completed complex sequence diagrams. The mechanism introduced in this
work to keep track of the execution state provides the information the devel-
oper needs to write LTL properties. Moreover, the way it was implemented
gives flexibility to write very expressive properties. This technique, along
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with other V&V tools, can provide a very useful framework to detect errors
at the design phase, resulting in software much more reliable in the end of the
software development process.

As opportunities for future work, two main problems could be addressed.
First, there is a substantial gap between natural language and properties writ-
ten formal logics [3]. The use of graphical notations, as proposed in [3], macro
language [2] and patterns [7] in properties specification should be considered
as an important improvement on model checkers based tools to bring them to
the industry level. Second, many security aspects are not usually encapsulated
in only one type of diagram. Normally they are scattered in various diagrams
of different kinds. An inter-diagram analysis might provide results that are
much more consistent in the assessment of UML models.
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