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a b s t r a c t

Although a peripheral auditory (bottom-up) deficit is an essential prerequisite for the generation of
tinnitus, central cognitive (top-down) impairment has also been shown to be an inherent neuropatho-
logical mechanism. Using an auditory oddball paradigm (for top-down analyses) and a passive listening
paradigm (for bottom-up analyses) while recording electroencephalograms (EEGs), we investigated
whether top-down or bottom-up components were more critical in the neuropathology of tinnitus,
independent of peripheral hearing loss. We observed significantly reduced P300 amplitudes (reflecting
fundamental cognitive processes such as attention) and evoked theta power (reflecting top-down
regulation in memory systems) for target stimuli at the tinnitus frequency of patients with tinnitus
but without hearing loss. The contingent negative variation (reflecting top-down expectation of a sub-
sequent event prior to stimulation) and N100 (reflecting auditory bottom-up selective attention) were
different between the healthy and patient groups. Interestingly, when tinnitus patients were divided into
two subgroups based on their P300 amplitudes, their P170 and N200 components, and annoyance and
distress indices to their tinnitus sound were different. EEG theta-band power and its Granger causal
neurodynamic results consistently support a double dissociation of these two groups in both top-down
and bottom-up tasks. Directed cortical connectivity corroborates that the tinnitus network involves the
anterior cingulate and the parahippocampal areas, where higher-order top-down control is generated.
Together, our observations provide neurophysiological and neurodynamic evidence revealing a differ-
ential engagement of top-down impairment along with deficits in bottom-up processing in patients with
tinnitus but without hearing loss.
© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Tinnitus is the illusory perception of sound in the absence of an
external sound (Jastreboff and Sasaki, 1994; Mohamad et al., 2016).
Peoplewith tinnitus experience difficulties inmental concentration
and impaired cognitive efficiency (Hallam et al., 2004). Based on
functional imaging studies, it is generally accepted that tinnitus is
associated with maladaptive neuro-plasticity because of impair-
ment in the auditory system (Faber et al., 2012). Most symptoms of
tinnitus can be attributed to hyperactivity and reorganization in the
auditory central nervous system (Eggermont and Roberts, 2004;
Kaltenbach and Afman, 2000; Muhlnickel et al., 1998; Salvi et al.,
B.V. This is an open access article u
2000) with coactivation of non-auditory brain structures such as
the dorsolateral prefrontal cortex (DLPFC; Schlee et al., 2009b;
Vanneste et al., 2010) and anterior cingulate cortex (ACC; Muhlau
et al., 2006; Vanneste et al., 2010). The DLPFC is essential for
higher-order cognitive control functions and goal-directed behav-
iors (Fuster, 2008; McNamee et al., 2015; Miller and Cummings,
2007), and the ACC executes top-down inhibitory control
(Johnston et al., 2007; Silton et al., 2010). These prefrontal areas
have also been found to be involved in auditory attention (Alain
et al., 1998; Lewis et al., 2000; Voisin et al., 2006), thus resulting
in top-down modulation of auditory processing (Mitchell et al.,
2005). This has been further confirmed by an electrophysiological
study indicating that tinnitus might occur as a result of dysfunc-
tional top-down inhibitory processes (Norena et al., 1999).

Although it has been reported that tinnitus influences auditory
selective attention (Andersson et al., 2000), with patients reporting
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Abbreviations

ABR auditory brainstem response
ACC anterior cingulate cortex
ANOVA analysis of variance
BA Brodmann area
CNV contingent negative variation
DP distortion product
DPOAE distortion product otoacoustic emission
DTF directed transfer function
EEG electroencephalogram
EOG electrooculogram
ERP event-related potential
FDR false discovery rate

HL hearing level
ICA independent component analysis
ISI inter-stimulus interval
K-THI Korean version-tinnitus handicap inventory
nHL normal hearing level
OAE otoacoustic emission
PTA pure tone audiometry
ROI region of interest
SD standard deviation
SNR signal-to-noise ratio
SPL sound pressure level
TE transient evoked
TEOAE transient evoked otoacoustic emission
VAS visual analog scale
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concentration difficulties due to their tinnitus (Andersson et al.,
1999; Heeren et al., 2014), uncertainty still exists regarding the
direction of causation between tinnitus and cognitive processes of
attention (Andersson and McKenna, 2006; Mohamad et al., 2016).
This is because of a lack of evidence supporting the claim that
tinnitus severity negatively influences sustained attention (Hallam
et al., 2004; McKenna and Hallam, 1999; McKenna et al., 1995).
Moreover, while some studies showed that tinnitus leads to altered
performance on attention-related tasks (Hallam et al., 2004;
Rossiter et al., 2006; Stevens et al., 2007), others have suggested
that these alterations might rely on reduced top-down executive
control (i.e., the ability to resolve conflicts among responses and
voluntarily regulate the allocation of attention resources) rather
than on attentional processes per se (Andersson et al., 2000;
Rossiter et al., 2006). Accordingly, it is still debatable whether
these deficits are the consequence of general changes in the exec-
utive control of attention, the consequence of genuine alterations in
a specific attentional ability, or simply the result of a general
slowdown in cognitive processing (Heeren et al., 2014).

Nevertheless, among several cognitive processes putatively
responsible for the generation of tinnitus, attention has been
considered to be one of themost potent factors contributing to both
its development andmodulation (Gu et al., 2010; Hoare et al., 2012;
Husain et al., 2011; Jastreboff and Jastreboff, 2006; Searchfield et al.,
2012; Zenner et al., 2006). Preliminary evidence has consistently
supported the claim that the severity of self-reported tinnitus
symptoms negatively influences ‘executive’ attention (Heeren et al.,
2014; Jackson et al., 2014). For example, Heeren et al. (2014) re-
ported that the degree of executive control impairment was
correlated with the duration of tinnitus. Accordingly, tinnitus
seems to specifically alter the top-down ‘executive’ control sub-
component of attention. Tinnitus perception can also be subject
to attentional bottom-up processes that are influenced by stimulus
salience. Interactions between top-down and bottom-up processes
contribute to the allocation of limited perceptual processing re-
sources to one or more sound-parameter dimensions (Caporello
Bluvas and Gentner, 2013). In general, active redirection of atten-
tion, embedded in a top-down process, may precede an event or
stimulus, and bottom-up sensory processing is then guided by such
top-down processing as a specific reallocation of attention relevant
to the type of stimulus to follow or task to be performed. In this
way, top-down modulation can increase the efficiency of percep-
tual identification in response to directed attention. Presumably,
top-down and bottom-up processes of attention may share neural
resources, although their expression in brain networks may depend
on the specific types of task stimuli and the behavioral and
cognitive performance requirements of the task procedure (Roberts
et al., 2013).

Based on these perceptual processes, lower level acoustic
stimuli are modulated by sensory-driven bottom-up processing for
the transmission of an auditory cue to higher level processes, and
top-down processes selectively direct it to objects of interest in an
ambiguous situation. Neural mechanisms that direct the focus of
awareness are commonly described as those responsible for top-
down attention-like functions (Roberts et al., 2013). As top-down
attentional processes are strongly associated with the prediction
of an internal model through prior knowledge of sound sources
(Bayat et al., 2013), the mismatch between predicted and experi-
enced inputs due to peripheral auditory deafferentiation facilitates
neuroplastic changes in the subcortical neuro-modulatory system
(Vanneste and De Ridder, 2016). These changes result in persistent
activation of the central attention network, which underlies
tinnitus (De Ridder et al., 2011; Jastreboff and Hazell, 1993,
Jastreboff and Jastreboff, 2000; Roberts et al., 2013; Weisz et al.,
2005). In fact, an attentional network involving the auditory cor-
tex has been regarded as a possible candidate for the generation
and modulation of tinnitus (Brennan and Jastreboff, 1989;
Jastreboff, 1990, 2007; Jastreboff et al., 1996). For instance, the
ACC and fronto-parieto-temporal areas are known to be the
anatomical bases of an awareness network that functionally con-
nects to sensory cortices, such as the primary auditory cortex (Boly
et al., 2004). Similarly, persistent tinnitus (chronic ringing of the
ears) tends to consciously decrease while people with tinnitus
focus on daily activities that require attention and do not require
auditory processing (Roberts et al., 2013). In addition, more than
80% of people with normal hearing experience tinnitus in a
soundproof room (De Ridder et al., 2011), and some patients with
peripheral auditory impairment often do not complain of tinnitus.
Accordingly, it seems that high-order auditory attention processing
may play an important role in the generation of tinnitus.

It is not yet clear how such early perceptual processes solely
contribute to the generation or modulation of tinnitus, as most
earlier studies did not exclude tinnitus patients with peripheral
auditory disorders (Moazami-Goudarzi et al., 2010; Schlee et al.,
2009a; Song et al., 2015b), which subsequently resulted in in-
consistencies due to a failure of isolating a central auditory
perceptual process from peripheral auditory deficits. It is obvious
that most cases of tinnitus are typically associated with a hearing
threshold shift (Emmerich et al., 2002). Even patients with tinnitus
have apparently normal hearing on conventional tests, but a
marked reduction of auditory nerve output at high frequency sound
levels has been reported (Schaette and McAlpine, 2011). This
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indicates that damage to the peripheral auditory system is an
essential prerequisite for the generation of tinnitus. In particular,
considering that patients with tinnitus perceive the phantom
sound in the deafferented frequencies (Norena et al., 2002), it is
reasonable that peripheral cochlear damage would be a main
trigger for the generation of tinnitus. Moreover, studies of neural
plasticity in the auditory cortex (Fritz et al., 2003; Weinberger,
2007) demonstrate that cholinergic neuromodulators gate synap-
tic plasticity for unexpected and behaviorally relevant stimuli,
which accounts for a bottom-up attention-like function (Roberts
et al., 2013). Taken together, the above observations indicate that
the mechanisms by which attention (top-down or bottom-up) is
involved and how it is engaged in the neuroplastic changes un-
derlying tinnitus remain to be further discussed (Roberts and
Bosnyak, 2010).

Using a classical oddball paradigm (as a top-down directed
task) in comparison to a passive listening paradigm (as a bottom-
up directed task), we investigated whether the top-down or the
bottom-up component is significantly modulated in patients with
tinnitus but without hearing loss, depending on the experimental
conditions. These modulations may be reflected in both event-
related potentials (ERPs) and event-related oscillations. In partic-
ular, to avoid possible confounding effects of distorted auditory
input (bottom-up) features due to peripheral auditory damage,
only patients with tinnitus but without hearing loss were
recruited for the present study. The oddball paradigm is tradi-
tionally assessed by the P300 (Katayama and Polich, 1999), which
is a positive ERP peak typically observed between 350 and 600 ms
poststimulus (Picton, 1992; Sutton et al., 1965). In classical ERP
studies, it has been shown that the P300 amplitude is positively
related to the degree of attention required (Johnson, 1988;
Lammers and Badia, 1989; Polich and Mcisaac, 1994). Since the
present study focused on both top-down and bottom-up atten-
tional processes, we wanted to further investigate whether the
EEG neurodynamics of higher attentional resourcing group (i.e.,
T1) behave differently from those of the lower attentional
resourcing group (i.e., T2) in both top-down and bottom-up pro-
cesses. Thus, we simply divided all the tinnitus patients into two
subgroups by a median-split based on their P300 amplitudes. If a
double dissociation is observed in the results, a compelling dif-
ferential effect of tinnitus on top-down or bottom-up processing
could be shown. Our study may therefore provide one of the
significant rationales for studying tinnitus pathology with joint
top-down and bottom-up processing concerns, rather than either
one independently.

In order to investigate the neurodynamic causal connectivity
across principal brain regions in auditory processes, we also per-
formed Granger causality analysis. Brain causal connectivity during
the assessment of auditory stimuli may provide more advanced
understandings of communicative directional flow (He et al., 2011;
Ioannides, 2007) of auditory information in healthy controls vs.
patients with tinnitus. To date, there has been a lack of neuro-
dynamic evidence showing that subcortical top-down regions (e.g.,
hippocampus) causally influence the auditory cortex within
attentional networks. Since EEG theta activity has been considered
to be a possible electrophysiological correlate of top-down regu-
lation in memory systems (Sauseng et al., 2008), such as short-term
memory (Vertes, 2005), and ongoing EEG alpha activity is associ-
ated with sustained attention (Orekhova et al., 2001), we investi-
gated both theta and alpha oscillations. EEG alpha and theta
oscillations reflect cognitive and memory performance (Klimesch,
1999). Furthermore, since prestimulus EEG alpha activity has
been known to reflect prestimulus top-down processing (Min and
Herrmann, 2007, Min and Park, 2010) and inhibitory control of
task-irrelevant processing (Klimesch et al., 2007; Min and Park,
2010), we performed EEG spectral analysis during both prestimu-
lus and poststimulus periods.

2. Materials and methods

2.1. Participants

EEG data were recorded from 15 patients with tinnitus (7
women; mean age, 30.2 years; age range, 17e41 years) and 15 age/
sex-matched healthy volunteers (7 women; mean age, 28.7 years;
age range, 20e43 years), in accordance with the ethics guidelines
established by the Institutional Review Board of Hallym University
College of Medicine (IRB No. 2016-I013) and the Declaration of
Helsinki (World Medical Association, 2013). The study was under-
taken with the understanding and written consent of each partic-
ipant. All of the patients exhibited definite tinnitus for at least 3
months, and normal hearing on conventional hearing testing.
Normal hearing was defined as subjects possessing (1) pure tone
audiometry (PTA) thresholds of 25 dB hearing level (HL) or better at
all octave frequencies from 250 to 8000 Hz, (2) a transient evoked
(TE) otoacoustic emission (OAE) with a signal-to-noise ratio (SNR)
of more than 5 dB and distortion product (DP) OAEs with SNR of
more than 3 dB on OAE tests, (3) waves I-III inter-peak latency of
less than 2.4 ms and wave V latency of less than 6.2 ms on auditory
brainstem response (ABR) tests, and (4) a normal tympanic mem-
brane on otoscopy. To minimize the possibility of hidden hearing
loss at high frequencies, and normalize the patients' cognitive
ability with that of the healthy volunteers, patients were excluded
from our study if they (1) were older than 50, (2) showed active or
prior history of vertigo, Meniere disease, noise exposure, hyper-
acusis or psychiatric problems, (3) used ototoxic drugs, and (4) had
poorly defined or complex tinnitus (failure of tinnitus pitch
matching). In addition, the patients filled in a tinnitus question-
naire, including a visual analog scale [VAS, ranging from 0 to 10 (0:
not annoyed, 10: extremely annoyed)] and a Korean version-
tinnitus handicap inventory (K-THI) questionnaire, translated
from the original THI of the American tinnitus association
(Newman et al., 1996). For the control group, it was confirmed that
the healthy participants did not exhibit tinnitus or evidence of
cochlear damage, as assessed by the PTA, OAE, and ABR tests. The
control group was thus otolaryngologically and audiologically
normal.

2.2. Audiometric evaluation and tinnitus test

Clinically detailed audiometric and otoscopic evaluations were
performed in all participants. Hearing was measured at a frequency
range of 250e8000 Hz with calibrated pure tone audiometry (GSI
AudioStar Pro™, Grason Stadler, Eden Prairie, MN) in a soundproof
audio booth. Recording of OAEs and their spectrum analysis were
carried out using an OAE measuring device (Echoport ILO-292®,

Otodynamics Ltd., Hatfield Herts, UK). For the clinical documenta-
tion of TEOAEs, nonlinear click stimuli (80 ms, rate of 50/s using the
nonlinear mode) were presented at a level adjusted to an 84.5 dB
peak. Each accepted sweep averaged the response to two inter-
leaved waveforms, which were combined in a single OAE result.
The SNR and reproducibility were displayed in the response win-
dow. For the clinical documentation of DPOAEs, two continuous
primary tones were presented (f1<f2, 1.21 frequency ratio) at a
stimulus level of 70 dB sound pressure level (SPL). DP-grams were
displayed in ¼ octave steps over a frequency range of the f2 that
extended from 1001 to 8008 Hz (i.e., 1001, 2002, 3003, 4004, 5005,
6006, 7007, and 8008 Hz). SNRs were obtained from each DPOAE
measure. ABRs were measured by a Navigator® Pro system (Bio-
Logic Systems Corp., Mundelein, IL). Click sound of alternating
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polarity (50 msec, 11/s stimulation rate) was presented through
insert-earphones at a level of 90 dB normal hearing level (nHL). The
amplifier bandwidth ranged from 100 to 3000 Hz with amplifica-
tion of 100,000 times. The number of sweeps for a reliable averaged
response to each click sound was between 1000 and 1500. The
latencies of waves I, III, and V, and the inter-aurally inter-peak time
intervals of IeIII and IIIeV were used as parameters for assessing
the integrity of the peripheral auditory system.

For tinnitus pitch matching in the patients with tinnitus, a two
alternative forced choice method (Goldstein and Shulman, 1997)
was employed. Pulsed pairs of tone ranging from 125 Hz to 12 kHz
were alternatively presented at 10e15 dB above the patient's
hearing threshold (i.e., a comfortable level for the patient) to the
affected ear. Subsequently, patients with tinnitus were asked to
choose which one most closely matched their tinnitus. These pro-
cedures were repeated seven to nine times for a correct match.
After patients determined which stimulus was closest to the pitch
of their tinnitus, the same two alternative forced choice procedure
was repeated with the tinnitus matched tone and the octave above
and below it to avoid octave confusion. If patients describe their
tinnitus as hissing or swishing, various sounds including narrow-
band noise or white noise as well as a pure tone were presented
to judge the tinnitus quality. In patients with bilateral tinnitus
(patient ID 3, 6, and 11; Table 1), the tinnitus matching procedure
was performed on each ear individually. If the patient exhibited
differences in tinnitus between the two ears, the tinnitus pitch was
decided based on the side considered more annoying by the
patient.

However, it is possible that peripheral damage, especially at
high frequencies, could be present, but not detected by routine
audiometry (Adjamian et al., 2012). For example, some patients
with high-frequency tinnitus, despite having audiometrically
normal thresholds, are not necessarily free of any deafferentiation
in the cochlea (Weisz et al., 2006). Kujawa and Liberman (2009)
have shown that the recovery of audiometric thresholds to
normal levels from temporary hearing loss does not indicate the
reversal of damage to inner ear structures. Schaette and McAlpine
(2011) also suggest that tinnitus patients with apparently normal
audiograms may have ‘hidden hearing loss’, which is defined as
damage to the auditory nerve fibers. Hence, although all the
tinnitus patients in the present study showed normal latencies in
waves I-III on ABRs, and normal OAEs [generally indicating the
integrity of peripheral auditory nerves (Moller and Jannetta, 1982;
Moller et al., 1981), and normal function in their cochlear hair cells
(Kemp, 1978; Mills and Rubel, 1994)], ‘normal hearing’ in this paper
refers to participants who had normal hearing ability in the typical
frequency range of 250e8000 Hz using conventional tests (e.g.,
Table 1
Overview of the patients with tinnitus.

ID Subgroup Sex Age (yrs.) Tinnitus frequency (kHz)

1 T2 F 22 8
2 T1 F 30 8
3 T2 F 35 8
4 T1 M 23 8
5 T1 M 32 2
6 T2 M 19 8
7 T1 M 26 8
8 T2 M 26 8
9 T1 M 17 8
10 T1 M 35 8
11 T2 F 40 0.25
12 T1 F 41 8
13 T2 F 28 0.125
14 T2 M 41 0.125

a Pure tone audiometry (PTA) threshold.
PTA, OAE, ABR, and otoscopic examination). We are also aware that
this classification does not indicate the absence of deafferentiation
altogether.

2.3. Experimental design

During EEG acquisition, the participants performed the
following two tasks: (1) an auditory oddball task and (2) a passive
listening task (see Fig. 1). In the oddball paradigm, two stimuli were
presented in random order. One stimulus occurred less frequently
than the other (i.e. the oddball). The participant was required to
discriminate the rare stimulus (target) from the frequent one
(standard) by noting the occurrence of the target, typically by
pressing a button (Duncan-Johnson and Donchin, 1977; Polich,
1989; Verleger and Berg, 1991). Because the P300 component of
ERP reflects fundamental cognitive processes (Donchin and Coles,
1988; Johnson, 1988; Picton, 1992; Polich, 1993) and is often ob-
tained using the oddball paradigm (Katayama and Polich,1999), the
oddball task was employed in the present study. The P300 elicited
by the target in this task is a large, positive-going potential that is
largest over the parietal electrode sites and occurs at about 300 ms
poststimulus in normal young adults.

During the auditory oddball task, participants were instructed to
respond by pressing a button with one hand whenever the rarely
presented auditory target stimulus was detected and to press
another button with the opposite hand if the frequently presented
auditory standard stimulus was detected. Response hands were
counterbalanced across participants. The auditory stimuli were
presented to participants using binaural insert earphones (EAR-
TONE 3A®, 3M Company, Indianapolis, IN). The oddball task con-
sisted of 80 target stimuli (20% occurrence probability in the
stimulus set) and 320 standard stimuli (80% occurrence probability
in the stimulus set), which were presented in random order.
Because the oddball task required participants' active responses
based on a cognitive decision regarding the presented stimulus
types during the performance of the task, the results from this
oddball task were interpreted principally as auditory top-down
effects. The frequency of target stimuli for healthy participants
was 8 kHz, which was the dominant tinnitus frequency of the pa-
tients. The frequency of the standard stimulus was 500 Hz. The
length of each auditory stimulus was 200 ms, with 10 ms for each
rising and falling phase. All the auditory stimuli were generated
using the Adobe Audition software (version 3.0, Adobe Systems
Incorporated, San Jose, CA). Each auditory stimulus was presented
for 200 ms with a variable inter-stimulus interval, ranging
randomly between 1300ms and 1700ms, and centered at 1500ms.
The acoustic intensities of the stimuli were controlled and were set
Deficit side of ear Etiology Righta (dB HL) Lefta (dB HL)

Left Idiopathic �2 2
Right Idiopathic 5 5
Both Idiopathic 10 9
Left Idiopathic 14 10
Left Idiopathic 2 �1
Both Idiopathic 5 5
Left Idiopathic 0 �1
Left Idiopathic 2 1
Left Idiopathic 5 6
Left Idiopathic 4 2
Both Idiopathic 9 11
Left Idiopathic 0 0
Right Idiopathic 4 5
Right Idiopathic 9 8



Fig. 1. Experimental design. (A) A task flow diagram with a series of auditory stimuli comprising both rarely presented target sounds (with a 20% occurrence probability) and
frequently presented standard sounds (with an 80% occurrence probability). White bars and the letter ‘S’ indicate standard stimuli, and black bars and the letter ‘T’ represent target
stimuli. The auditory stimuli were presented to participants using binaural insert earphones (depicted as red and blue boxes with connected lines). The frequency of the standard
sound is 500 Hz, and that of the target is 8 kHz for healthy participants and an individual tinnitus pitch-matched frequency for patients with tinnitus. Each stimulus was presented
for 200 ms with variable inter-stimulus intervals (ISI: 1300e1700 ms). During the oddball task (B: for top-down analyses), participants were instructed to perform a sound-
discrimination task by pressing a button. In contrast, during the passive listening task (C: for bottom-up analyses), participants were instructed to watch a silent movie without
responding to the presented auditory sounds. In both the oddball and passive listening tasks, the same series of auditory stimuli (with 80 target and 320 standard stimuli) were
used.
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to 50 dB SPL for both healthy and patient groups. The volumes of
auditory stimuli weremeasured by a sound level meter (Type 2250,
Brüel & Kjær Sound & Vibration Measurement, Denmark). During
the oddball task, the participants were instructed to fix their eyes
on a fixation cross presented on the monitor in front of them to
minimize any possible distractive effects due to alterations in visual
attention.

On the other hand, since auditory bottom-up attention is a
sensory-driven selectionmechanism for shifting perception toward
a salient auditory subset within an auditory scene (Kaya and
Elhilali, 2014), the same stream of auditory stimuli used in the
oddball task was also passively heard by the participants; subse-
quent stimulus-related EEG dynamics were investigated in terms of
auditory bottom-up effects using differences in the physical fea-
tures of the stimulus type (either a frequently presented at 500 Hz
or a rarely presented individual tinnitus-pitch-matched sound). As
shown in Table 1, the frequencies of the target stimuli in the oddball
paradigm for the patient groupwere their individual tinnitus pitch-
matched frequencies. During the passive listening task, in order to
distract the participants' attention from the presented auditory
stimuli, a black/white and silent movie (‘Modern Times’: a 1936
comedy film directed by Charlie Chaplin) was shown to the par-
ticipants, who were instructed to watch the movie and not respond
to the simultaneously presented auditory stimuli through the
binaural insert earphones. These sounds were the same stream of
target and standard stimuli used in the oddball task. The movie was
played on a black monitor and the screen window was subtended
within the visual angle of 6.5� at a distance of 80 cm (Kaashoek,
2008). The image thus fell onto the focal retinal region (the most
sensitive portion of the retina) to minimize possible eye
movements.
2.4. EEG acquisition and analytical methods

To measure the EEG signals, we used a BrainAmp DC amplifier
(Brain Products, Germany) with an actiCAP consisting of 32 Ag/AgCl
electrodes (Brain Products, Germany). The electrode placement was
in accordance with the international 10e10 system: a reference
electrode was placed on the tip of the nose, and the AFz electrode
was used as a ground. Electrode impedances were maintained
below 5 kU before the recordings. The EEGwas recorded at 1000 Hz
(analog band-pass filter, 0.5e70 Hz). Eye movement activity was
monitored using an electrooculogram (EOG) electrode placed sub-
orbitally onto the left eye, and vertical and horizontal electro-ocular
activities were computed using two pairs of electrodes placed
vertically and horizontally with respect to both eyes (i.e., Fp1 and
EOG for the vertical EOG; F7 and F8 for the horizontal EOG). EOG
artifacts were corrected offline using the independent component
analysis (ICA) method (Makeig et al., 1997). For further analyses,
EEG data were epoched from 500 ms prestimulus to 1000 ms
poststimulus. Epochs containing other artifacts (maximum
amplitude ± 100 mV and maximal gradient voltage step 50 mV/ms)
were rejected from further analyses. One healthy participant and
one patient with tinnitus were excluded from further analyses
because of poor data quality.

Five dominant ERP components were analyzed: contingent
negative variation (CNV), N100, P170, N200, and P300. CNV de-
velops gradually before stimulus onset in a person who is actively
predicting the occurrence of some significant stimulus requiring a
response. Thus, CNV is thought to reflect the expectation of a
subsequent event prior to stimulation (Birbaumer et al., 1990;
Rohrbaugh et al., 1976; Walter et al., 1964). Depending on the
areas of the brain in which the activity was most pronounced (i.e.,
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regions of interest), the following corresponding electrodes were
selected for analysis: for CNV (mean amplitude 150e0 ms presti-
mulus), three centro-parietal electrodes (Pz, CP1, and CP2); for
N100 (minimum peak 50e150 ms poststimulus), three frontocen-
tral electrodes (Cz, FC1, and FC2); for P170 (maximum peak
120e220ms poststimulus), three fronto-central electrodes (Cz, FC1,
and FC2); for N200 (minimum peak 150e250 ms poststimulus),
five fronto-centro-parietal electrodes (FC1, FC2, Cz, CP1, and CP2);
and for P300 (maximum peak 200e400 ms poststimulus), six
centro-parietal electrodes (Cz, CP1, CP2, Pz, P3, and P4). As dipole-
sources for auditory processing generate the most prominent ac-
tivity around the vertex of the brain (i.e., the location of the Cz
electrode; N€a€at€anen et al., 1992), we consistently observed a
central-dominant ERP scalp distribution. All time windows were
based on their grand averages while taking individual variations
into account. Baseline corrections were performed using the
500e0 ms prestimulus interval. The amplitudes and latencies of
each peak were compared for ERP analysis. An offline filter
(0.5e30 Hz) was applied to the final results to display the ERP
components clearly.

The power of oscillatory activity was investigated by convolving
the EEG signals with Morlet wavelets (Herrmann et al., 2005). The
wavelet transform was conducted for each individual trial, and the
absolute values of the resulting transforms were averaged. This
measure of signal amplitude in single trials reflects the total activity
for a certain frequency range. On the other hand, to compute the
evoked activity (phase-locked to the stimulus), the wavelet trans-
form was applied to the averaged evoked potential. Because the
brain oscillations in the alpha band have been determined to be the
most dominant brain activity during relaxed (i.e., mentally inactive)
wakefulness, we investigated whether prestimulus total alpha ac-
tivity reflects possible differences in preparatory mental states for
upcoming task performance across the healthy and patient groups.
In addition, as EEG theta activity has been considered to be a
possible electrophysiological correlate of top-down regulation in
memory systems (Sauseng et al., 2008), we also analyzed evoked
theta activity. Other frequency bands were not analyzed in the
present study, as they did not exhibit observable differences across
the experimental conditions in the grand-averaged time-frequency
plots. We confined the alpha activity to the frequency range be-
tween 8 and 13 Hz, and the theta activity to the frequency range
between 3 and 8 Hz. The frequencies used in the wavelet analyses
were determined individually for every participant, as the domi-
nant peak frequency within each alpha or theta frequency band
varied between participants.

To measure the prestimulus total activity in the alpha band, we
measured the maximum power within a time window from 400 to
0 ms prior to stimulus onset. No baseline correction was applied to
the total alpha power, as alpha activity in a prestimulus period
vanishes after baseline correction. For the evoked theta activity, we
assessed the maximum theta power within the time window be-
tween 0 and 500 ms after stimulus onset. All of the time windows
were selected based on their grand-averages and individual vari-
ances. Because there was no stimulus-evoked activity prior to
stimulus onset, baseline corrections were performed on the evoked
theta activity using the prestimulus interval of 400 to 100 ms prior
to stimulus onset.

Based on the areas of the brain where the EEG oscillatory ac-
tivity was most pronounced, the following corresponding elec-
trodes for each frequency band were selected for spectral analysis:
three parietal electrodes (Pz, P3, and P4) for the prestimulus total
alpha activity, and four fronto-central electrodes (Fz, Cz, FC1, and
FC2) for the evoked theta activity. The averaged amplitudes, la-
tencies, and frequencies across the selected electrodes were
analyzed at their dominant peaks within the corresponding time
window. All of the measures were analyzed using a repeated
measures analysis of variance (ANOVA) with a between-subjects
factor [labeled group (healthy and patient)] and two within-
subjects factors [labeled task (oddball and passive listening) and
stimulus-type (target and standard)]. When necessary, the Green-
houseeGeisser correction was used. In order to further investigate
the characteristic neurophysiological behaviors of the patients with
tinnitus, post hoc tests were performed on the two subgroups, to
which the patients were assigned using a median-split based on
their P300 amplitudes (threshold: 7.354 mV) during the processing
of target stimuli in the oddball task. The T1 group consisted of
patients with higher P300 amplitudes and the T2 group consisted
of those with lower P300 amplitudes. The P300 amplitude was
used because it is a potent indicator of the cognitive ERP compo-
nents reflecting fundamental cognitive information processes
(Donchin and Coles, 1988; Duncan-Johnson and Donchin, 1982;
Johnson, 1988; Picton, 1992; Polich, 1993), and because the degree
of top-down involvement in tinnitus pathology was the main
question of the present study. The results of the T1 and T2 sub-
groups were statistically compared with their age/sex-matched
normal control subgroups, which were split from the original
healthy volunteer group. One-way ANOVAs were used for these
post hoc tests and for the analysis of THI (e.g., annoyance). A false
discovery rate (FDR) of q < 0.2 (Benjamini and Hochberg, 1995) was
used to correct for multiple comparisons, as q-values between 0.1
and 0.2 after FDR correction are known to be acceptable for this
purpose (Genovese et al., 2002). All analyses were performed using
MATLAB (ver. R2015b, MathWorks, Natick, MA) or SPSS Statistics
(ver. 22, IBM, Armonk, NY).

2.5. Granger causality analysis

The spatiotemporal distributions of brain activity and network
behavior provide significant psychophysiological information. It is
thus important to image brain functional connectivity to under-
stand brain function (He et al., 2011; Ioannides, 2007). We con-
ducted Granger causality (Granger, 1969) analysis in the present
study. Unlike other model-based connectivity analyses, such as
structural equation modeling from fMRI paradigms (Tomarken and
Waller, 2005), Granger causality analysis can be used to determine
directional causal interactions among electrophysiological signals
(He et al., 2011). In particular, the directed transfer function (DTF)
has been developed to describe causality among an arbitrary
number of signals (Astolfi et al., 2007; Babiloni et al., 2005).
Granger causality analysis has the potential to noninvasively
delineate brain network connectivity (Astolfi et al., 2004; Babiloni
et al., 2005; Ding et al., 2007). Using the eConnectome software
(Dai and He, 2011, 2012; He et al., 2011), functional connectivity was
mapped for each experimental condition. Granger causality was
investigated at the grand-averaged evoked theta activity. The
eConnectome software enabled cortical source imaging and the
subsequent connectivity analysis of cortical source activity.

In the eConnectome software (He et al., 2011), the cortical cur-
rent density (CCD) source model (Dale and Sereno, 1993) was used
to solve the inverse problem from the scalp EEG to cortical source
distribution using minimum norm estimate (MNE) or lead field
weighted minimum norm (WMN) algorithm with the aid of the
boundary element method (He et al., 1987). A high-resolution
cortical surface consisting of 41,136 triangles was segmented and
reconstructed for visualization from the MRI images of the Mon-
treal Neurological Institute (MNI) brain using the Curry software
package (Compumedics NeuroScan, Charlotte, NC). A down-
sampled cortical surface with 7850 dipoles formed the calculated
source space. The dipoles were constrained to the gray matter with
their orientations perpendicular to the local cortical surface. A scalp
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surface, a skull surface, and a brain surface were segmented and
reconstructed from the MNI brain. The scalp surface, consisting of
2054 triangles, formed the sensor space. Such generic realistic head
models have been suggested to provide improved accuracy in
source analysis (Darvas et al., 2006; Valdes-Hernandez et al., 2009).
A high-resolution lead field matrix (2054 � 7850) was pre-
computed relating all the scalp triangles to the sources. A specific
lead field matrix for a user-defined electrode montage can thus be
constructed as a subset of the pre-computed lead field matrix to
solve the inverse problem. The solution of the inverse problem
yielded estimates of continuous time courses for cortical sources.
The region of interest (ROI) source can then be computed by
averaging estimated cortical sources in the ROI. With the ROI
sources, the cortical ROI functional connectivity can be computed
using the DTF method in selected frequency components among
the selected ROIs.

Based on the most pronounced cortical activity, as estimated by
the eConnectome software, 16 bilateral ROIs were selected (i.e.,
Brodmann area (BA) 24L/R, BA 27L/R, BA 32L/R, BA 39L/R, BA 40L/R,
BA 41L/R, BA 42L/R, and BA 46L/R) to map directional connectivity.
These cortical areas have significant roles in auditory processing.
BA 24 is the ventral ACC and BA 32 is the dorsal ACC. The ACC is
associated with top-down attentional inhibitory regulation
(Johnston et al., 2007; Silton et al., 2010) and conflict monitoring
(Apps et al., 2012; Borsa et al., 2016; Botvinick et al., 2004). BA 27 is
the hippocampus/parahippocampal region and is associated with
short-term memory function (Vertes, 2005), auditory-verbal
memory function (Fletcher et al., 1995; Squire et al., 1992), and
navigating the auditory scene (Teki et al., 2012). BA 39 (the angular
gyrus) and BA 40 (the supramarginal gyrus) are parts of Wernicke's
area involved in the comprehensive processing of the presented
auditory stimuli. BA 41 and 42 correspond closely to the primary
auditory cortex, which can be linked to the auditory processing
induced by the presented auditory stimuli. BA 46 is the part of the
dorsolateral prefrontal cortex that is involved in executive cognitive
functions (e.g., planning, monitoring, inhibiting, and working
memory; Fuster, 2008; Fuster, 2013; Gazzaley and D'Esposito,
2007). Source waveforms were estimated at the 16 ROIs and the
DTF analysis showed directional information flow across the sour-
ces. Statistical assessment of the connectivity was performed using
surrogate approaches (1000 surrogate data sets, p < 0.05).
Fig. 2. Grand-averaged ERP time courses for the normal healthy controls (red solid line), p
groups at the Cz electrode and the topographies of their maxima (A) during the processing o
decreased CNV and systematically reduced P300 amplitudes in the patient groups in (A), an
groups compared to the healthy group in (B). Time zero indicates stimulus onset. The color b
the nose at the top.
3. Results

3.1. Assessment of tinnitus complaints

Based on responses to the question items in the K-THI and VAS,
we observed that the T1 group exhibited significantly enhanced
levels of annoyancewhen experiencing tinnitus compared to the T2
group (T1 group, 7.714 ± 2.059 [standard deviation, SD]; T2 group,
5.143 ± 1.865; F (1,12)¼ 6.000, p < 0.05). Compared to the T2 group,
more patients in the T1 group reported that they may be distressed
by impending susceptibility to a tinnitus sound (T1 group, 83.3%
answered ‘yes’ and one patient did not answer; T2 group, 100%
answered ‘no’ and one patient did not answer; F (1,10) ¼ 25.000,
p < 0.005). All seven patients in the T1 group had unilateral
tinnitus, whereas three out of the seven patients in the T2 group
had bilateral tinnitus without a clear designation of laterality (F
(1,12) ¼ 7.350, p < 0.05).

3.2. ERPs

3.2.1. CNV
The CNV amplitude of the healthy group was significantly lower

than that of the patient group (healthy group, �0.594 mV,
patient group, �0.279 mV; F (1,26) ¼ 7.310, p < 0.05; Fig. 2A). This
effect was due to the T2 group, which had a marginally significant
difference (�0.184 mV, F (1,12) ¼ 4.707, p ¼ 0.051), but not the T1
group (�0.373 mV, F (1,12) ¼ 2.585, ns). In the T2 group, we
observed a significant interaction in CNV amplitudes between the
group and the stimulus-type factors (F (1,12) ¼ 10.883, p < 0.01).
Subsequent tests indicated that the CNV amplitudes of the T2 group
were significantly different from those of the healthy group
during the processing of target stimuli (�0.233 mV, F (1,12)¼ 10.160,
p < 0.01), but not standard stimuli (�0.136 mV, F (1,12) ¼ 0.254, ns).
The T2 group also had significant differences in CNV amplitudes
for the target vs. the standard stimuli in the oddball task
(target, �0.681 mV; standard, �0.219 mV; F (1,12) ¼ 19.650,
p < 0.005), but not in the passive listening task (F (1,12)¼ 3.158, ns).
In addition, there was a significant interaction effect between the
task and the stimulus-type factors in CNV amplitude (F
(1,26) ¼ 20.802, p < 0.001). Post hoc testing revealed significantly
enhanced CNV amplitudes during the processing of target stimuli
atients with tinnitus (blue solid line), T1 (green solid line), and T2 (green dotted line)
f target stimuli in the oddball task and (B) the processing of standard stimuli. Note the
d the enhanced N1 amplitudes and shorter latencies of P170 and N200 in the patient
ar indicates the amplitude (mV). All topographies are shown from the vertex view, with
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vs. standard stimuli in the oddball task (target, �1.308 mV,
standard, �0.392 mV; F (1,26) ¼ 44.744, p < 0.001), but not in the
passive listening task (F (1,26) ¼ 0.095, ns).

3.2.2. N100
We observed a significant interaction effect for the N100

amplitude across the group, task, and stimulus-type factors (F
(1,26)¼ 9.908, p < 0.005). Subsequent tests revealed that there was
a marginally significant group effect in the N100 amplitude in
response to the target stimuli in the oddball task (healthy
group, �2.079 mV, patient group, �0.975 mV; F (1,26) ¼ 4.057,
p ¼ 0.054). As shown in Fig. 2B, there were no significant differ-
ences in N100 amplitudes between the T1 and T2 groups (T1
group, �1.087 mV, T2 group, �0.863 mV; F (1,12) ¼ 0.096, ns). The
N100 component was detected earlier in response to the target
stimuli (85.810 ms) vs. the standard stimuli (112.458 ms; F
(1,26) ¼ 19.541, p < 0.001).

3.2.3. P170
There was a significant interaction effect between the task and

stimulus-type factors in both P170 amplitude (F (1,26) ¼ 28.917,
p < 0.001) and latency (F (1,26) ¼ 18.953, p < 0.001). Post hoc
testing demonstrated that processing target stimuli in the oddball
task produced significantly lower P170 amplitudes (�1.967 mV) and
shorter P170 latencies (165.000 ms) than the passive listening task
(1.118 mV, F (1,26) ¼ 51.329, p < 0.001 for P170 amplitude; and
182.488ms, F (1,26)¼ 12.237, p < 0.005 for P170 latency). Therewas
an additional significant interaction effect between the group and
stimulus-type factors in P170 latency (F (1,26) ¼ 8.611, p < 0.01).
Subsequent tests indicated that the patient group exhibited
significantly shorter P170 latencies (169.214 ms) than the healthy
group (192.786 ms; F (1,26) ¼ 13.947, p < 0.005) when standard
stimuli were presented (Fig. 2B). This effect was due to both T1 and
T2 groups (T1 group, 171.667 ms, F (1,13) ¼ 7.792, p < 0.05; T2
group, 166.762 ms, F (1,13) ¼ 5.872, p < 0.05).

3.2.4. N200
Interestingly, the same trends observed for P170 latency were

continuously detected in the N200 latency, as shown in Fig. 2B.
Specifically, there was a significant interaction effect between the
group and stimulus-type factors in N200 latency (F (1,26) ¼ 5.325,
p < 0.05). Post hoc tests indicated that the patient group produced
significantly shorter N200 latencies (173.264 ms) than the healthy
group (201.186 ms; F (1,26) ¼ 12.415, p < 0.005) when the standard
stimuli were presented. This effect was due to both T1 and T2
groups (T1 group, 172.557 ms, F (1,13) ¼ 7.866, p < 0.05; T2 group,
173.971 ms, F (1,13) ¼ 4.444, p ¼ 0.057). N200 amplitudes also
behaved similarly to P170 amplitudes. There was a significant
interaction effect between the task and the stimulus-type factors in
the N200 amplitude (F (1,26) ¼ 6.587, p < 0.05). We found that
processing target stimuli produced significantly lower N200 am-
plitudes (�0.589 mV) during the oddball task compared to the
passive listening task (1.197 mV, F (1,26) ¼ 8.585, p < 0.01).

3.2.5. P300
We observed a significant interaction effect across the group,

task, and stimulus-type factors (F (1,26) ¼ 10.933, p < 0.005) for
P300 amplitude. Subsequent tests revealed that the healthy group
produced significantly higher P300 amplitudes than the patient
group when the oddball task was performed with target stimuli
(healthy group, 14.733 mV, patient group, 6.923 mV; F
(1,26) ¼ 15.183, p < 0.005) and standard stimuli (healthy group,
5.658 mV, patient group, 2.713 mV; F (1,26) ¼ 16.968, p < 0.001), as
well as when standard stimuli were presented in the passive
listening task (healthy group, 2.105 mV, patient group, 0.593 mV; F
(1,26) ¼ 8.583, p < 0.01). Further investigations revealed that the
results observed in the oddball task were due to the T2 group, but
not the T1 group, during the processing of target stimuli (T1 group,
9.902 mV, T2 group, 3.944 mV; F (1,12) ¼ 15.879, p < 0.005) and
standard stimuli (T1 group, 3.745 mV, T2 group, 1.680 mV; F
(1,12) ¼ 19.686, p < 0.005). However, the T1 group, but not the T2
group, significantly contributed to the results in the passive
listening task when processing standard stimuli (T1 group,
0.437 mV, T2 group, 0.750 mV; F (1,12) ¼ 6.280, p < 0.05). By defi-
nition, the T1 group had significantly higher P300 amplitudes than
the T2 group during the processing of target stimuli in the oddball
task (T1 group, 9.902 mV, T2 group, 3.944 mV; F (1,12) ¼ 16.902,
p < 0.005; Fig. 2A). No other interactions or latency effects with
significant differences were detected in the P300 component.

3.3. EEG alpha and theta oscillations

3.3.1. Prestimulus alpha activity
The total alpha power in the prestimulus period was signifi-

cantly enhanced under the oddball task (12.198 mV2) compared to
the passive listening task (3.277 mV2; F (1,17) ¼ 7.239, p < 0.05;
Fig. 3A). However, no significant difference was observed in pres-
timulus alpha power between the healthy and patient groups (F
(1,17) ¼ 0.018, ns). No other significant effects were detected in
prestimulus alpha power, peak latency, or peak frequency.

3.3.2. Evoked theta activity
Compared to parieto-occipital alpha activity, the evoked theta

activity exhibited a more fronto-central topographical distribution,
as shown in Fig. 3B. For evoked theta power, we found a significant
interaction effect across the group, task, and stimulus-type factors
(F (1,24) ¼ 6.160, p < 0.05). Subsequent tests revealed that the
healthy group yielded significantly higher evoked theta power than
the patient group during target processing in the oddball task
(healthy group, 3.458 mV2, patient group, 0.760 mV2; F
(1,26) ¼ 8.036, p < 0.01). Subsequent tests revealed that this effect
was due to the T2 group (0.378 mV2; F (1,12)¼ 15.128, p< 0.005), but
not the T1 group (1.141 mV2; F (1,12) ¼ 1.634, ns). Similarly, in the
passive listening task, the healthy group produced significantly
higher evoked theta power than the patient group when the target
stimuli were presented (healthy group, 0.262 mV2, patient group,
0.085 mV2; F (1,25)¼ 6.971, p < 0.05). Post hoc testing indicated that
this effect was due to the T1 group (0.0878 mV2; F (1,12) ¼ 5.723,
p < 0.05), but not the T2 group (0.0831 mV2; F (1,12) ¼ 3.274, ns),
which is of the opposite of what was observed in the oddball task.

The evoked theta peak latency of the target stimuli (281.345ms)
was significantly longer than that of the standard stimuli
(175.862 ms), irrespective of the group or the task type (F
(1,24) ¼ 51.875, p < 0.001). There was also a significant interaction
effect between the task and stimulus-type factors in the peak fre-
quency of evoked theta activity (F (1,24) ¼ 35.880, p < 0.001). Post
hoc testing demonstrated that the target stimuli produced signifi-
cantly lower evoked theta peak frequencies during the oddball task
(3.579 Hz) than the passive listening task (5.724 Hz; F
(1,25) ¼ 36.653, p < 0.001). No other significant effects were
observed in evoked theta activity.

3.4. Granger causal connectivity

As shown in Fig. 4, the hippocampal/parahippocampal region
(BA 27) and the ACC (BA 24 and 32) had prominent overall in-
fluences over other brain regions during the processing of auditory
information in the healthy group. In contrast, the dominant con-
nectivity centered at BA 39, 40, 41 and 42 were additionally
involved in the patient group.When the results of the patient group
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Fig. 4. Granger causal connectivity of grand-averaged evoked theta activity of the normal healthy, patients with tinnitus, T1, and T2 groups (from left to right) for target stimuli in
the oddball task (first row), for standard stimuli in the oddball task (second row), for target stimuli in the passive listening task (third row), and for standard stimuli in the passive
listening task (fourth row). The color-scaled directional arrows link two causally connected ROIs across 16 ROIs (BA 24L/R, BA 27L/R, BA 32L/R, BA 39L/R, BA 40L/R, BA 41L/R, BA 42L/
R, and BA 46L/R) when their Granger causality is statistically significant (i.e., p < 0.05). The color-scaled arrows in the cortical connectivity image represent the degree of causal
connectivity (ranging from 0 to 1). Note that during the processing of targets in the oddball task, the most prominent outflows of information are observed at BAs 24 and 32 (top-
down cognitive processing areas) for both the normal and T1 groups, whereas BAs 41 (primary auditory processing area) and 39 (Wernicke's area) exhibit the most pronounced
outflows of information for the T2 group. The topographical view is from the vertex, with the nose at the top of the image.
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were further analyzed using the T1 and T2 subgroups, Granger
causal connectivity of evoked theta activity consistently confirmed
a double dissociation between the T1 and T2 groups in both top-
down and bottom-up tasks. That is, the T1 group yielded a
similar causal connectivity to that of the healthy group during
target processing in the oddball task, which included directional
connectivity generated dominantly from the ACC, despite the T1
Fig. 3. (A) Time-frequency representations of grand-averaged total alpha (8e13 Hz) activit
panel), and the topographical distributions at the maximum peak from 0 to 400 ms presti
activity at the Cz electrode during the processing of target stimuli for healthy individuals
panel), and T2 (lower-right panel) patient groups with tinnitus, along with the topographi
indicates the power (mV2). The topographical view is from the vertex, with the nose at the top
plot.
group having reduced connectivity amplitudes (around 0.395)
compared to the healthy group (around 0.683). Furthermore, the T2
group had a causal connectivity dominated not by the ACC but,
abnormally, by the auditory cortex andWernicke's areas during the
oddball task. Nonetheless, the T2 group demonstrated dominant
hippocampal connectivity during the passive listening task, similar
to the healthy group. In contrast, the T1 group had an abnormally
y at the Pz electrode during the oddball (left panel) and passive listening tasks (right
mulus. (B) Time-frequency representations of grand-averaged evoked theta (3e8 Hz)
(upper-left panel), the patient group with tinnitus (upper-right panel), T1 (lower-left
cal distributions at the maximum peak from 0 to 500 ms poststimulus. The color bar
of the image. The electrode location is noted in the inset on the upper left corner of the
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low dependence on hippocampal areas during the passive listening
task.

4. Discussion

Our observations provide neurophysiological evidence that both
top-down and bottom-up dysfunctions can cooperatively
contribute to tinnitus symptoms, independent of peripheral hear-
ing normality. As shown in Fig. 2, the patient group demonstrated
significantly reduced P300 amplitudes than healthy individuals,
which is indicative of an impairment in top-down attentional
processing in patients with tinnitus but without hearing loss, as the
P300 reflects fundamental cognitive processes (Donchin and Coles,
1988; Johnson, 1988; Picton, 1992; Polich, 1993). Consistently,
Granger causality analyses revealed a lack of ACC activation during
target processing (Fig. 4), which implies abnormal target-detecting
processes, as the ACC executes top-down inhibitory control
(Johnston et al., 2007; Silton et al., 2010) and conflict monitoring
processing (Apps et al., 2012; Borsa et al., 2016; Botvinick et al.,
2004). In addition, early ERP components, such as the N100, also
had significant differences in the amplitude across the healthy and
patient groups. Since the auditory N100 is sensitive to selective
attention (Sanders and Astheimer, 2008; Woldorff et al., 1993),
patients with tinnitus and without hearing loss seem to have se-
lective attention deficits to external sounds. In addition, as early
ERP components are more influenced by physical sensory factors
(reflecting bottom-up processes) than the later higher-order
cognitive (top-down) ERP components (Kutas et al., 1977;
Skrandies, 1984; Zani and Proverbio, 1995), impairment in
bottom-up processing is a possible cause of tinnitus (Vanneste and
De Ridder, 2016). The latencies of P170 and N200 in non-target
stimuli (i.e., those with non-tinnitus frequencies) were signifi-
cantly shorter than those in healthy individuals.

Interestingly, when the patients were divided into two sub-
groups depending on the P300 amplitude, P170 and N200 also
behaved differently, as shown in Fig. 2B. It is noteworthy that the T1
group reported significantly higher rating scores in annoyance from
tinnitus and distress from impending susceptibility to a tinnitus
sound than the T2 group. Based on the relationship between ERP
dynamics and tinnitus rating scores, the above ERP components can
be used as neurophysiological markers for predicting some tinnitus
impairments. Three out of the seven patients in the T2 group had
bilateral deficits of tinnitus, whereas those in the T1 group all had
unilateral tinnitus. Therefore, bilaterally unbalanced impairment of
tinnitus seems to evoke more severe psychosomatic complaints.
Thus, not only neurophysiologically, but also behaviorally, patients
with tinnitus and normal hearing can be categorized into at least
two subgroups. As a systematic reduction in P300 amplitude was
shown from the healthy group to the T1 group, and from the T1
group to the T2 group (Fig. 2A), the T1 group does not seem to be as
seriously deficient in top-down processing as the T2 group. There
was no significant difference in N100 amplitude between the T1
and T2 groups. The differences began after the P170 component
was observed and were maximized in the P300 amplitude. Pre-
sumably, the difference between the T1 and T2 groups begins
around the time of the early manifestation of the interactions be-
tween top-down and bottom-up processes.

Indeed, the recent theory of “predictive coding” provides a
unifying framework for minimizing the error between bottom-up
sensations and top-down predictions (Winkler, 2007), with the
corresponding mismatch signaling the detection of a deviant. It is
probable that the T2 group has more deficits in predictive coding
capacity. In line with this notion, the CNV of the T2 group was
significantly reduced compared to those of both the healthy and T1
groups during the target response in the oddball task. In the CNV
paradigm, a pair of contingent stimuli (S1: a warning stimulus and
S2: an imperative stimulus) are presented with a distinct time in-
terval (Birbaumer et al., 1990; Walter et al., 1964). Stimulus con-
tingencies (temporal associations between the two stimuli) allow
subjects to predict and prepare for the second stimulus, which
requires the execution of a response. Therefore, CNV is indicative of
expectancy or prediction. It is plausible that together with the
attention deficits in patients with tinnitus, the disparity between
the predicted and delivered inputs activates an auditory attention
system, facilitating neuroplastic changes that contribute to the
generation of tinnitus (Roberts et al., 2013). Together with our ERP
observations, both T1 and T2 groups commonly showed deficient
neurophysiological behavior in both prestimulus CNV and early
poststimulus bottom-up processing stages (i.e., N100). Compared
to the T1 group, the T2 group exhibited subsequent abnormal
neurodynamics during the interaction stage (i.e., P170 and N200)
between bottom-up and top-down processes. Consequently, the T2
group had further reduced P300 amplitudes than the T1 group in
the late top-down processing stage.

Since prestimulus alpha activity was significantly modulated
only by the task type, but not by the group factor, the preparatory
mental states for the upcoming task performance may be intact in
patients with tinnitus. Instead, these patients exhibited perceptual
or cognitive dysfunctionwhen the acoustic stimulus was presented,
which was reflected in evoked theta activity. During the processing
of target stimuli, the T1 and T2 groups differentially contributed to
the significant differences in evoked theta power from the healthy
group, depending on the task type. Specifically, the contribution of
the T1 group was observed during the passive listening task (for
bottom-up processing), whereas that of the T2 group was found
during the active oddball task (for top-down processing). Consis-
tently, the observations of EEG theta-band directional neuro-
dynamics reflect such double dissociations between the T1 and T2
groups across top-down and bottom-up tasks (Fig. 4). During the
oddball task, the T1 group yielded similar causal connectivity to the
healthy group, which showed directional connectivity dominantly
generated from the ACC. In contrast, the T2 group had abnormal-
ities during the oddball task: auditory cortical connectivity was
more pronounced than ACC connectivity. Such dysfunction of the
ACC in patients with tinnitus has been consistently reported in
previous studies (De Ridder et al., 2016; Vanneste et al., 2014). On
the other hand, during the passive listening task, both healthy and
T2 groups showed dominant parahippocampal connectivity when
the target stimuli were presented. It has been consistently reported
that the tinnitus network involves the ACC and parahippocampal
areas (De Ridder et al., 2006; De Ridder et al., 2014; Landgrebe et al.,
2009; Vanneste et al., 2010). However, the T1 group had an
abnormally lower dependence on the parahippocampal area.
Instead, the T1 group displayed dominant connectivity from the
auditory cortex (Fig. 4), which has been reported in relation to
perceived tinnitus intensity (van der Loo et al., 2009). However, the
T2 group abnormally demonstrated this dominant para-
hippocampal connectivity even during the processing of standard
stimuli in the passive listening task. Since the parahippocampal
area has been considered to be a critical hub in the tinnitus network
(De Ridder and Vanneste, 2014), as it is involved in tinnitus in
general (Maudoux et al., 2012; Song et al., 2012; Vanneste et al.,
2011), the T2 group may exhibit unconditional parahippocampal
hyper-connectivity, possibly leading to the generation of tinnitus.

The hippocampal/parahippocampal area plays an important
role in memory encoding and retrieval (Van Strien et al., 2009). EEG
theta activity reflects this function of working memory in the
hippocampal area (Raghavachari et al., 2001; Sauseng et al., 2010;
Tesche and Karhu, 2000). The patient group had significantly
reduced evoked theta power than the healthy group during the
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processing of target stimuli. As EEG theta activity has been
observed when a person engages in memory retrieval (Jacobs et al.,
2006) and takes on cognitive load (Klimesch, 1999), it is likely that
patients with tinnitus have cognitive deficits in auditory memory
processing. For example, to compare the target auditory stimulus
with a series of standard stimuli, one might first retrieve auditory
memories regarding the target and the standard stimuli, which are
already encoded in a memory system for task performance. It is
possible that the patients with tinnitus have impairments in the
retrieval of pre-registered auditory memories, which are required
to perform the oddball task correctly.

Alternatively, as theta activity is also associated with context
updating (Makeig et al., 2004) and cognitive control mechanisms
(conflict processing in the ACC; Hanslmayr et al., 2008), the less
pronounced theta activity evoked in the patient group might
indicate non-efficient context updating when there is a conflict
due to intermixed presentations of different stimulus types (target
and standard). Since EEG theta activity is considered to be a
possible electrophysiological correlate of top-down regulation in
memory systems (Sauseng et al., 2008), our observation provides
neurophysiological evidence supporting a crucial role of
hippocampus-based top-down influence on auditory processing.
In parallel, as the ACC is involved in top-down attentional inhibi-
tory regulation (Johnston et al., 2007; Silton et al., 2010), patients
with tinnitus may have impairments in top-down attentional
inhibitory control. Therefore, abnormal evoked theta and ERP be-
haviors in patients with tinnitus may account for their dysfunc-
tions in attention and working memory (Mohamad et al., 2016;
Rossiter et al., 2006).

As slow oscillations such as theta activity are associated with
integrative brain functions in globally distributed neural networks
(Sarnthein et al., 1998; von Stein and Sarnthein, 2000) and large-
scale neural communicative networks (Başar, 1999), our observa-
tions of long-range theta-band directional connectivity, particularly
from the top-down brain areas (e.g., hippocampus, ACC, and pre-
frontal cortex) to the primary sensory cortices, might reflect
interregionally integrative and downregulating processes on
auditory working memory. Thus, the multi-regional causal con-
nectivity observed in tinnitus patients would imply that the
neuropathology of tinnitus is involved in integrated auditory in-
formation processing over global brain networks.

However, the present study has some implicational constraints
that are worth mentioning. First, in the present study, source
localization was conducted based on a limited number of scalp
channels. In general, the accuracy of EEG source localization de-
pends on sufficient spatial frequency in the scalp potential field
(Song et al., 2015a; Srinivasan et al., 1998), which is limited by the
blurring caused by volume conduction effects (Malmivuo and
Suihko, 2004; Michel and He, 2011). Although more than 32
channels would yield further confidence in source localization
(Lantz et al., 2003; Luu et al., 2001; Song et al., 2015a), measure-
ment noise is a critical limiting factor for the spatial resolution of
high-density EEG-systems (Ryynanen et al., 2004, 2006). Therefore,
there is a crucial interplay between measurement noise, the
number of channels, and conductivity values of the different
compartments of the head. Moreover, it remains, for the moment,
unclear how much imperfect spatial sampling influences source
imaging (Michel and He, 2011). Some data suggest that even with
~32 channels, as used in the present study, one obtains important
insight into the underlying brain electrical sources by performing
source localization (Ding et al., 2006, 2007; Sperli et al., 2006;
Zhang et al., 2003). Although the EEG inverse problem remains a
challenge, it is possible to obtain valid estimates of its solutions if
reasonable constraints are given on the equivalent source distri-
bution (Pascual-Marqui et al., 1994). For example, if the brain
electric sources are assumed to consist of a few moving equivalent
current dipoles (He et al., 1987), as used in the present study, so-
lutions to the EEG inverse problem can be estimated yielding re-
sults that are consistent with other findings in clinical
neurophysiology and neuroscience. Nevertheless, our estimates in
causal connectivity should be understood in light of these possible
concerns of the EEG source localization. Second, although a larger
sample size would result in a higher statistical power, it is not easy
to acquire a sufficient number of patients with tinnitus who do not
also have hearing loss. Thus, the post-hoc comparison between T1
and T2 should be interpreted carefully, and considering this sta-
tistical limitation. Third, the audiograms in the present study were
measured up to 8 kHz. Although the inclusion of further high fre-
quencies (i.e., more than 8 kHz) for hidden hearing loss may pro-
vide more confidence in evaluating hearing capacity, the clinical
significance of such an extended high frequency audiogram is still
debatable (Balatsouras et al., 2005; Osterhammel and
Osterhammel, 1979; Schmuziger et al., 2007). Moreover, stan-
dardizations for acoustics (ISO, 2006) have not been generally
established in extended high frequency levels (i.e., more than
8 kHz). Nevertheless, the concern for normal hearing in the present
study should be carefully considered with possible hidden hearing
loss over 8 kHz in the audiograms. Lastly, since only patients with
tinnitus but without hearing loss participated in the present study,
further experiments on tinnitus with hearing loss are needed to
determine the extent of its pathology. A future study using the
same experimental paradigm on patients with tinnitus and hearing
loss will provide more informative evidence on the relationship
between hearing function and tinnitus pathology from the view-
point of top-down and bottom-up processing.

5. Conclusions

The results of this study provide neurophysiological and neuro-
dynamic evidence that tinnitus pathology is due to both top-down
and bottom-up dysfunctions. Although it is still unclear whether
this impairment is induced principally by peripheral cochlear
damage or unverifiable hidden hearing loss or abnormality in
cognitive circuitry, our observation indicates a differential engage-
mentof top-down impairment combinedwith deficits of bottom-up
processing in patients with tinnitus but without hearing loss. Since
top-down processes are involved in a modality-independent com-
plex neural network (Lacey et al., 2009; Sarter et al., 2001), our re-
sults reinforce the idea that tinnitus physiopathology can even be
associated with non-auditory systems (Henry et al., 2014). Our un-
published results (due to rare observations) using Granger causality
analyses reveal abnormally dominant somatosensory or motor
cortical connectivity in the patient group. These observations indi-
cate that tinnitusmay bemodulated by stimulation arising from the
somatosensorial system, as well as from the somatomotor and
visual-motor systems (Sanchez and Rocha, 2011). Therefore, not
only the peripheral auditory system, but also the central non-
auditory cognitive system involving top-down processes, should
be carefully considered for the clinical management and treatment
of tinnitus. In future studies, subsequent exploration of interactive
neurodynamics between top-down and bottom-up processes with
more elaborated experimental designs will contribute to a better
understanding of the top-down involvement in the generation of
tinnitus. These studies may then provide further fundamental in-
sights into the neuropathology of tinnitus.
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