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Abstract This paper investigates two finite-time controllers for attitude control of spacecraft based

on rotation matrix by an adaptive backstepping method. Rotation matrix can overcome the draw-

backs of unwinding which makes a spacecraft perform a large-angle maneuver when a small-angle

maneuver in the opposite rotational direction is sufficient to achieve the objective. With the use of

adaptive control, the first robust finite-time controller is continuous without a chattering phenom-

enon. The second robust finite-time controller can compensate external disturbances with unknown

bounds. Theoretical analysis shows that both controllers can make a spacecraft following a

time-varying reference attitude signal in finite time and guarantee the stability of the overall

closed-loop system. Numerical simulations are presented to demonstrate the effectiveness of the

proposed control schemes.
ª 2014 Production and hosting by Elsevier Ltd. on behalf of CSAA & BUAA.

Open access under CC BY-NC-ND license.
1. Introduction

Attitude control of spacecraft has received lots of research

interest, and a number of research works have been reported.
A survey of attitude representations, such as unit quaternion,
Rodrigues parameters (RPs), modified Rodrigues parameters

(MRPs), etc., have been investigated.1–3 However, unit quater-
nion and MRPs are unable to represent the set of attitudes
both globally and uniquely that can result in undesirable

behaviors such as unwinding.4,5 Unwinding may result in fuel
consumption by traveling a long distance before returning to a
1 86402204 8212.
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desired attitude when a closed-loop system is close to a desired

attitude equilibrium.4 In order to deal with the problem, rota-

tion matrix that represents the set of attitudes both globally

and uniquely has received lots of research interest during the

last decades.6–9 Lee10 proposed an attitude controller by a

new attitude error function for an attitude tracking control

system on SO(3) (3-dimentional special orthogonal group) to

deal with large-angle rotational maneuvers. Weiss and Cruz

gave the robust controllers that require no knowledge of the

mass distribution of the spacecraft, respectively.11,12 These

attitude parameters were applied in attitude control with

various controllers to acquire the results of asymptotical and

exponential stabilities of the spacecraft attitude tracking

system by using Lyapunov’s theorems, Matrosov’s theorem,

and Barbalat’s lemma.

However, asymptotic and exponential stabilities imply that

the spacecraft attitude tracking system converges to the
equilibrium as time going to infinity. Therefore, the finite-time
stabilization of dynamical systems leads to wide applications in
SAA & BUAA. Open access under CC BY-NC-ND license.

https://core.ac.uk/display/82296549?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:songshenmin@hit.edu.cn
http://dx.doi.org/10.1016/j.cja.2014.02.017
http://www.sciencedirect.com/science/journal/10009361
http://dx.doi.org/10.1016/j.cja.2014.02.017
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


376 Y. Guo, S. Song
attitude tracking of spacecraft. A general framework for finite-
time stability analysis of nonlinear dynamical systems was
developed by Lyapunov functions13 and there are many meth-

ods to design controllers.
Firstly, finite-time control laws are often sought from the

class of homogeneous functions.14–17 Finite-time control of

robot systems was studied through both state feedback and
dynamic output feedback control.14 Bhat and Bernstein15 gave
a class of bounded continuous time-invariant finite-time stabi-

lizing feedback laws for the double integrator. Meng et al.16

proposed distributed attitude containment control laws for
multiple rigid bodies with multiple stationary and dynamic
leaders. Du and Li17 investigated the global finite-time attitude

stabilization problem for a rigid spacecraft system. However, it
only dealt with the attitude regulator problem of the spacecraft
to design a finite-time controller by a homogeneous method.

Secondly, terminal sliding mode control (TSMC) is consid-
ered to be a finite-time control scheme. Yu et al.18 proposed a
continuous finite-time control scheme with TSMC for rigid

robotic manipulators. Wu et al.19 investigated two robust slid-
ing mode controllers based on the quaternion to solve the
spacecraft attitude tracking control problem. Wang et al.20

investigated a TSMC law to make the defined dynamical
synchronization error converging to the desired trajectory in
finite time by using the dual-quaternion representation.

Finally, we can also provide a finite-time controller by a

backstepping method based on Lyapunov functions. Reich-
hartinger and Horn21 investigated a control law based on the
ideas of backstepping. Zhang and Duan22 proposed a robust

finite-time control strategy to enable a spacecraft to track a ref-
erence position and rotation motions in finite time. Liu et al.23

proposed robust control for attitude tracking of spacecraft

based on the backstepping method.
None of the aforementioned approaches can provide finite-

time control to suppress unknown bounds of external distur-

bances for a spacecraft based on rotation matrix. To overcome
these drawbacks, we investigate robust finite-time control to
solve the spacecraft attitude tracking control problem. Com-
pared with the listed literatures, the contributions are as fol-

lows. (1) Finite-time stability of the tracking system based on
rotation matrix is guaranteed by a Lyapunov-based approach.
(2) The continuous controller is robust to external disturbances

with bounds and without chattering. (3) By virtue of the novel
use of adaptive control, the discontinuous controller is robust
to time-varying external disturbances with unknown bounds.

This paper is organized as follows. An attitude dynamic
model is established in the following section. In Section 3,
firstly, a state error is given, and then two controllers are pro-
posed. Furthermore, the corresponding stability proofs are gi-

ven as well. Numerical simulations are presented in Section 4.
The paper is closed with some concluding remarks.

2. Spacecraft attitude dynamics

Quaternion is often used in attitude control to represent a ri-
gid-body attitude. However, as a physical attitude R 2 SO(3)

is represented by a pair of quaternion, unwinding can occur
in the continuous controller designed by quaternion.4 Unwind-
ing has been rigorously analyzed in Refs. 4,5, and from Ref. 4,

we can get that controllers based on rotation matrix can deal
with the problem.
We employ rotation matrix to describe the attitudes of a
spacecraft to avoid ambiguities and singularities. Specifically,
the attitude dynamics of the spacecraft is given by Eq. (1)

and Eq. (2). Here, x 2 R
3·1 is the angular velocity of the space-

craft in the body frame. d 2 R3·1 and u 2 R3·1 are the external
disturbance torque and control torque, respectively. J 2 R3·3

denotes the inertia matrix. R 2 SO(3) (3-dimentional special
orthogonal group) is the rotation matrix that transforms the
body frame into the inertial frame resolved in the body frame.

x· is the skew-symmetric matrix and the cross-product opera-
tion · transforms a vector in R3·1 to a skew-symmetric matrix.

_R ¼ Rx� ð1Þ
J _x ¼ �x�Jxþ uþ d ð2Þ

x� ¼
0 �x3 x2

x3 0 �x1

�x2 x1 0

264
375 ð3Þ

eR is the error rotation matrix defined in Eq. (4). ~x is the
angular velocity error resolved in the body frame defined in
Eq. (5). Rd 2 SO(3) is a given smooth reference attitude and

xd 2 R
3·1 is the reference angular velocity with respect to the

inertial frame resolved in the reference frame.eR ¼ RT
dR ð4Þ

~x ¼ x� eRTxd ð5Þ

In combination with Eqs. (1)–(5), the attitude dynamics of
the spacecraft are given by Eq. (6) and Eq. (7).

_eR ¼ eR ~x� ð6Þ
J _~x ¼ ½ðJxÞ� � ðeRTxdÞ

�
J� JðeRTxdÞ

�
�~x

� ðeRTxdÞ
�
JeRTxd � JeRT _xd þ uþ d ð7Þ
3. Design of the controller

3.1. State error

One of the most difficult problems in the attitude control based
on rotation matrix is to choose a suitable error. We almost
can’t use the error rotation matrix eR to design the controller.
Many kinds of errors are constructed during the last decade,

but they are not convenient to use. A new attitude error
function was constructed and some interesting features of the
attitude error function were demonstrated in Ref. 10. The

attitude error function wðeRÞ and error vector e~R were defined
in Eq. (8) and Eq. (9). Here, �1 6 trðeRÞ 6 3, and the map �
denotes the inverse of the cross-product operation which

transforms a skew-symmetric matrix to a vector. For example,
(a·)� = a and(A�)· = A, where a 2 R3·1 and A is a skew-
symmetric matrix.

wðeRÞ ¼ 2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ trðeRÞq

ð8Þ

e~R ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ trðeRÞq ðeR � eRTÞ

_
ð9Þ

Applying the new attitude error function defined by Eqs. (8)

and (9), we can rewrite Eqs. (6) and (7) as Eqs. (10)–(12)
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_eeR ¼ E~x ð10Þ

J _~x ¼ ðJxÞ� � ðeRTxdÞ
�
J� JðeRTxdÞ

�n o
~x

� ðeRTxdÞ
�
JeRTxd � JeRT _xd þ uþ d ð11Þ

E ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ trðeRÞq ðtrðeRÞI� eRT þ 2e~Re

TeRÞ ð12Þ

Note that Eqs. (10) and (12) are valid only if E is nonsingu-
lar, which indicates that the case trðeRÞ ¼ �1 does not occur.

The attitude error vector e~R and E are well defined in the set
t ¼ fR 2 SOð3ÞjwðeRÞ < 2g. The following lemmas are useful
to design the attitude control of the spacecraft.

Lemma 1. 10In t; wðeRÞ is locally quadratic.

ke~Rk
2
6 wðeRÞ 6 2ke~Rk

2 ð13Þ

Lemma 2.
10Let Rd

T
R= exp(x·), and there exists x 2 R

3·1,

with ixi 6 p. Eigenvalues of ETE are given by 1
4
; 1
4
; 1
8

ð1þ cos kxkÞ. It follows that the matrix 2-norm of E is

kEk ¼ 1

2
. We can also get that ke~Rk

2 ¼ 4 sin2 kxk
4

cos2
kxk
4

and wðeRÞ ¼ 4 sin2 kxk
4

.

Lemma 3.
10In t, ixi„p, so E is an invertible matrix and

ke~Rk < 1.

Lemma 4. 18Suppose a1,a2, � � � ,an and 0< q < 2 are all posi-
tive numbers; then the following inequality holds:

a2
1 þ a2

2 þ � � � þ a2
n

� �q
6 aq

1 þ aq
2 þ � � � þ aq

n

� �2 ð14Þ

Lemma 5. 18Suppose _vðtÞ 6 �avðtÞ � bvðtÞc, "t1 P t0, where
a > 0,b > 0,0< c < 1 and v(t) is a continuous positive defi-
nite function. Then the system converges to the equilibrium point

in finite time.

t1 6 t0 þ
1

að1� cÞ ln
avðt0Þ1�c þ b

b
ð15Þ

Remark 1. From Lemma 1, Lemma 2, and Eq. (8), we can

know that wðeRÞ ¼ 2 is equivalent to eR R t and

kE�1k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8=ð1þ cosð2 arcsinðke~RkÞÞÞ

p
. ixi = p and ke~Rk ¼ 1

are all equivalent to wðeRÞ ¼ 2.
3.2. Controller design

Motivated by Ref. 10, we employ the idea of finite-time control
to design a robust controller for the attitude control of the

spacecraft based on rotation matrix. As Eqs. (10) and (11) con-
stitute a standard cascade system, we apply the backstepping
method to design a control scheme. The variables x1 and x2
are defined in Eqs. (16) and (17).

x1 ¼ e~R ð16Þ
x2 ¼ ~x� ~xv ð17Þ
In combination with Eqs. (11) and (17), we can get
Eq. (18).

_x2¼ J�1 ½ðJxÞ� �ðeRTxdÞ
�
J�JðeRTxdÞ

�
�~x�ðeRTxdÞ

�
JeRTxd

n
�JeRT _xd�J _~xvþuþd

o
ð18Þ

In the light of Eq. (10), the desired finite-time control is
firstly designed as Eq. (19). Here, k1,k2 and g are positive con-

stants. 0 < c < 1, f(x1) = [f(x1,1) f(x1,2) f(x1,3)]
T, sig(x1,i )

c =
sign(x1,i)Œx1,iŒc, r1 = (2 � c)gc�1, r2 = (c � 1)gc�2.

~xv ¼ �k1E�1x1 � k2E
�1fðx1Þ ð19Þ

fðx1;iÞ ¼
r1x1;i þ r2 signðx1;iÞx2

1;i jx1;ij 6 g; i ¼ 1; 2; 3

sigðx1;iÞc Others

�
ð20Þ
Proposition 1. For Eq. (10), if the virtual angular velocity is
designed as Eq. (19) when xd and _xd are all bounded, we can
conclude that x1,i,i = 1,2,3 converges to Œx1,iŒ 6 g in finite time.

Proof 1. We choose the Lyapunov function as V1;i ¼ 1
2
x2
1;i. By

applying Eq. (10) and Eq. (19), the derivative of V1,i,i = 1,2,3
can be written as

_V1;i ¼ x1;i _x1;i ¼ �k1x2
1;i � k2x1;ifðx1;iÞ:

When jx1;ij > g; _V1;i can be written as

_V1;i ¼ �k1x2
1;i � k2x1;isigðx1;iÞc 6 �2k1V1;i � 2ðcþ1Þ=2k2V

ðcþ1Þ=2
1;i :

When jx1;ij 6 g; _V1;i can be written as

_V1;i ¼ �k1x2
1;i � k2r1x

2
1;i � k2r2 signðx1;iÞx2

1;i 6 �2k1V1;i:

By using Lemma 4, x1,i will converge to Œx1,i Œ 6 g in finite

time.

Based on the backstepping method, the control law for the

spacecraft is given by Eqs. (21)–(23). d̂ is the estimation values
of d. Q is a positive definite diagonal matrix. k3,k4 and b are
positive constants.

u¼� ðJxÞ� � ðeRTxdÞ
�
J� JðeRTxdÞ

�n o
~xþðeRTxdÞ

�
JeRTxd

þ JeRT _xdþ J _~xv� d̂�k3Jx2�k4J sigðx2Þc�bJETx1

ð21Þ
_̂
d¼ 1

b
QJ�Tx2 ð22Þ

sig ðx2Þc ¼ ½jx2;1jc signðx2;1Þjx2;2jc signðx2;2Þjx2;3jc signðx2;3Þ�Tð23Þ
h

Theorem 1. Using Eqs. (21)–(23) for the system Eqs. (10) and

(11), when xd and _xd are all bounded and d is constant, we con-
clude that x1,x2, and ~d are all bounded.

V2 ¼
1

2
xT
1x1 þ

1

2b
xT
2x2 þ

1

2
~dTQ�1~d ð24Þ

Proof 2. We choose the Lyapunov function V2 as Eq. (24),
where ~d ¼ d� d̂. Applying Eq. (18) and Eqs. (21)–(23), the

derivative of V2 can be written as:
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_V2 ¼ xT
1 _x1 þ

1

b
xT
2 _x2 � ~dTQ�1

_̂
d

¼ �k1x
T
1x1 � k2x

T
1 fðx1Þ þ

1

b
xT
2 J
�1~d� k3

b
xT
2x2

� k4
b
xT
2 sigðx2Þc � ~dTQ�1

_̂
d

¼ �k1xT
1x1 � k2x

T
1 fðx1Þ �

k3
b
xT
2x2 �

k4
b
xT
2 sigðx2Þc

6 0

It can be seen that _V2 6 0. Thus V2 is bound. Therefore, it

can be concluded that variables x1, x2, and ~d are all bounded.
Combined with Eqs. (16)–(19), it can be seen that ~x is also
bounded. h

Remark 2. In Theorem 1, ~d does not converge to the regions

near zero in finite time. It just guarantees that ~d has the bound.
In Theorem 2, x1, x2, and ~x converge to the regions near zero
in finite time. In order to facilitate the analysis of finite-time

stability in Theorem 2, let n ¼ 1

b
J�1~d and nM is the maximum

element of ini.

Theorem 2. Consider a spacecraft described by Eq. (18), and the
control laws are provided by Eqs. (21)–(23). When xd and _xd are

all bounded and d is constant, we can conclude as follows:

(1) x1,iandx2,i converge to the regions Œx1,i Œ6 D1 and Œx2,i Œ6 D2

in time T. T 6 max{t1,t2,t3,t4}. Here, c2 ¼ n2
M=4c1, in

which c1 is a small positive constant.

t1 6
1

g1ð1� cÞ ln
g1V3ðt0Þ1�c þ g2

g2

;

t2 6
1

l1ð1� cÞ ln
l1V3ðt0Þ1�c þ l2

l2

ð25Þ

t3 6
1

d1ð1� cÞ ln
d1V3ðt0Þ1�c þ d2

d2

;

t4 6
1

u1ð1� cÞ ln
u1V3ðt0Þ1�c þ u2

u2

ð26Þ

D1 ¼ max g;min
c2
k1

� �1=2

;
c2
k2

� �1=1þc
 !( )

ð27Þ

D2 ¼ min
c2b

k3 � c1b

� �1=2

;
bc2
k4

� �1=1þc
( )

ð28Þ

(2) The errors ~x converge to the regions k~xk 6 D3 in finite time.

D3 6

ffiffiffi
3
p

D2 þ k1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8

1þ cos arcsin
ffiffiffi
3
p

D1

� �� �s ffiffiffi
3
p

D1 þ k2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8

1þ cos arcsin
ffiffiffi
3
p

D1

� �� �s
ð
ffiffiffi
3
p

D1Þ
c

ð29Þ

(3) The region of attraction is given by xT
1 ð0Þx1ð0Þ þ

1

b
xT
2 ð0Þ

x2ð0Þ þ ~dTð0ÞQ�1~dð0Þ < 1. Here, G(0) is the initial value

of G.

1 2
Proof 3. We choose the Lyapunov function as V3;i ¼
2
x1;iþ

1

2b
x2
2;i; i ¼ 1; 2; 3. When Œx1,i Œ > g, applying Eq. (18) and

Eqs. (21)–(23), the derivative of V3,i can be written as
_V3;i¼x1;i _x1;iþ
1

b
x2;i _x2;i

¼�k1x2
1;i�k2x1;i sigðx1;iÞc�

k3
b
x2
2;i�

k4
b
x2;i sigðx2;iÞcþx2;ini

6�k1x
2
1;i�k2x1;i sigðx1;iÞc�

k3
b
x2
2;i�

k4
b
x2;i sigðx2;iÞcþjx2;ijnM

6�k1x
2
1;i�k2x1;i sigðx1;iÞc�

k3
b
�c1

� �
x2
2;i� k4

b x2;i sigðx2;iÞcþc2

In order to deal with c2; _V3;i can be rewritten as Eqs. (30)–
(33). We will discuss these situations in Cases 1–4.

_V3;i 6 � k1 �
c2
x2
1;i

 !
x2
1;i � k2x1;i sigðx1;iÞc �

k3
b
� c1

� �
x2
2;i

� k4
b
x2;i sigðx2;iÞc ð30Þ

_V3;i 6 �k1x
2
1;i � k2 �

c2
x1;isigðx1;iÞc

� �
x1;i sigðx1;iÞc

� k3
b
� c1

� �
x2
2;i �

k4
b
x2;i sigðx2;iÞc ð31Þ

_V3;i 6 �k1x
2
1;i � k2x1;i sigðx1;iÞc �

k3
b
� c1 �

c2
x2
2;i

 !
x2
2;i

� k4
b
x2;i sigðx2;iÞc ð32Þ

_V3;i 6 �k1x
2
1;i � k2x1;i sigðx1;iÞc �

k3
b
� c1

� �
x2
2;i

� k4
b
� c2
x2;i sigðx2;iÞc

� �
x2;i sigðx2;iÞc ð33Þ

h

Case 1. Assuming g1 ¼ 2min k1 �
c2
x2
1;i

; k3 � c1b

( )
and

g2 = 2(c+1)/2min{k2,k4b
(c�1)/2}, Eq. (30) can be rewritten as:

_V3;i6� k1� c2
x2
1;i

� �
x2
1;i�

1

b
ðk3�c1bÞx2

2;i�k2ðx2
1;iÞ
ðcþ1Þ=2

�k4b
ðc�1Þ=2 1

b
x2
2;i

� �ðcþ1Þ=2
6�1

2
g1 x2

1;iþ
1

b
x2
2;i

� �
�2�ðcþ1Þ=2g2 x2

1;i

� 	ðcþ1Þ=2
þ 1

b
x2
2;i

� �ðcþ1Þ=2 !

6�1
2
g1 x2

1;iþ
1

b
x2
2;i

� �
�2�ðcþ1Þ=2g2 x2

1;iþ
1

b
x2
2;i

� �ðcþ1Þ=2
6�g1V3;i�g2V

ðcþ1Þ=2
3;i

We can obtain that, if g1 > 0, g2 > 0, x1,i will converge to

the region jx1;ij 6
c2
k1

� �1=2

in finite time and x2,i will converge

to zero in finite time. By using Lemma 5, we can get that x1,i
and x2,i converge to the region in time

t1 6
1

g1ð1� cÞ ln
g1V3ðt0Þ1�c þ g2

g2

.

Case 2. Assuming l1 = 2min{k1,k3 � c1b} and l2 ¼ 2ðcþ1Þ=2

min k2 �
c2

x1;i sigðx1;iÞc
; k4b

ðc�1Þ=2
� 


Eq. (31) can be rewritten

as:
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_V3;i 6�k1x
2
1;i � k2 �

c2
x1;i sigðx1;iÞc

� �
ðx2

1;iÞ
ðcþ1Þ=2 � k3

b
� c1

� �
x2
2;i

�k4
b

x2
2;i

� 	ðcþ1Þ=2
6�1

2
l1 x2

1;i þ
1

b
x2
2;i

� �
� 2�ðcþ1Þ=2l2 x2

1;iþ
1

b
x2
2;i

� �ðcþ1Þ=2
6�l1V3;i � l2V

ðcþ1Þ=2
3;i

We can obtain that, if l1 > 0,l2 > 0, x1,i will converge to

the region jx1;ij 6
c2
k2

� �1=1þc

in finite time and x2,i will converge

to zero in finite time. By using Lemma 5, we can get that x1,i
and x2,i converge to the region in time

t2 6
1

l1ð1� cÞ ln
l1V3ðt0Þ1�c þ l2

l2

.

Case 3. Assuming d1 ¼ 2min k1; k3 � c1b�
c2b

x22;i

( )
and

d2 = 2(c+1)/2min{k2,k4b
(c�1)/2}, Eq. (32) can be rewritten as:

_V3;i 6�k1x2
1;i�k2 x2

1;i

� 	ðcþ1Þ=2
� k3

b � c1�
c2
x2
2;i

 !
x2
2;i�

k4
b
ðx2

2;iÞ
ðcþ1Þ=2

6�1

2
d1 x2

1;iþ
1

b
x2
2;i

� �
� 2�ðcþ1Þ=2d2 x2

1;iþ
1

b
x2
2;i

� �ðcþ1Þ=2
6�d1V3;i� d2V

ðcþ1Þ=2
3;i

We can obtain that, if d1 > 0,d2 > 0, x1,i will converge to
zero in finite time and x2,i will converge to the region

jx2;ij 6
c2b

k3 � c1b

� �1=2

in finite time. By using Lemma 5, we

can get that x1,i and x2,i converge to the region in time

t3 6
1

d1ð1� cÞ ln
d1V3ðt0Þ1�c þ d2

d2

.

Case 4. Assuming u1 = 2min{k1,k3 � c1b} and

u2 ¼ 2ðcþ1Þ=2 min k2; k4b
ðc�1Þ=2 � c2b

ðcþ1Þ=2

x2;i sigðx2;iÞc

( )
Eq. (33) can

be rewritten as:

_V3;i 6 �k1x
2
1;i � k2 x2

1;i

� 	ðcþ1Þ=2
� k3

b
� c1

� �
x2
2;i

� k4
b
� c2
x2;i sigðx2;iÞc

� �
x2
2;i

� 	ðcþ1Þ=2
6 � 1

2
u1 x2

1;i þ
1

b
x2
2;i

� �
� 2�ðcþ1Þ=2u2 x2

1;i þ
1

b
x2
2;i

� �ðcþ1Þ=2
6 �u1V3;i � u2V

ðcþ1Þ=2
3;i

We can obtain that, if u1 > 0,u2 > 0, x1,i will converge to
zero in finite time and x2,i will converge to the region

jx2;ij 6
bc2
k4

� �1=1þc

in finite time. By using Lemma 5, we can

get that x1,i and x2,i converge to the region in time

t4 6
1

u1ð1� cÞ ln
u1V3ðt0Þ1�c þ u2

u2

. In combination with 1–4,

we can get that x1,i and x2,i converge to the regions Œx1,i Œ 6 D1

and Œx2,i Œ 6 D2 in time T 6 max{t1,t2,t3, t4}.
jx1;ij 6 D1 ¼ max g;min
c2
k1

� �1=2

;
c2
k2

� �1=1þc
 !( )

ð34Þ

jx2;ij 6 D2 ¼ min
c2b

k3 � c1b1

� �1=2

;
bc2
k4

� �1=1þc
( )

ð35Þ

Now (1) in the Theorem 2 has been proofed.

The stability analysis of ~x convergence to the area near zero
is as follows:

~x ¼ x2 þ ~xv ð36Þ
~x ¼ x2 � k1E

�1e~R � k2E
�1fðx1Þ ð37Þ

k~xk 6 D3 6

ffiffiffi
3
p

D2 þ k1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8

1þ cos arcsin
ffiffiffi
3
p

D1

� �� �s ffiffiffi
3
p

D1

þ k2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8

1þ cos arcsin
ffiffiffi
3
p

D1

� �� �s ffiffiffi
3
p

D1

� 	c
ð38Þ

From Eqs. (35)–(37), we can find that ~x converges to the
region k~xk 6 D3 in finite time.

Now (2) in the Theorem 2 has been proofed.

In order to keep the attitude error vector eeR in the set t, we
keep ix1(0)i2 < 1. From Theorem 1, we can get Eq. (39).

V2 6 V2ð0Þ

6
1

2
xT
1 ð0Þx1ð0Þ þ

1

2b
xT
2 ð0Þx2ð0Þ

þ 1

2
~dTð0ÞQ�1~dð0Þ < 1

2
ð39Þ

Further, we can get Eq. (40).

xT
1 ð0Þx1ð0Þ þ

1

b
xT
2 ð0Þx2ð0Þ þ ~dTð0ÞQ�1~dð0Þ < 1 ð40Þ

Now (3) in the Theorem 2 has been proofed.

Remark 3. The robust controller can make the spacecraft
following a time-varying reference attitude signal in finite time.
Owing to external disturbances, x1,i, x2,i, and ~x converge to the

region near zero in time T.

Remark 4. From Eqs. (27) and (28), it is concluded that the
controller parameters k1 and k2 determine the accuracy of
x1,i and the controller parameters k3 and k4 determine the final

accuracy of x2,i. The smaller x1,i and x2,i are, the bigger k1, k2,
k3, and k4 are required. From Theorem 3, we know that the
region of attraction is described by Eq. (40). We can select

large b and Q to enlarge the region of attraction.

In Theorem 1 and Theorem 2, it is assumed that d is

constant. In order to deal with a time-varying unknown
bounded disturbance, we design the discontinuous controller
Eqs. (41)–(43). The external disturbance d is assumed to be

bounded and satisfy inequality idi 6 dM. dM is an unknown
positive constant and d̂M is the estimation values of
dM. ~dM ¼ dM � d̂M, v and k are positive constants.

u ¼ �½ðJxÞ� � ðeRTxdÞ
�
J� JðeRTxdÞ

�
�~x

þ ðeRTxdÞ
�
JeRTxd þ JeRT _xd þ J _~xv � k3Jx2

� k4J sigðx2Þc � bJETx1 � kJ signðx2Þ

� d̂M signðJ�Tx2Þ ð41Þ
_̂
dM ¼

1

b
v xT

2 J
�1�� �� ð42Þ
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Theorem 3. Consider a spacecraft described by Eq. (18), and

the control laws are provided by Eqs. 41 and 42. When xd and
_xd are all bounded, the following conclusions can be obtained.

(1) x1,i converges to the region Œx1,i Œ 6 D4 and x2,i converges

to zero in finite time T1 where g1 = 2min{k1,k3} and

g2 = 2(c+1)/2min{k2,k4 b(c�1)/2}.

T1 6
1

g1ð1� cÞ ln
g1V3ðt0Þ1�c þ g2

g2

ð43Þ

D4 ¼ g ð44Þ

(2) The errors ~x converge to the regions k~xk 6 D5 in finite
time.

D5 6 k1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8

1þ cos 2 arcsin
ffiffiffi
3
p

D4

� �� �s ffiffiffi
3
p

D4

þ k2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8

1þ cos 2 arcsin
ffiffiffi
3
p

D4

� �� �s
ð
ffiffiffi
3
p

D4Þ
c

ð45Þ

(3) The region of attraction is given by xT
1 ð0Þx1ð0Þþ

1

b
xT
2 ð0Þx2ð0Þ þ

1

v
~d2
Mð0Þ < 1.

The stability analysis of the controller Eqs. (41) and (42) is
similar to Theorem 1 and Theorem 2.
Fig. 1 Attitude curves of e~R under the first controller.

Fig. 3 Curves of tracking error x2 under the first controller.

Fig. 2 Curves of angular velocity error ~x under the first controller.
4. Simulations

To validate the effectiveness of the proposed finite-time
controllers, numerical simulations are given in this section.

The proposed controllers are validated in the following sce-
nario. The spacecraft is assumed to have available continuous
actuators in three body axes with a maximum torque of 10

NÆm. The spacecraft is required to track a common time-vary-
ing reference signal. For the dynamic model described by Eqs.
(10) and (11), it should be noted that in the system there exist

external disturbances with unknown bounds.
We design the continuous controller in the set t, so it is not

finite-time converging to the region near zero globally. From
Theorem 2, we can know that the region of attraction is

xT
1 ð0Þx1ð0Þ þ

1

b
xT
2 ð0Þx2ð0Þ þ ~dTð0ÞQ�1~dð0Þ < 1. In order to

illuminate that the region of attraction is large-angle, we
choose R(0) equivalent to w = 3.14 rad, u = 2 rad,
h = 1 rad that is represented by Euler angles. J is the inertia

matrix of the rigid spacecraft.

J ¼
22:7 0:2 �0:5
0:2 23:3 0:3

�0:5 0:3 24:5

264
375kg �m2

Rð0Þ ¼
�0:5415 �0:7643 0:3502

0:0007 0:4161 0:9093

�0:8407 0:4926 �0:2248

264
375

xð0Þ ¼ ½0:1 0:1 0:1� rad=s

The expected attitude and velocity for the spacecraft and the
disturbance torques d in the attitude dynamics Eq. (2) are
defined as follows:
Rdð0Þ ¼ diag ð1; 1; 1Þ;
xd ¼ ½0:1 sinðt=40Þ � 0:1 cosðt=50Þ � 0:1 sinðt=60Þ�Trad=s;
d ¼ 2� 10�3½sinð0:1tÞ � cosð0:2tÞ sinð0:2tÞ�TN �m:

We select parameters of the first controller as k1 = 0.01,
k2 = 0.01, k3 = 3, k4 = 3, c = 0.9, b = 10, and
Q= diag (1,1,1). Simulation results of the spacecraft system

under the controller Eq. (21) are shown in Figs. 1–5. In the fig-
ures, i represents the i th element of the corresponding vector.
We can see that the attitude maneuver of the spacecraft can be



Fig. 5 Curves of estimated value d̂ under the first controller.

Fig. 6 Attitude curves of e~R under the second controller.

Fig. 7 Curves of angular velocity error ~x under the second

controller.
Fig. 4 Curves of control torque u under the first controller.

Fig. 8 Curves of tracking error x2 under the second controller.

Fig. 9 Curves of control torque u under the second controller.
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completed in less than 30 s. As the controller is continuous, it
is free of chattering. Figs. 1–3 give the curves of e~R, the angular

velocity error ~x, and x2, respectively. Fig. 4 gives the curves of
the control torque of the system, from which it can be seen that
the maximum value of the control torque is 10 NÆm. Fig. 5

gives the estimated value of the disturbance torque, from
which it can be seen that the value of d can be estimated. From
Figs. 1, 3 and 5, we can also see that the initialization satisfies

the region of attraction. It is clearly seen that the controller
Eq. (21) can obtain better performances when absolute atti-
tude tracking is performed.

To validate the second controller, numerical simulations
are given as follows. We select parameters of the second con-

troller as k1 = 0.01, k2 = 0.01, k3 = 3, k4 = 3, c = 0.9,
b = 10, v = 1, k = 0.001. In order to avoid chattering, we
use saturation to take the place of sign function. Simulation re-

sults of the spacecraft system under the controller Eq. (41) are
shown in Figs. 6–10. We can also see that the attitude maneu-
ver of the spacecraft can be completed in less than 30 s.



Fig. 10 Curves of estimated value d̂M under the second

controller.

382 Y. Guo, S. Song
5. Conclusions

(1) The primary contribution of this work is to develop two
robust finite-time controllers based on rotation matrix
for spacecraft. With the novel use of adaptive control,

the second robust controller does not need the bounds
of external disturbances.

(2) By the backstepping method and Lyapunov theorems,

we get the overall closed-loop system is finite-time sta-
ble. Owing to external disturbances, the attitude error
and the angular velocity error just converge to the region

near zero in finite time.
(3) Simulations have shown that the continuous controller

can make a spacecraft following a time-varying reference

attitude signal without chattering in finite time and the
discontinuous controller can also follow the signal.
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