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A b s t r a c t - - I n  this paper, we shall introduce two new mappings closely connected with Hadamard's 
inequality for convex mappings and study their main properties. Some applications are also included. 
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1. I N T R O D U C T I O N  

Let  f : I _C R --* R be a convex function on the real interval I and a, b E I ° (I ° is the  interior 
of  I )  wi th  a < b. T h e  following inequali ty due to Hermi te  [1] and H a d a m a r d  [2] is well known: 

( ~ _ b )  1 ~ b f(a) + f(b) (1) 
f <- ~ - a  f(x) dx <_ 2 

In [3] (see also [4]), the  first au thor  has in t roduced the following mappings  H,  F : [0, 1] ~ R, 

g(t)  = b -----a f t x  + (1 - t) dx, 

and 

(t) = (b_ a)2 f ( tx  + (1 - t ) y )  dxdy 

associa ted  wi th  H e r m i t e - H a d a m a r d ' s  inequali ty which give two "continuous scales" of  ref inements  
of  H e r m i t e - H a d a m a r d  inequality. 

(i) H is a convex nondecreasing function on [0, 1] and 

f ( ~ - ~ )  = H(O) < H(t) < H(1) = 1 ~ b - - b - a f ( z )  dx. 

(ii) F is nonincreasing on [0, 1/2], nondecreasing on [1/2, 1], and it is convex on [0, 1]. More- 
over, 

tel0,1] b----~ f(x)  dx, i n f . F ( t )  = 1 x y - te[o,1] ( b - a )  2 f - -  d x d y  

and one has  the  inequali ty 

H(t) <_ F(t), for all t e [0, 1]. 

For some o ther  proper t ies  of  H and F ,  see [3,4], where some appl icat ions  are also given. 
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The aim of this paper is to study Hermite-Hadamard's inequality from a different point of 
view. Namely, we shall consider the "difference" mappings L and P defined by 

L :  [a, b] --+ R, 
~a t 

L(t )  = f ( t )  + f (a )  (t - a) - f ( s )  ds 
2 

and 

/: P :  [a,b] --+ R,  P ( t )  = f ( s )  d s -  ( t -  a ) f  t a , 

and will discuss the main properties of these, and then obtain some refinements of (1). Finally, 
some applications in connection with well-known elementary inequalities are also given. The 
motivation for the present work stems from many recent refinements of (1) in [1,3-15]. 

2. M A I N  R E S U L T S  

The main properties of the mapping L are embodied in the following theorem. 

THEOREM 1. Let  f : I C R --* R be a convex mapping  on the interval I and let a < b be fixed 
in I °. Then,  we have the following. 

(i) The  mapping  L defined above is nonnegative, monotonical ly  nondecreasing, and convex 
on [a, b]. 

(ii) The  following refinement of  Hadamard's  inequality holds: 

1 f~ b 1 f f  (y-a) I(a)+f(y)<I(a)+y(b) 
- f(s)  ds + b - a  f ( s )  d s <  b a ~ - a  2 - 2 (2) 

for each y • [a, b]. 

(iii) The following inequali ty holds: 

t .,t/f(~ + f(a)  ( t -  a) + (1  - oL) f(s)  + f(a) (s - a) 
2 2 

_ f ( a t  + (1 - a)s) + f ( a ) [ a t  + (1 - a)s  - a] 
2 

>_ c~ f ( u )  du + (1 - c~ f ( u )  du - f ( u )  du, 
, ] a  

(3) 

for every t, s e [a, b] and each a E [0, 1]. 

PROOF. 
(i) The fact that  L is nonnegative follows from Hadamard's inequality. 

In order to prove the monotonicity and the convexity of L, we shall show the following inequal- 
ity: 

L(z )  - L(y)  >_ (x - y)L~+(y), for all z, y • [a, b]. (4) 

For this, suppose that  x > y. Then, we have 

j~x L(x )  - L(y)  - f ( x )  + f (a )  (x - a) f (Y )  + f (a )  (y _ a) - f (s)  ds. 
2 2 

%) 

By the inequality (1), we deduce 

L(x )  - L ( y )  > ( f ( x )  + f ( a ) ) ( x -  a) 
x - u - 2 ( x  - u )  

( f ( y )  + f ( a ) ) ( y  - -a )  f ( x ) + f ( y )  
2 ( ~  - y) 2 
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On the other hand, since f is convex, f~_(y) exists for all y E [a, b), and thus, a simple calculation 
yields 

L~+(y ) _ f~_(y)(y - a) f (y)  - f(a) 
2 2 ' Y • [a, b). (6) 

Therefore, the inequality (4) holds provided 

A = ( f ( x ) + f ( a ) ) ( x - a )  
x - y  

(f(y)+f(a))(y-a) 

x - y  - ( f(x)  + f(a)) >_ f~(y)(y  - a). (7) 

But, a simple calculation shows that  

A = 
(y - a ) ( f ( x )  - f(y)) 

x - y  

and hence, the relation (7) is equivalent to 

-/(v) 
x - - y  

which holds by the convexity of f .  

The proof of (4) for the case y > x is similar, and we omit the details. 
mapping L is convex on [a, b]. 

Now let x > y, x, y E [a, b]. Since L is convex on [a, b], we find 

Consequently, the 

L(x) - L(y) 
x - y  

> L ~ ( y )  = f ~ ( y ) ( y - a )  - ( f ( y ) - f ( a ) )  
- 2 

> 0, 

as, by the convexity of f ,  we have f(a) - f (y)  >_ (a - y)f~_(y), for all y e [a,b]. Thus, L is 
nondecreasing on [a, b]. 
(ii) By (i), we have 0 _< L(y) < L(b), for all y E [a, b], and hence, 

f(y)+f(a) 
, b  

fay f(b) + f(a) ( b - a ) -  Ja f (s)ds ,  (y - a) - f(s)  ds < 2 

which gives 

~b  i V  (b - a) (y - a). f f(b) + f(a) f (y)  + f(a) 
f(s)  ds - Ja f(s)  ds <_ 2 2 

Therefore, 
1 ~b  f(b) + f(a) 

b - a f (s)  ds <_ 2 
~ y  

which is the right inequality in (2). 
By Hadamard's inequality, we also have 

f(y)  + f(a) ( y - a )  
2 ~ - a  ' 

1 f~ b ( y - a )  f ( a ) + f ( y )  
b - a  f ( s ) d s +  ~ - a  2 > b a f ( s ) d s +  y - a  ~ 1  Y - - b - a  y - a  f ( s )ds  

1(; /: ) 
- b - a f ( s )  d s  + f ( s )  ds 

- b - a f ( s )  d s ,  

for all y E [a, b]. This completes the proof of the left inequality in (2). 



36 S.S. DRAOOMIR AND R. P. AOARWAL 

(iii) The  inequali ty (3) follows by  the convexity of L, i.e., 

L((~t + (1 - a)s) < aL( t )  + (1 - a)L(s), 

for all s, t E [a, b] and a E [0,1]. 

REMARK 1. Since L is nondecreasing, we have the following: 

inf L(t) = L(a) = 0 
tE[a,b] 

and ~a b 
sup Lit ) = Lib ) = fib) + f(a) (b - a) - f(s)  ds > O. 

t e  [a,b] 2 - -  

REMARK 2. If f is a monotonical ly nondecreasing function on [a, b], then the mapping (I)(t) = 
f :  ](u)du is convex on [a, b]. Consider the new mapping • : [a, b] --* R given by  ~ ( t )  = 
1/2J f i t  ) + f(a))it  - a). If f is assumed to be convex and nondecreasing, then q2 is also convex 
on [a, b] and, by  the  inequali ty (3), the following holds: 

(~ffJi t) + i I - c~)¢is ) - qJic~t + i 1 - c~)s) > (~(I)it) + (1 - a ) ¢ i s  ) - ~((~t + (1 - c~)s) > O, i s) 

for all s, t E [a, b] and c~ E [0, 11. 

The  main propert ies  of the mapping P are given in the following theorem. 

THEOREM 2. Let f be as in Theorem 1. Then, 

i i) The mapping P is nonnegative and monotonically nondecreasing on [a, b]. 
(ii) The following inequality holds: 

0 < P(t) < L(t), for all t E [a, b]. i9) 

(iii) The following refinement of Hadamard's inequality holds: 

f(s) ds, + ~ - a  f(s)  ds< b - a  

i10) 

for all y E [a, b]. 

PROOF. 
(i) Clearly, by  (1) the  mapping P is nonnegative. Let a < x < y <_ b. Then,  we have 

B y  Hermi te -Hadamard ' s  inequality, we have 

~Uf ( s )d s  >_ ( y -  x ) f  (x---~ Y-) , 

and hence, 
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Now, using the convexity of f ,  we get 

y - a  - + 

and thus, L(y) - L(x) > O, which shows that L is nondecreasing on [a, b]. 
(ii) By Hermite-Hadamard's inequality, we have 

2 f(a+t)12 f ((t + a)/2) + f (a)  
t - a ] ,  a f (s)  ds < 2 

and 
2 f ~  f ((a + t)//2) + f(b) 

f (s )  ds < 
t - a J(a+b)/~ -- 2 ' 

for all a < t < b. On summing these inequalities, we obtain 

f (s )  ds < f + f(a) + f(b) 
t - a  - 2 

which implies the inequality (9). 
(iii) The left inequality in (10) follows from the fact that  

/: f (s)  ds > ( y -  a) f  for all y • [a, b]. 

For the right inequality of (10), we use the fact that, by (i), 0 < P(y) < P(b), for all y e [a, b], 
i.e., 

which is clearly equivalent with the right inequality of (10). 

REMARK 3. From the above assumptions, we have 

inf P(t) = P(a) = 0 
tE[a,b] 

and 

sup P ( t ) = P ( b ) =  f (s)  d s - ( b - a ) f  a____bb >_0. 
teIa,b] 

REMARK 4. The condition " f  is convex on [a, b]" does not imply the convexity of P on [a, b]. 
Indeed, if y(t) = 1/t, t • [1, 6], then f is convex on [1, 6] and 

P ' ( t ) = l n t  2 ( t - 1 )  P " ( t ) =  8 t z - ( t + l )  3 
t + l  ' t 2 ( t + l )  a ' 

and P"(5)  < 0, which shows that P is not convex on [1, 6]. 

REMARK 5. Let f be twice differentiable on I ° and suppose that f and f t  are convex on I °. 
Then, P is also convex. Indeed, we have 

and 

for all t • [a, b], then from the convexity of f ' ,  we have 

which in view of the convexity of f implies that  

P"(t)  >_ ( ~ - )  f "  ( ~ - ~ )  , for a l l t e  [a,b]. 

Consequently, P is also convex on [a, b]. 

for all t • [a, b], 

, t • [a, b], 
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3.  A P P L I C A T I O N S  

1. Suppose that 0 _< a < b and y E Is, b]. Then, for all p > 1, we have 

y , + l  _ ap+l  1 .t~+ _ yp+ l  (y  _ a ) ( a  p + yp)  < ~ 

( p - +  i ~( g --'-a ) <- b - a -+ 1 + 2 - 2 

Indeed, it follows from (2) applied to the convex mapping f : [0, ~ )  ~ [0, oo), f ( x )  = x p. 
2. Let 0 < a < b and y E [a, b]. Then, 

< exp L2ay(b - a)]  -< exp \-~-'ab ] " 

This follows from (2) applied to the convex mapping f : (0, oo) --, (0, cx~), f ( x )  = 1Ix .  
3, Let 0 _< a < b and t, s E [a, b], a E [0, 1]. Then, for all p _> 1, the following inequality holds: 

1 [odP(t _ a) + (1 - a)sP(s - a) - (~t + (1 - ~)s)P(~t + (1 - oOs - a)] 
2 

1 [atp+l alsP+ 1 als)P +i ] > + (1  - - (ozt + ( I  - > O. 
- p + l  

This is the inequality (3) applied to the convex function f ( x )  = x p defined on [0, ~ ) .  
4. Suppose that 0 < a and t, s _> a. Then, for all a e [0, 1], we have the following refinement of 
the arithmetic-geometric means inequality: 

which follows from the inequality (3) on applying for the convex function f : (0, c~) --* (0, co), 
f(x) = I/x. 
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