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A classical result of Enestrom and Kakeya (If a,2a,_,2 - 2a,>0, then, for
Izl > 1, TF_,a.=*#0) is extended to polynomials whose coeflicients satisfy the
condition

ra, <" 'a, | <---<t*7'ay <tayzrr a2 2a 2 ag,

for some >0 and 0 <i<n  © 1993 Academic Press, Inc.

1. INTRODUCTION AND STATEMENT OF RESULTS

The following result due to Enestrom and Kakeya [5] is well known in
the theory of distribution of zeros of polynomials.

THEOREM A. If p(z)= 3! _, a.z* be a polynomial of degree n such that

a,,?a l?"‘>a|>ao>0, (11)

"n-
then p(z) dves not vanish in |z| > 1.

This is a very elegant result but it is equally limited in scope as the
hypothesis is very restrictive. Joyal er al. [4] extended this theorem to
polynomials whose coefficients were monotonic but not necessarily non-
negative, which was further improved upon by Dewan and Govil [2].
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In this paper, we consider the class of polynomials 37 _, a.z%, a,#0
whose coefficients satisfy the condition

ra,<t" 'a, < - <t*Mag, <ra 2 a2 2ia,2a,,
0<i<n (1.2)

for some 1> 0 and obtain the following generalisation of Theorem A.

THEOREM 1. Ler p(z)=Y7_, a,z* be a polynomial of degree n such that
Jor some t>0 and 0 < A <n,

"a,<t" 'a, < ---<ta,2t""'a, 2 =ta,>a,.

Then p(z) has all its zeros in the circle
t 2a; 1
s— (=%~ — —ag) 5. .
A< (75 + 5 ool o)} (13)

In particular, for =1, the bound obtained in (1.3) can be considerably
improved. In the next result we obtain a ring shaped region containing all
the zeros of p(z) for the special case, when t=1. The outer radius of the
ring obtained being smaller than

! 2(1;_ ]
m{(tn;.—a,,)+7(|aol —ao)}'

More precisely, we prove the following:

THEOREM 2. Let p(z) =37 _, a,z* be a polynomial of degree n such that
a, <4, S-S0, Sa,2a, 2 Zd,

Jor some A, 0 < i< n Then p(z) has all its zeros in the annulus (perhaps
degenerate)

Ry< |zl <R,
Here
c(l 1) {cz<l 1)2 M,}“z
Ri=x|———)+{—|——— —
2 |an| Ml 4 !anl Ml Ianl
and
1
R,= [—RIB(M,—|ag])+ {R1PP (M, — |ag])* + 4 |ao| R M3},

2M3
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where
M,=—a,+2a;—ay+|a,l,
M2=R'l'(|an| Rl +zai._an_a0)’
c= |a,,—a,,,1|,
h=al—a0. (1.4)
For 4 =n, Theorem 2 reduces to a theorem due to Dewan and Govil [2]
and refines the result of Joyal et al. [4]. In the case A =n and a, > 0,
Theorem 2 refines Theorem A due to Enestrom and Kakeya [5].

Regarding the number of zeros in |z| < 1/2 of the polynomial X% _, a,z*,
a, #0, we have been able to prove the following:

THEOREM 3. Let p(z)=Y_, a.z* be a polynomial of degree n such that
a,€£a, < €a,, 1 Ka;,za;, 2 - 24,

for some i, 0 <A< n Then the number of zeros of p(z) in |z| < 1/2 does not
exceed

1 {l |an|+|ao|‘an'—ao+zaz}
log 2 lag! ’

For A=n and a,>0, the above theorem reduces to a result due to
Mohammad [6].

2. LEMMas

The following result is a well-known generalisation of Schwarz’s lemma
(see [7, p. 112]).

LeMMmA 1. If p(z) is analytic inside and on the unit circle, |p(z)| < M on
|z] =1, and p(0) = a, where 0 < |a| < M, then for |z| <1,
M |z| + |4

<M ————-
|p(2)l a2+ M

(2.1)

From a lemma due to Govil et al. [3, p. 325], one can easily prove
LeEmma 2. If pl(z) is analytic in |z|<R, p(0)=0, p'(0)=b and
|p(z)] < M for |z| =R, then, for |z| <R,

M |z| M |z| + R? |b]|
R? M+ |z{ |b]

lp(z)| < (2.2)
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LEMMA 3. Let f(z)=a,z"+a,z"+ --- +a,z4a,, 0<p<sn—1, be a
polynomial of degree n with complex coefficients. Then for every positive real
number r, all the zeros of f(z) lie in the circle

4 lay |
|zl <max {r, ) —— ¢

k=0 |a,,| r

The above lemma is due to Aziz and Mohammad [1].

3. PROOFS OF THE THEOREMS
Proof of Theorem 1. Consider
g(z)=(t—2)p(z2)

h
=—a,2"""'+ Y (ta,—a, ), a_=0.
k=0

Now since g(z) is a polynomial of degree n+ 1, hence applying Lemma 3
to the polynomial g(z) with p=n and r =, it follows that all the zeros of
g(z) lie in the circle

lta, —a,_,|

n
|z| < max {t, Z — R a_=0
k=0 t Ianl
_i lta, —a, |
k=0 tnvklanl '
since
(= i (ta, —a,_,) i ltay—a; _,|
k=0 tnikan k=0 tniklan|
Now
i Itak_akvl‘=i |tak_ak~l|+ i [ta, —ay |
k=0 tn*klanl k=0 tn7k|a11| k=4i+1 tnﬂ‘k'anl

Hence all the zeros of g(z) lie in

t 2a 1
lz| € o {(l"_ﬂ_—a,) +;;(|(10| —ao)}.

Since all the zeros of p(z) are also the zeros of g(z), the theorem is proved.
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Proof of Theorem 2. Consider
g(z)=(1—2) p(z)

n
= _anzn+l+ Z (ak_-ak—l)zk'{”ao
k=1

= —a,z"" ' + P(2), say. (3.1}

If by Q(z) we denote the polynomial z"P(1/z), then

Q(z)= Z (ay—a, ) z" *+agz"
k=1

For [z| =1, we have
1Q(2) < Z lay —ay_ 1+ |aol
k=1

A n
=Z lay—a, ;] + Z lay —ap_ 1| + lael
k=1

k=441
= —a,+2a;,—ay,+ |ag|
=M,.

Hence by the Maximum Modulus Principle

IQ(OH = |an_an\ l|
<M,.

Applying Lemma 1 to the function Q(z), we get for |z| <1

Ml ‘z'+'an—an‘l'

(2NsM ,
|Q 1Ian_an—ll |21+M1
which implies that
1 M, |zl +la,—a, ||
Pl - )| M , HESE 32
(z)’ Va—ay M, G2

If R> 1, then (1/R) e ~* lies inside the unit circle for every real  and from
(3.2) it follows that

M, +la,~a,_;| R
]an_an—li+M1R

|P(Re®)| < M, R" (3.3)

for every R>1 and @ real
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Thus for |z] = R>1,
Ig(ReiH” = | _aan+ lei(n+ 178 + P(Rei())l
>la,| R"*' —|P(Re”)|
M1+Rlan-anr l!

2 Rn+]_M Rn
2| ! M\R+|a,—a,_,]
M,+cR
=la,| R"*' =M R"———  (by (1.4
2,1 R ree by (4)
:m[Ml IanlRz_(.R(Ml_lanl)_M%]
>0,
if
>£(_1_ _‘_)+{C_2< L1 )2+M1}”2
2 |an| Ml 4 !anl Ml |an1
—R,.

Hence p(z) has all its zeros in
lz| £R,.

Next we show that p(z) has no zeros in |z| < R,.
We have by (3.1)

g(:)=a0+ Z (ak—ak,,,)zk—a,,z"“
k=1
=ay+f(2), say.
Clearly if 2| <R,, (R, > 1), then

n

If() <la,| RYT + Z la, —a, | R}

k=1

A n
<|a"|R'{+l+R’I’{Z lay—a, |+ Z la,—a, ||

k=1 k=4i+1
=R’1'(|an| Rl +2a/‘._an‘_a0)
:Mz.

Thus for |z| < R,

(by (3.3))

!

(34)

(3.5)

(3.6)
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Further, since f(0)=0, f'(0)=a,—a,=5b, by Lemma2 we have for
Izt < R,

M, |z| M, |z|+ R}b

. 3.7
& Mo+ 12 b (3.7)

/()] <

Combining (3.5) and (3.7), we get, for |z] < R,
M, |z| Mz\ZH'R%b

z) = —
|g(z)] = lao] &2 T
! 2
= —m[lzle§+R‘;b|:' (MZ—IaOI}_'aol R?Mz]
1 2 <
>0,
if
RO~ laul) 4 LR — a1+ 4 B2
. GIYE
=R2

(since M, — |ag| = M, —|f(1)| =0 by (3.6), which implies that p(z) has no
7eros in

1z <R, (3.8)

and the theorem follows.

Proof of Theorem 3. Consider

gz)y=(-2)p(z)
=—a,2"*""'+ Y (a,—a, )" +a,.
k=1

For [z] <1

n

lg(z)l < la,| +lagl + Z lay—ai |
k=1

A n
=|an'+la0|+z fay —ai_ (| + Z lay —a;

k=1 k=i+1

= Ianl + |aol + za)._a()-an’



36 DEWAN AND BIDKHAM

which implies

|an| +la()| +2a}t_a0_an

la|

g(0)

Now it is known (see [7, p. 171]) that if f(z) is regular, f(0)#0 and
| f(z)] < M in |z] €1, then the number of zeros of f(z) in |z| < 1/2 does not
exceed

~

lg(Z)

3 (e ey
log2\ B 1r0))

Thus, if n(1/2) denotes the number of zeros of g(z) in |z} <1/2, then

1 1 |an|+ia0|_an—a0+2al}
S )< 1 .
" <2> log 2 { %8 |ao]

As the number of zeros of p(z) in |z} <1/2 is also equal to n(1/2), the
theorem follows.
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