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appear in the expressions of error bounds for interpolating spline functions over a
uniform mesh of the real line when the nodes are uniformly shifted.  © 1995 Academic
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1. INTRODUCTION

A n-degree spline s defined over the uniform partition nj=a+ Zh of
mesh size 4 of the real line R is a function se C"~ (R} such that s restricted
to [a+/h, a+(/+1)h] is an algebraic polynomial of degree at most n for
any le Z.

To simplify we use the notation x,,,=a+(/+1t)h For a function f
defined on R and teR, f,,,=/(x,,,) and the shift operator is Ef, =/, .

Using the polynomials

pult,2)= 3 Qn+i1—i)z (L)
i=0
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2 DUBEAU AND SAVOIE

for 1e[0, 1] and z € R, where Q, is the B-spline of degree n defined on =¥,
ter Morsche [12], [13] obtained the following linear dependance
relationships for a n-degree spline s defined on =f

hkpn(v’ E) k) —pn—k(u9 E)(E‘I)kslﬁ»uzo (12)

sl+u

for any le Z, u, ve[0,1] and k=0, .., n.

A spline s is said to be the interpolating spline of f if, for a given
ve[0,1], we have s,, ,=f;,, for all Ie Z.

A function [ is said to be of polynomial growth on R if there exists an
integer v = 0 such that f(x) = O(|x]") for |{x| - + o0.

A consequence of (1.2) and the properties of p,(¢, ) is the existence and
uniqueness of the n-degree interpolating spline s for any function f of poly-
nomial growth when p,(¢, —1)#0 (see [7], [8], [11], [12], and [6]).

Let us consider the following function spaces

LLR)={f: R~ R

b
f | f(x)] dx < oo, for all interval [a, b] < [R}

and

Acn+l(R)

loc

(i) S Vel (R)
={ fe CY(R)

(ity Forall{a, b} <R, f"™(x)|s= fbf‘"* Dix) dx

For any fe ACLT'(R), using its Taylor expansion and the fact that (1.2)

toc

is satisfied for any polynomials of degree at most n, we obtain

hkpn(v’ E)fl‘-}:-)u_pnfk(u’ E)(E_I)kfl-rr
hn+l

n+1
= j KX, v, 0) 750 do (1.3)
n! 0 n

for any /e Z, ue[0,1], and k=0, ..., n. This is nothing but a consequence
of the Peano Kernel Theorem (see also [4] and [6]).
From (1.2) and {1.3) we obtain

n+1 54

- h v
Hp.(v. E) efy), == JO K5(u, 0, 0) £ 51 db (1.4)

where e=f—s. Moreover, if "+ is of polynomial growth, we have

n+1—k
thky _
Creu=™

n+1
S B Kb 0) £ 0. (L)
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Finally, since the norm of the operator p,(v, E) "' on bounded sequences
is upper bounded by 1/|p,(v, —1) (see [3], [5], and [12]), if
[+ De L=(R) we have

lei | < Co(u, vy R =R fore Dy (1.6)
and
“e(k]“wscﬁ(v)hn-fl—k “f'"+l)urn (17)

for k=0, .., n, where

1 n+ U KK, v, 0))
K, v) = " df, 1.
e PRy} AT e
C’,‘;(v)= sup  Ck(u, v). (1.9)
uel0,1]

In this paper we show that C,?(u, v) and C2(v) are the best constants in

1

(1.6) and (1.7). We also present explicit expressions for those constants. In
the case k>0 we present explicit expressions to bound the constants
C’,‘;( u,v) and Cf;( v). These results are presented in sections 4 and 5. In
section 2 we present some preliminaries and in section 3 we establish some
useful properties of the kernels K*(u, v, #).

2. PRELIMINARIES

The B-spline Q, of degree »n with knots 0, 1, ..., n+1 can be defined by
Vn + l{x)

0,(x)= *

n!

where V is the backward difference operator, (x)", =x"y o , »(x) and yx
is the characteristic function of the set E. It is also equivalent to the
formula

QX)) =011 % *Ki0.11(X)
n+1
where * denotes the convolution operator. Let us remark that
Qux) =0, 4 * Ok 1(x)

for any k=1, .., n. Moreover, for any fe AC*(R) we have

Vi) =0 1+ fPN0). (2.1)
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The polynomials p,(t, ) defined by (1.1) for 1€ [0, 1] have the following
properties (see [12] or [3]): po(t, 2) = y0.1,(¢) and for n>0:

p.(, z) is a polynomial in z of degree n for each r€(0, 1]
and p,(0, z) is of degree n—1;

1 for nodd
t, -1)=0 iff r=7¢,=42 ? 2.2
Pil ) ! Tn { (or 1) for neven; (2.2)

ak

a‘tzpn(tﬂ :):(:— I)kpn)k(tw :)~

We can extend the definition of p,(¢, z) for all 1€ R by the formula
pn(t’ :,): Z Qn(n+thl) :i‘
It follows that
plt+1,2)=zp, (¢, 2) (2.3)

Moreover p,(t, z) is a spline of degree » with respect to 7 and palt, 1) =1
Finally we have the following useful property

pn([v:):kal([)*pn—k(t’: :k (24)

fork=1, .., n
We will also use the Euler splines as defined in [10, p. 152]. The
n-degree Euler spline defined on =Y, denoted by E, , |, is such that

E(n)y=(-—1) for re(i,i+1]andie?Z,
and for n>1

d ;
EEn(t)=2En -Al([)»

E(t+1)=—E|[1),
E(l—t)=(=1)"*1E(1),
sign( £, , 5(1)) = —sign(E,(2)).
From the definition, it follows that

T?i(l [E, () =|E, (X}
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where

Rt for neven,
T =
" (or 1) for nodd.

We also have |sin(as)] < |E (1)) <1, and if we set for n>2

cos(nt) for neven,
g1y =

sin(7t) for nodd,
then
2 n—1{ 2 n—2
lg.(0)] (= <[EL<[g.0[(=] . (2.5)
T i1
Finally, p,(¢, —1)=(—1)"E,, \(¢) and it follows that
2 ”n
max |p(t, —1)| = |p,(ck, —1)|>(—). (26)
0<r<1 T

3. ANALYSIS OF THE PEANO KERNELS

The Peano kernels in (1.3) are defined by

Kk ’;9 _0:1\k ) —~ )
h”(_u__l_’__):p"(v’ E)££l‘_)—+'“p,,,k(ll, E)(E—])A EU_’;’_)‘*'_

n! (n—1k) (3.1)

for k=0, ..., n. In the next five lemmas we present some useful properties of
these kernels.
The first two lemmas are consequences of the consistency relations (1.2).

Lemma 1. KA(u, v, 8) =0 whenever ¢ [min{u, v}, n+max{u, v}].

Proof.  Let us define the polynomial g,(x) = (x —6)"/n!. If # <min{u, v}
then

_H -k ,__(} I
Kt s, 0)=po. £) 500 p, e mE— 1y 0
( __0)11—/\’ ! ’_9)01

= (e B = ENE—1y" -

:pn(vs E) g:}k)(u) Vpnf k(u9 E)(E_[)Lg()(v) =O

For 6> n+ max{u, v}, we obtain directly that K*(u, v, 0)=0. |
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LeMMA 2. KX(u, v, i)=0 for any integer i.

Proof. Let us define the function h,(x) = (x — )", /n!. Whenever § is an
integer, the function h,(x) is a spline on z%. Thus, by (1.2), we obtain

0=p,(v, E) h(u)—p, _(u, ENE—I)¥ hy(v)

_K,f'(u, v, 0)
B n! ’

LEMMA 3. The kernel K (u, v, 8) has the following properties.

(a) KJ(v,v,0)=0;

(b) Ku,v,0) has no sign change for Qe (i, i+ 1), and has simple
zeros at 0=i for i=1, ., n;

(¢) if8eln n+max{u, v}] then sign (K2u, v, 0))=sign(u —v).

Proof. (a) Obvious.

(b) Let u<v. The kernel K%(u, v, f) is a n-degree spline with respect
to 0 defined on the partition {i+wu, i+v|i=0,..,n} and support
[u,n+v]. For 0e(u,v) we have KX(u, v, 0)= — Q,(n+ v)(u—80)"#0 and
for e(n+u,n+v) we have K2u,v,0)= —Q,(u)(n+v—0)"#0. From
[9, p. 155] the intervals ( — o0, «) and (n+ v, o0) are two zeros of multi-
plicity n+ 1. It follows from lemma2 that the number of zeros of
K?P(u, v, 8) is at least 3n+ 2. But from [9, p. 160-161] the number of zeros
of KX(u, v, @) is at most 3n + 2. Hence the result follows. A similar proof
holds for u>v.

(¢) If u<v and fe(n + u,n +v) we have KXu,v,0) =
—Q(u)n+v—0)<0, and if u>v and fe(n+v,n+u) we have
K%(u, v, ) = Q,(v)(n+u—0)>0. The result follows. |

The next lemma is a direct consequence of (2.3).
Lemma 4. For any i€ Z we have
K¥u+i,0,0)=KXu,v+i,0)=KXu, v, 0—1i). 1

The next lemma relates K,'j(u, v, @) to K°_,(u, v, 0) using the convolution
operator.

LEMMA 5. For k=1, .., n we have

KX(u, v, 0) K? (w0, 0—k)
T: O —1(v) * W
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Proof. From (24) we have p, (v, E)= 0, _,(v) *p, (v, E) EX. Also
(E—-D*=V*E*=E*V* and from (2.1), we have

—N" _0n~k
W2 g,y O

k
v n! (n—k) -~

Finally, using the lemma 4 we obtain the result. ||

4. THE CASE k=0

This section contains the proof of the optimality of the constants
C%u, v) and C2(v) defined by (1.8) and (1.9).
Let us consider the following class of functions

€ = {fEAC"+1([R) If("+”€Lr(R)}.

loc

The results of this section are based on the following lemma.

LEMMA 6. Let ve [0, 1] such that p,(v, —1)}#0. Then

J"“ |K (e, v, 0)] a0

0 I’l!

:S_lg%(nlil_—v)(En+l(U) En+2(u)_En+1(u) E"+2(U)) (41)

for any ue[0,1].

Proof. Let fix)=(1/2"*1) E, , o(x/h). Then £+ D(x) = (1/h"+1) E (x/h),
IF+ 0, =1/A"*", and fe €. Its n-degree interpolating spline s such that
Jive=514,08 8(X)=(E, , ;(v)/2"*'E, , (v)) E, , ((x/h). From (1.4) we have

pav, E)e; ., E((I+8)db.

_f"*‘K,‘,’(u, v, 8)
N 0 n!

Using the definition of E, and the properties of the zeros of K2(u, v, #)
given by the lemma 3, we have

j"“ K,?(u, v, 0)

) n!

n+1 KO R 9
E\(I+0)df=(~1)"*"sign(u—v) | 1K, 0, 0]

0 n!
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Moreover, we also have p,(v, F)e,, ,=p,(v, —1)e,,, because ¢,,,,,=
(_l)le/+ll' But

I
llzz—nrf (En+2(u) _En+l(u)

e

En+2(”)>
Eu+l(v)

and p,(v, —1)=(—1)"E, , (v). Hence the result follows. ||

THEOREM 1. Let ve[0, 1] be such thar p,(v, —1)#0. If fe¥, s is the
n-degree interpolating spline of f such that f,, .=s,,, (I€Z) and e =f~—3s,
then

SUPse 7 1€yl
001 ) — e <
C"(I”")_%‘ffh"+l T (4.2)

and
1 “E, (1)
Cluv) =5 EM(u)—E,,H(u)Enij(U) : (4.3)
Moreover
el «
C,?(v):f}lg};,ﬁn—fmﬁ”— (4.4)
and

C(v)

n =2n+1

lEt1+2(U)l
,max <!En+2(u)| + E, 11 (u)] 1E, .0 1(v)l>' (4.5)

Proof. Equations (4.2) and (4.3) are direct consequences of the proof of
the lemma 6. To obtain (4.5) we first observe that the righthand side of
(4.3) is a continuous function of ue [0, 1]. It remains to observe that the
maximum is at a value « such that

En+2(v)>

sign(E,, , »(u)) = —sign <E,,+ () B (o)
n+1

This fact comes from the properties of the Euler splines. Finally (4.4) is a
consequence of (4.2) and (4.5). |

The next result indicates the best choice of v for the interpolating
problem with equispaced data on a uniform partition.
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THEOREM 2. We have

min C2(v)=C%(t¥)

n
O0<er<l
and

E x o —1
C'(;](z_:):l n+22n(fr:+l)l:lpn+](;::i )| (46)

Proof. From (4.5) we have

*
max 1E, () Bt I 47)

0
Cvn(u)2 we o1 2n+1

2n+l

for all ve [0, 1] such that p, (v, —1)#0. But the righthand side of (4.7) is
exactly the value of C%(7*) because t*=1,,,and £, ,(7,,1)=0 |

Results similar to (4.6) appear elsewhere, for example [9, Theorem 5,
p. 2917, [2, theorem 3, p. 471, and [14].

ExampLE 1. If E, is the Euler polynomial of degree n, we have

E"( t)

(__2)11 _
2t _l):—n‘—

(see [ 1, pp. 804-805]). Also the nth Euler number is given by E, =2"E,(3)
and E,(0)= —2((2"*'—1)/(n+ 1)) B,,, where B, is the nth Bernoulli
number. It follows that

(a) fornodd, t¥=0 (or 1), t*,,=1and

|En l|
0 0)= +
€.10) 27 Y n+ )V

(b) for neven, t¥=13,t*, ,=0 (or1)and

1 2/1+2_l _
0 —
Cn <§>_2 (n+2)' iBn+2|’

Remark 1. The results of this section can be applied directly to periodic
functions on an interval [, o] when b —a = Nh and N is even. For N odd
we can prove the following asymptotic result based on the absolute
convergence of the Laurent series p, (v, z) ! = 2L (v) =/
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THEOREM 3. Let ve[0,1] be such that p,(v, —1)#0. For any £¢>0
there exists N(e)> 0 such that for each N odd > N(e) there exists a periodic
Junction fe € of period b — a such that

Sup,. z |e1+u|

()
(u U) C\hn+ll|f(n+l]”

<Clu,v). |

5. THE CASE k>0

In this section we obtain bounds for the constants CX(u, v) and CX(v).
These results are based on the following lemma.

LemMMA 7. For k=1, .., n we have

[ ] [t

0 —

Proof. From lemma 5 and lemma 4 we have

FH |K,’f(u, v, )| a0
0 n!

KO, 1, 0—K)|
< [ & iv-m T du o

B ]Kgfk(ll,ﬂ,(}“k—l')l
= Z jJ‘Q,ﬁl(b i—u n— 1 du df

= — oo

IKO_ (4, 1, 0)]
» HQH(v—z— wy e T g dy

i= —oc

< . |K_ (1, 11, 0)
jR L i;{ Qv —i—p) ==l do d

and the result follows because 3 _ Q, (v—i—u)=1. |

By a similar method we can prove the following result.

LeEMMA 8. Letve[0, 1] be such that p,(v, —1)#0. If fe AC]t(R) and
[ is of polynomial growth, then

LK? , 0
puw By e, =ikt [ [ Rkl D gy i gy ap
R Y0 (n—k)!

fork=1,.,n
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A direct consequence of lemma 6 and the properties of the Euler splines
is the following result.

LemmMa 9.

2n+l

llKr?(uuu7 0)' Ej 2(14) En+l(u)En+3(u)
fj—-—wn! dut df = =2* [

THEOREM 4. Let ve[0, 1] be such that p, (v, —1)#0. If we set

(K (u, pt, 0))
D* d
Mu, v)= lp,,(v — ljj‘ n—k)! u do
then
C¥(u, v) < DX(u, v) (5.1)
and
1
Di(u,v)= S RAT(E ()l (E} i) —E, (W) E,_, yu)) (52)
n+1
fork=1,..,n

Proof. Equation (5.1) is a direct consequence of lemma 7 and (5.2)
comes from lemma 9. |

LemMMa 10. For any ue[0,1] and n=0 we have

2 2n+ 2 2 2n
(;) <Enz+2(u)_En+l<u)En+3(u)<<;> . <53)

Proof. We consider two cases. For n=0, E,(u)=1, E,(u)=2u—1, and
E.(u)=2u(u—1). Then

EXu)— E(u) E{(u)=1+2u(u—1)
and the result follows for n=0. For n> 0, we first observe that
Ep o) = Ey i) By ()= EJ () + E, ()] [E, ().
We obtain the result using (2.5). |
If we set

D¥(v)y= sup D*(u,v)

[ETE
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then, from (5.2) and (5.3)

(n2/2)k —n

Cou, v) < DX, v) < —— .
2 Ipn(v» *I)I

Finally

2 k—n
(n°/2) (5.4)

Dhrdy <2 "
) 2 |pll(TlT’ _])|

Remark 2. We can show that

max (E3+2(ll) —En+ I(u) En+3(u)): E:;2+2(1)_En+](l) En+3(1)’

wel0.1]

for 0 <n <3, but it is an open problem for n> 3. From this result we can
obtain Table I.

ExAMPLE 2. As in section 4, we have

(a) _fOI‘ n odd, t¥=0 (orl), p"(‘c’;‘"_1)=(“2)n+1((2n+|_1)/

(n+1)1) B, ,, and

(2%/2)F " (n+ 1)
2 1) B, L]

CH0) < D(0) <

{b) forneven, t*=14%, p,(z¥, —1)=E,/n!, and
2> P

. 1IN (m32) " n!
CA S ki gv___:__
<> D"(?) 3B,

“~

DO} o=

TABLE I

Some Values of DX(r*)

kln 2 3 4 5

116 124 1775
2 1 144 345 148
3 3225 15/144
4 12/5 15724
5 15/
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6. CONCLUSION

We have obtained expressions for the optimal bounds when kX =0. For
k >0, we have obtained closed expressions to bound the constants " f‘,'( u, v)
and C¥(v). If we put together (4.6) and (5.4), and use (2.5) and (2.6) we
obtain the following result.

THEOREM 5. Let v=rt}. If f€ ¥, s is the n-degree interpolating spline of
f such that f;, .=s,,, forallle Z, and e =f— s, then

_ (m?/2) ,.
He(l\)“ . <711n+l k Hf(n+ ”H‘x‘

Jor k=0, .., n.

A similar result has already been presented in [9, Theorem 6, p. 293] for
k=0 and n odd.
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