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Abstract

The divergence free finite element method (DFFEM)is a method to find an approximate solution of the Navier-Stokes
equations in a divergence free space. That is, the continuity equation is satisfied a priori. DFFEM eliminates the pressure
from the calculations and significantly reduces the dimension of the system to be solved at each time step. For the
standard 9-node velocity and 4-node pressure DFFEM, a basis for the divergence-free subspace is constructed such that
each basis function has nonzero support on at most 4 contiguous elements. Given this basis, discretely divergence free
macro elements can be constructed and used in the implementation of the DFFEM.
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1. Introduction

In this paper, we study one aspect of the divergence free finite element method (DFFEM) (the
construction of an appropriate basis) for the efficient numerical solution of the two dimensional
incompressible Navier-Stokes problem:

N(u)z%—-%du%—(uV)u: — Vp+flu), xeQ (1)
Vou=0, xe (2)
u=u, xecoQ (3)

where u = (u,, u,) is the velocity vector, p is the pressure and f(u) is a source term. We assume that
the domain Q is a bounded open connected set with a piecewise smooth boundary dQ. The
Reynolds number is defined to be Re = uodp/u where p is the fluid viscosity, p is the fluid density,
d is a characteristic length and u, is a characteristic velocity. We assume that the velocity #,, has
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been specified on the boundary 02, though more general boundary conditions can be handled in
similar ways.

In the finite element analysis, two approaches are used to solve Egs. (1)«2). One is the standard
finite element approach which treats the momentum and continuity equations equally and a large
primitive system with both velocity and pressure variables is solved. Another, more efficient
approach is the DFFEM approach. The DFFEM treats the continuity equation as a constraint,
thus the velocity is approximated not from the standard finite element vector space but from
a discretely divergence free finite element subspace. In this approach, the pressures are eliminated
from the calculations and the dimension of the system to be solved at each time step is significantly
reduced. However, the main obstacle to implementing the divergence free finite element method
(DFFEM) is the construction of a basis for the appropriate discretely divergence free subspace, or
equivalently, a basis for the associated discrete divergence operator. In Section 3, the previous
efforts to obtain such bases are reviewed. We show in Section 4 that, for 9-node isoparametric
velocity and 4-node pressure elements, a complete set of basis functions can be chosen with the
support of at most 4 contiguous element. Macro elements can then be constructed which are
discretely divergence free, and the DFFEM can be applied using these macro elements.

2. Two finite element approaches

The finite element method applied to the incompressible Navier-Stokes equations as given in
[19,5] is as follows. Let S" and A" be finite-dimensional subspaces of HA(Q) and L,(Q)/%,
respectively,

S" = span {®y, ..., &.}, (4)
A" =span {4y, ..., An}. ()

Then the standard finite element formulation of (1)—«3) is the following.

Approach 1. Find (u,p) € S* x A" such that

(Nu,v) — (dive,p) = (f,v), forallveS" (6)
and

(diva, A) =0 forall Ae A" (7)
where (p, q) = [0 pqdQ.

In order to eliminate the pressure from the computation and hence reduce the number of
unknowns, we define the discrete divergence free subspace:
D" = {ue S*|(divu, 1) = 0 for all Ae A"}. (8)

Under this definition, Approach 1 is equivalent to the following which has been studied, for
example, in [7,8,10,11].
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Approach 2. Find u € D" such that

(Nu,v) = (f, v) for all ve D", 9)
and then find p € A" such that

(p, divv) = (Nu,v) — (f,v) forallvel’, (10)
where I" is a subspace of S* and satisfies

St=D"®I"

The method described in Approach 2 is the divergence free finite element method (DFFEM).
Efficient use of this method depends on whether the divergence free subspace D* can be derived at
a reasonable cost. If L = dim(5*) and N = dim(A"), then the system resulting from (6)~(7) of
Approach 1 is of dimension L + N, while the system resulting from (9) of Approach 2 is of
dimension L — N.

As 4 in (7) varies over a basis for A", a system of N equations in L unknowns is generated. The
coefficient matrix of this system is called the discrete divergence operator. The problem of finding
a basis of vector functions for D" is equivalent to that of finding a null basis for this N x L matrix.

3. The literature

There have been many constructions of explicit bases of the divergence-free subspace for various
finite element and finite difference schemes. Griffiths [7-9] obtained an element level divergence
free basis for several finite element schemes on triangular and quadrilateral elements. Approximate
values of the stream function at corner nodes are used to eliminate the unknown velocity
components at midside nodes so that a typical divergence free function on each element is derived.
In [7,8] three types of finite element schemes were investigated on triangular elements which were
given in [2]. A divergence free basis was given for a nonconforming velocity field where the
components of velocity are represented by piecewise linear functions defined in terms of their
values at the midside nodes of the triangles. A divergence free basis also was given for a velocity
field where the components of the velocity are piecewise quadratic functions defined in terms of
values at the vertices and midside nodes of each triangle. The (discontinuous) piecewise constant
pressure space was used for both of the above velocity spaces. Another divergence free subspace
derived in [7] involved a velocity field which comes from adding a cubic term to the quadratic
representation. The pressure space used was a piecewise linear function with a single element
support. Griffiths [9] derived a basis for the divergence free subspace of the 9-node biquadratic
element velocity field on quadrilateral elements. The following corresponding pressure spaces were
investigated: constant, linear and bilinear elements. The basis functions for these pressure spaces
have support on a single element. This allows the incompressible constraint to be analyzed one
element at time. But unlike our approach here, the basis functions for the pressure space are
discontinuous at element boundaries.
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Gustafson and Hartman [10, 11] combine group theory and principles of fluid mechanics to
obtain a basis for the divergence free subspace associated with the choice of quadratic velocity and
constant pressure triangular elements in two dimensions. Similar results have been obtained in
three dimensions for the scheme referred to as APX 3 in [19]. The later work in [11] can be viewed
as augmenting and extending their previous work.

Stephens et al. [18] and Goodrich and Soh [6] applied the Galerkin finite difference method
(GFDM) to Egs. (1)3). This approach is similar to the Galerkin finite element method. For the
GFDM, the discrete finite difference equations approximating (1)~3) are considered using various
subspaces of mesh vector functions and mesh scalar functions (i.e., vector and scalar functions
defined only at the nodes of specified finite difference meshes). The subspaces of discrete divergence-
free mesh vectors are constructed for several finite difference schemes. It is required that the discrete
divergence and discrete gradient operators are formally adjoint. Stephens et al. [18] gave a more
general form of GFDM which did not require the adjointness of the discrete divergence and
gradient operators. In [4] a subspace of S* is constructed in which a function satisfies (7) for
a subspace of the pressure space. This subspace is the orthogonal complement of the piecewise
constant pressure space. This reduces the 5-node velocity and linear discontinuous pressure
element to a 4-node velocity and discontinuous constant pressure element.

All of the above constructions of divergence free basis velocity vectors require that the approx-
imations to pressure be discontinuous. Ye [20] and Hall and Ye [15] constructed a divergence free
basis for 8-node velocity and 4-node pressure elements where the finite element approximation to
pressure is continuous. It was proved that this is the optimal basis in the sense of minimal nonzero
support. There must be basis functions with nonzero support of 9 elements. In contrast, the present
paper establishes that if " is chosen as 9-node velocity elements then there is a basis for D" with
maximal nonzero support of 4 elements. Further, it was shown in [15,20] that DFFEM is
equivalent to applying the dual variable method (DVM) to the standard finite element system (6)
and (7). The DVM [1, 3, 12] applied in the context of finite element methods (see [ 13]) also involves
construction of a basis for the discrete divergence operator in (7) and uses this to eliminate the
pressure from (6) through a matrix transformation.

9 NODE VELOCITY 4 NODE PRESSURE
(a) (b)

Fig. 1. 9-node velocity and 4-node pressure element.
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4. Divergence free basis: 9-node velocity and 4-node pressure

In this section we will determine the dimension of and obtain a basis for the null space of the
discrete divergence operator or equivalently the divergence free space D” for the popular choice of
9-node isoparametric velocity elements to generate S* and 4-node isoparametric pressures to
generate A*. We first consider only uniform meshes on rectangular domains, however extensions to
curved domains follow in a fashion similar to [15].

The typical element is shown in Fig. 1. The two velocity components are associated with each of
the 9 nodes shown in Fig. 1(a) and the pressures are associated with the 4 corner nodes shown in
Fig. 1(b). The nodes shown for velocity and pressure are labeled independently. The 9-node element
construction on a master element ([ — 1,1] x [ — 1, 1]) involves a biquadratic polynomial ¥; asso-
ciated with node i which is one at node i and is zero at the other nodes, and they are defined as

Yr=3x(x+ Dy(y+ 1, Yo=3x(x—Dyy+ 1),

Yy =3x(x = Dy(y =1,  ¢Ya=gx(x+1Dy(y -1,

Ys= —3x—Dx+Dyy+1), Y= —2x(x—Dy—-Dr+1), (11)
Yr= —3x—Dx+Dyy—1, yYs=—3x(x+Dy—-DE+1),
Yo=x—Dx+Dy—-DHy+1).

At each corner node j, j = 1,2, 3,4 shown in Fig. 1(b), there is a bilinear polynomial f3; defined as

fr=ix+ Dy +1), Br=—ix—-DEr+1),
(12)

Ba=ix =Dy -1, fa= —3x+Dy-1.

We assume, for simplicity, that the velocities on the boundary of the domain are specified and
hence we need not consider velocity nodes on the boundary. For the mesh shown in Fig. 2(a),
a piecewise biquadratic basis function ¢; is associated with an interior node i and can be
constructed by using the local functions y; defined in (11). Associated with each corner node of an
element (including boundary nodes) shown in Fig. 2(b), a piecewise bilinear tent function 4; can be
derived by using the local functions f; in (12). The number of ¢; is the same as the number of
interior nodes which is | = (2m — 1) (2n — 1). The number of 4; is same as the number of corner
nodes which is (m + 1)(n + 1).
We choose the following basis for the finite element velocity space S":

@, =(¢1, O)T, ¢, = (O,¢1)T, ey @ = (¢, O)T, o, =0, d’l)T (13)
and the following basis for the finite element pressure space A*:
115/129 [EX 5A'N’

where L = 2/ is the dimension of $* and N = (m + 1)(n + 1) is the dimension of A",
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Fig. 2. m x n mesh.
Define the discrete divergence free subspace D" of S*:
D'={veS" (divy,2)=0, i=1,.. N} (14)

We will find the dimension of, and a basis for, D".

The simple fact is that any element in the vector space S* (in particular, those in D”) can be
expressed as a linear combination of the basis functions &;,i =1, ..., L. Therefore, the basis
functions of the discrete divergence free subspace D" can be found if the appropriate coefficients of
this combination can be found.

Suppose D* = span{¥,,¥,, ... ,¥,}. We have

L
lIli: ZC,-jdf'j, l=1,,[
j=1

j=

Since ¥ is in D", ¢;; must satisfy the following equation (see (8) and (14)):

L
(diV‘I’,-,/lk)= Z (diV(Pj,A.k)Cij=0, i= 1, R k=1,2, ,N (15)
i=1
This implies that (c;y, ¢, ... ,¢;) must be the solution of the equation
AX =0,
where
A=(aj)=(dived;, 4)), i=1,...,N, j=1,... L (16)

To derive the dimension of, and basis for, the discrete divergence free space D* for any m x n mesh,
the 2 x 2 mesh is considered first. A 2 x 2 mesh and the order of the nodes for velocity and pressure
are shown in Figs. 3(a) and (b), respectively. For the 2 x 2 mesh, there are 9 interior nodes and
S" = span{®,,®,, ... , @5}, where @,,®,, ..., d,4 are defined in (13). There are 9 corner nodes
and A" = span{/,, ..., 4o}
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Velocity nodes Pressure nodes
(a) (b)

Fig. 3. 2 x2 mesh.

The 9 x 18 matrix 4 in (16) for the 2 x 2 mesh is

4 4 1 0 0 O O t O o0 o O 0 0 O 0 o0 O
-4 4 0 4 4 4 ¢ 1 0 1 O 1 O O O O 0 O
o 0-1 0-4 4 0 0 O O 0 1 O O O O O O
4 -4 + 0 0 O 4 0 1 0 O O 4 4 1t 0 0 O
%ﬁ -4 -4 0 -4 4 -4-4 0 0 0 4 0-4 4 0 4 4 4.
6o 0-1 0-4-4 0 0-1 0-4 0 0 O0-1 0-4 4
6o o o0 o0 o O O0O0-1 0 O O O 4-—-4 1 0 0 O
o o 0 o0 o0 O O0-1 O0-1t O0-1-4-4 0-4 4 -4
o o o o0 o0 o0 O O O O O0-1 0 O0-1 0—4 -4
(17)

Based on Theorem 4 in [15],
dim(D") < (number of the velocity variables) — (number of the pressure variables) + 1, (18)

and in fact for all cases considered the above inequality was an equality. Hence, the dimension of
D" <18 — 9 + 1 = 10 where 18 is the number of velocity variables and 9 is the number of pressure
variables for the 2 x 2 mesh. Using the turnback algorithm [16, 17] the matrix 4 in (17) is shown to
have rank 8 and a basis for the null space is constructed. Manipulation of this basis leads to the
following more symmetrical basis ¥,, ¥, ..., ¥, for the space D":

P, =@y —4D,s + By5, Wy =@, — 40, + s,

Po=b, — 4P + D1y, Wo=0g— 4P, + g5,

o= — P, + D, + 8Py — 8,0 — Py, + Dy,

Po = b5 + D — 8Dy — 8P ,0 + Dy + Dy,

Yo =20,, —2B,o — D5 + Drg, Wg=B — 10, + 20, — 20,
Wo= — 2B, + Ps + B — 2By;, Wio=20; — D3 — Dy4 + 2,6

(19)
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Fig. 4. Support nodes for the divergence free functions of a 2 x 2 mesh.

It is easy to verify that ¥, ¥,, ..., ¥, belong to the divergence free space D” for a 2 x 2 mesh by
checking that the coefficient vector of ¥; belongs to the null space of the matrix 4 in (17).

The linear independence of ¥, ¥,, ..., ¥, can be verified by computing the rank of the matrix
with the linear combination coefficients of ¥; as its columns. In fact, such a matrix has linearly
independent columns, therefore ¥, ¥,, ..., ¥, are linearly independent. Combining this with
(18), we have that ¥, ¥,, ..., ¥, form a basis of D* for a 2 x 2 mesh.

The basis vector function ¥; has nonzero linear combination coefficients only for certain @;’s. In
Fig. 4, for each ¥;, the nodes are marked if the coefficients are nonzero.

Since any mxn mesh contains many 2x2 submeshes, the divergence free functions
Y., ¥, ...,% in (19) for a 2x2 mesh or macro element can be used as blocks to build
a divergence free basis of D” for an m x n mesh. We now discuss such a construction. For an m x n
mesh, there are (m — 1)(n — 1) such macro elements. If 10 functions in (19) are generated for each
macro element, then a total of 10(m — 1)(n — 1) functions can be derived. However, by the
inequality (18), the dimension of D" for an m x n mesh satisfies

dim(D" <2@m—1)Q2n—1) —(m+ Y(n+ 1) + 1 = Tmn — 5m — 5n + 2, (20)

where (2m — 1)(2n — 1) is the number of interior nodes for velocity and (m + 1)(n + 1) is the
number of the nodes for pressure. Now 10(m — 1)(n — 1) = Tmn — Sm — 5n + 2 for m,n = 2.
Hence, the 10(m — 1)(n — 1) functions in D" generated above will be linearly dependent. In fact,
among these 10(m — 1)(n — 1) functions, many of them coincide with each other. For example, if
the 2x 3 mesh is considered in Fig. 5, 20 discrete divergence free functions can be derived
corresponding to two 2 x 2 macro elements. The ¥, in (19) for the 2 x 2 submesh shaded in Fig. 5(a)
is the same as ¥, in (19) for the 2 x 2 submesh shaded in Fig. 5(b). Similarly, if a 3 x 2 mesh is
considered, ¥, in one 2 x 2 submesh will be ¥5 in another 2 x 2 submesh. Based on these simple
cases, we have Observation 1.

Observation 1. For an m x n mesh, if 10 functions defined in (19) are derived associated with each
2 x 2 submesh, a total of 10(m — 1)(n — 1) such functions can be obtained and (m — 1)(n — 2) +
(m —2)(n—1) =2mn — 3m — 3n + 4 functions of types 1-4 are duplicates.
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Fig. 5. 2x 3 mesh.

Fig. 6. 3 x 3 mesh.

Therefore, the number of the possible independent functions among the 10(m — 1)(n — 1)
functions is 10(m — 1)(n — 1) — (2mn — 3m — 3n + 4) = 8mn — Tm — 7n + 6. By the inequality
(20), these 8mn — 7m — 7n + 6 functions are still linearly dependent for m, n > 2. To obtain a basis
for D*, more functions need to be eliminated.

Consider a 3 x 3 mesh: there are four 2 x 2 macro elements and 10 divergence free functions
Y,¥,, ..., ¥ 0 in (19) can be constructed associated with each of them. Let the five nodes be
labeled as in Fig. 6 and ¢, ¢5, ¢35, ¢4 and ¢s be constructed as piecewise biquadratic basis
functions corresponding to these nodes. Then vector functions @, @5, ... , @), can be defined as in
(13) that is @} = (¢}, 0)T, @, = (0, ¢}), etc. The divergence free vector function ¥, in (19) for the
2 x 2 macro element shaded in Fig. 7(a) can be written as the linear combination of @1, ..., &, as
follows:

V,=20) - 20, — 5 + ;.

Similarly, ¥g, ¥y and ¥,, in (19) for the 2 x 2 macro elements shaded in Figs. 7(b), (c) and (d),
respectively, can be written as

Po = &y — O + 204 — 20,
Wy = — 20, + s + D — 28,
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(a) (b) (¢) (d)

Fig. 7. Four 2 x 2 macro elements in a 3 x 3 mesh.

7977,

7477,

2477,
S0ue54557.
295529557
922724277
994775427
759254577
759707507
GeETI0807

s

R e
LTI ST
R s i

400255777

=17
A
%
2
%%

7
72,
9645750004 775470577

R T
LA, iy s
LI e s
Y ey ey
S Ly
QPR iy, yonsa

47004007,
5552 aias

>
22

2.

LI, s
L
Geserecay.

LR
795024227,

7.

Fig. 8. Typical interior element in an m x n mesh.

Hence for a 3 x 3 mesh, the divergence free vector functions ¥, ¥, ¥o and ¥, in (19) associated
with the four 2 x 2 macro elements are linearly dependent since

lII7"{'q’S"—lPQ—lIIlozo.

Based on this fact, Observation 2 is stated as follows.

Observation 2. For each interior element (ABCD in Fig. 8) in an m x n mesh, one of the four vector
functions of the types ¥, ¥, ¥s and ¥, has to be eliminated to guarantee their linear indepen-
dence. For an m x n mesh, the total number of interior elements is (m — 2)(rn — 2). This implies that
another (m — 2)(n — 2) functions of types 7, 8,9 or 10 among the 10(m — 1) (n — 1) functions can be
eliminated. Now we are ready to construct a discrete divergence free basis of D" for an m x n mesh.

Theorem 1. For an m x n uniform mesh on a rectangular domain shown in Fig. 2, Tmn — 5m — 5n + 2
vector functions in D" can be formed in the following way.

Step 1. For each 2 x 2 macro element, construct 10 functions ¥y, ... , ¥, defined as in (19). Since
there are a total of (m — 1)(n — 1) different 2x2 submeshes in an mxn mesh, a total of
10(m — 1)(n — 1) functions can be derived in this way.
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Fig. 9. 2 x 2 macro element.

Step 2. By Observations 1 and 2, a total of (m —2)(n — 1)+ (m —D)(n—-2)+(m—2)(n —2)
functions can be eliminated from the 10(m — 1)(n — 1) functions obtained in Step 1. Therefore, the
number of the functions remaining in Tmn — 5Sm — 5n + 2.

These Tmn — 5m — 5n + 2 functions form a basis for the discrete divergence free space D" such that
each basis function has a maximum support of four elements arranged in a 2 x 2 submesh.

Proof. This proof includes three parts:

(1) prove that these functions are in D",

(2) prove that they are linearly independent, and

(3) prove that the dimension of S* is 7mn — 5m — 5n + 2.
It is obvious that all the functions generated by Steps 1 and 2 are defined on a 2 x 2 macro element
and vanish outside that element. Let ¥ be one of 7mn — 5m — 5n + 2 functions and assume it has
support on the 2 x 2 mesh as shown in Fig. 9. On this 2 x 2 submesh, it has been verified

(div?,A)=0, i=12..,9

where 44, 4,, ... , g are bilinear polynomial basis functions for pressure associated with nodes 1 to
9.Forthe A;e A" i # 1, ...,9, ¥ and A; have no common nonzero support, hence it is also true that
(div?, 1) =0

for any other 4;in A”. Thus ¥ satisfies condition (15), and it is in D*. This finishes the proof of part (1).

Now we prove that the discrete divergence free functions constructed in this theorem are also
linearly independent by using mathematical induction on the number of elements in the mesh.

(1) By construction ¥,,¥,, ..., ¥, defined in (19) are linearly independent for a 2 x 2 mesh.

(2) Assume that the divergence free functions constructed in Steps 1 and 2 are linearly indepen-
dent for an m x n mesh and prove that this is also true for an m x (n + 1) mesh.

The m x (n + 1) mesh is constructed by adding one row of elements at the top of the m x n mesh.
At the same time, 2(2m — 1) interior nodes are added to the mesh marked in Fig. 10 and another
(m — 1) 2 x 2 macro elements are added.

For an m x (n + 1) mesh, 7m(n + 1) — 5m — 5(n + 1) + 2 discrete divergence free functions can
be obtained by the following two stages.
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Stage 1. Tmn — 5m — 5n + 2 basis functions in D” for the m x n submesh are generated by the
procedure described in the theorem. Obviously, they also belong to D" for the m x (n + 1) mesh and
are linearly independent.

Stage 2. Corresponding to the m — 1 2 x 2 macro elements shaded in Fig. 10, 10(m — 1) discrete
divergence free functions can be generated. However, many of them will be duplicates. The ¥; of
types 1-4 in Fig. 4 with supporting nodes as marked in Fig. 11 are repeated. The total number of
them is 2m — 3. Also from an m x n mesh to the m x (n — 1) mesh, another m — 2 interior elements
are added. By Observation 2, m — 2 functions should be eliminated from the 10(m — 1) functions
generated in the first stage. Therefore, a total of 10(m — 1) — 2m — 3) — (m — 2) discrete divergence
free functions can be constructed.

Since D" is a subspace of S these 7m(n + 1) — 5m — 5(n + 1) + 2 functions can be expressed as
a linear combination of the basis functions for S*. These linear combination coefficients can be used
as columns to form a matrix, say C™*®* 1 Cm>®*1 5 3 22m — 1)(2n + 1) x Tm(n + 1) — 5m —
5(n + 1) + 2 matrix where 2(2m — 1)(2n + 1) is the dimension of S* for an m x (n + 1) mesh. To
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prove that these 7m(n + 1) — Sm — 5(n + 1) + 2 divergence free functions for the m x (n + 1) are
linearly independent is equivalent to proving that the matrix C™*®* 1 has linearly independent
columns. This will follow from the linear independence of the basis functions @; in S".

Like the divergence free basis functions, the columns of the matrix C™*** ! can also be divided
into two parts as shown in Fig. 12. The first part contains the columns corresponding to the
discrete divergence free functions defined on the m x n submesh generated in Stage 1. Since all of
them have support on the m x n submesh, the linear combination coefficients of these functions
corresponding to the basis functions of $* defined at the 2(2m — 1) nodes shown in Fig. 10 are zero.
This is why the matrix C™*®* 1 has a zero block matrix in the (2, 1) position. Since the divergence
free functions generated in Stage 1 form a basis of D" associated with the m x n mesh (by the
assumption of mathematical induction), they are linearly independent; consequently the submatrix
C™*" has linearly independent columns. The second block column of the matrix C™*"* ! contains
the columns corresponding to the discrete divergence free functions constructed in Stage 2.

If the submatrix C! has linearly independent columns, the matrix C™*®*1 has linearly indepen-
dent columns and the proof is complete.

Now we prove that C! has linearly independent columns. We first remark that we can consider
an m x n mesh as an extension of an m x (n — 1) mesh. The 7mn — 5m — 5n + 2 discrete divergence
free functions can be constructed also by 2 stages similar to the case for an m x (n + 1) mesh. The
corresponding matrix C™" has a form in Fig. 13, where C™*""V has Tm(n—1)—
5m — 5(n — 1) + 2 columns corresponding to the basis functions in D" for the m x (n — 1) mesh. The
matrices C! in C™*" and C' in C™*®* D are identical. But the matrix C! in Fig. 13 must have
linearly independent columns as we now prove by contradiction. Assume this is not the case. Then,
there exists a vector X # 0 such that C'X = 0 and

Cn—l Cn-IX
() ()

mxn n

mx (n+1)_

Cc

0 c'

Fig. 12. The matrix C™>* 1),

m x {n-1) .
c c’

mxn

0 c'

Fig. 13. The matrix C™*".
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Fig. 14. 4 x 4 mesh.
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Fig. 15. 24 discrete divergence free functions of types 1-4.

Let A be the matrix in (16) for the m x n mesh. By the definition of the matrix 4 and Eq. (15), we
have AC™*" = 0. By the definition of the vector Y, AY = 0. This implies that a function, say ¥ with
the components of the vector Y as linear combination coefficients of the basis functions of $" is in
D" for the m x n mesh. Now Y has its last 42m — 1) components zero. These correspond to the basis
functions of S$* associated with nodes marked in Fig. 10. Thus, ¥ is defined on the mx (n — 1)
submesh and belongs to D" for the m x (n — 1) mesh. Hence, vector C" ™! X can be expressed as the
linear combination of the columns in C™**~ 1 because the columns in C™* "~ ! are corresponding
to the basis functions of D" for m x (n — 1) mesh. But this implies that the columns in the matrix
C™ " are linearly dependent and contradicts the assumption in mathematical induction that the
discrete divergence free functions generated by this theorem for an mxn mesh are linearly
independent. Therefore, the matrix C! has linearly independent columns. Hence, we have proven
that the matrix C™*"* 1) has linearly independent columns, which is equivalent to the fact that
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Tm(n + 1) — 5m — 5(n + 1) + 2 discrete divergence free functions generated in the theorem for an
m x (n + 1) mesh are linearly independent.

The exact same method can be used to prove that if the discrete divergence free functions derived
in this theorem are linearly independent for an m x n mesh, then they will be linearly independent
for an (m + 1) x n mesh. Since the two proofs are very similar, the second proof is omitted here.

Hence, by mathematical inducation the 7mn — 5m — 5n + 2 discrete divergence free functions
derived in this theorem are linearly independent. This finishes the second part of the proof.

By Eq. (18), we have

dim(D") <22m — )2n = 1) —(m + V)(n + 1) + 1 = Tmn — 5m — 5n + 2, 1)

where 2(2m — 1)(2n — 1) is the number of the velocity variables and (m + 1)(n + 1) is the number of
the pressure variables. Combining Eq. (21) and the linear independence of the 7mn — 5Sm — 5n + 2
discrete divergence functions, we have that the dimension of D" is 7Tmn — 5m — 5n + 2. [J

The result of Theorem 1 can be extended to curved domain using appropriate domain trans-
formations as described in [15, 20].

5. An example

To illustrate Theorem 1, we consider the 4 x 4 mesh in Fig. 14. There are 49 interior nodes for
velocity marked in Fig. 14(a) and 25 corner nodes for pressure marked in Fig. 14(b). Hence,
the dimensions of S" and A" are 98 and 25, respectively. By Theorem 1, a total of
Tx4x4 —5%x4—5%x4+ 2 =74 discrete divergence free function can be constructed. Twelve
functions of types 1 and 2 are illustrated in Fig. 15(a) and 12 functions of types 3 and 4 are
illustrated in Fig. 15(b). Nine functions of types 5 and 6 are shown in Figs. 16(a) and (b),
respectively. Finally, 32 functions of types 7-10 are shown in Fig. 17. Note that in each of these
figures, the nodes common to the support of two or more basis functions are physically offset so as
to clarify the support of these basis functions.

{ ] o [ 2 [ ¢
. "o
;'. “.
\‘\.
(a) 9 functions type 5 (b) 9 functions type 6

Fig. 16. 18 discrete divergence free functions of types S and 6.
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Fig. 17. 32 discrete divergence free functions of types 7-10.

6. Conclusions

The divergence free finite element method (DFFEM) for the numerical solution of the incom-
pressible Navier—Stokes equations requires that the velocity be approximated not in the standard
finite element space but in the discretely divergence free finite element subspace. There are two
inherent advantages to this method. One is that the number of variables is reduced and the other is
that the discrete divergence free condition is satisfied a priori, not just approximated as with many
other methods.

However the main difficulty to implementing the DFFEM is the lack of an explicit basis for the
discretely divergence free subspace. In this paper, a divergence free basis is constructed for the
9-node velocity and 4-node pressure elements. This problem is equivalent to finding a basis for the
null space of a discrete divergence operator. The construction of a basis makes use of the turnback
algorithm for finding the null space of associated matrices for a 2 x 2 macro element. This basis is
then modified in such way that translates of the macro element yields a basis for a general m x n
mesh. The basis functions have maximal support of 4 elements arranged in a 2 x 2 submesh. This
construction also verifies that a basis with smaller maximal support does not exist.
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