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Abstract 

The divergence free finite element method (DFFEM) is a method to find an approximate solution of the Navier Stokes 
equations in a divergence free space. That is, the continuity equation is satisfied a priori. DFFEM eliminates the pressure 
from the calculations and significantly reduces the dimension of the system to be solved at each time step. For the 
standard 9-node velocity and 4-node pressure DFFEM,  a basis for the divergence-free subspace is constructed such that 
each basis function has nonzero support on at most 4 contiguous elements. Given this basis, discretely divergence free 
macro elements can be constructed and used in the implementation of the DFFEM.  
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1. Introduction 

In this paper, we study one aspect of the divergence free finite element method (DFFEM) (the 
construction of an appropriate basis) for the efficient numerical solution of the two dimensional 
incompressible Navier-Stokes problem: 

t3u 1 
N(u)  = Ot R Au  + (u V)u  = - Vp + f (u) ,  

V'u =0 ,  x~ f2  

u = Ub, X ~ C3(2 

w h e r e  u = (u l ,  u2) is 

t h e  d o m a i n  f2 is a 

x ~ t 2  (1) 

(2) 

(3) 

the velocity vector, p is the pressure andf(u) is a source term. We assume that 
bounded open connected set with a piecewise smooth boundary 0f2. The 

Reynolds number is defined to be R e  = uodp/It  where/~ is the fluid viscosity, p is the fluid density, 
d is a characteristic length and Uo is a characteristic velocity. We assume that the velocity Ub has 
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been specified on the boundary 0f2, though more general boundary conditions can be handled in 
similar ways. 

In the finite element analysis, two approaches are used to solve Eqs. (1)-(2). One is the standard 
finite element approach which treats the momentum and continuity equations equally and a large 
primitive system with both velocity and pressure variables is solved. Another, more efficient 
approach is the DFFEM approach. The DFFEM treats the continuity equation as a constraint, 
thus the velocity is approximated not from the standard finite element vector space but from 
a discretely divergence free finite element subspace. In this approach, the pressures are eliminated 
from the calculations and the dimension of the system to be solved at each time step is significantly 
reduced. However, the main obstacle to implementing the divergence free finite element method 
(DFFEM) is the construction of a basis for the appropriate discretely divergence free subspace, or 
equivalently, a basis for the associated discrete divergence operator. In Section 3, the previous 
efforts to obtain such bases are reviewed. We show in Section 4 that, for 9-node isoparametric 
velocity and 4-node pressure elements, a complete set of basis functions can be chosen with the 
support of at most 4 contiguous element. Macro elements can then be constructed which are 
discretely divergence free, and the DFFEM can be applied using these macro elements. 

2. Two finite element approaches 

The finite element method applied to the incompressible Navier-Stokes equations as given in 
1-19,5] is as follows. Let S h and A n be finite-dimensional subspaces of Ho~((2) and Lz(Q)/~, 
respectively, 

S n = span {q~l,..., ~L}, (4) 

A n = span {2~ ... .  ,2u}. (5) 

Then the standard finite element formulation of (1)-(3) is the following. 

Approach 1. Find  (u ,p)  ~ S h × A n such that  

( N u ,  v) - (div v, p) = ( f  v), f o r  all v ~ S n (6) 

and 

(div u, 2) = 0 f o r  all 2 ~ A h (7) 

where  (p, q) = S ~ p q d f 2 .  

In order to eliminate the pressure from the computation and hence reduce the number of 
unknowns, we define the discrete divergence free subspace: 

D h = {u ~ S h l ( d i v u ,  2) = 0 for all 2 e Ah}. (8) 

Under this definition, Approach 1 is equivalent to the following which has been studied, for 
example, in [7, 8, 10, 11]. 
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Approach 2. Find u ~ D h such that 

(Nu,  v) = (f, v) for  all v ~ D h, 

and then.lind p ~ A h such that 

(p, div v) = (Nu,  v) - ( f  v) for  all v ~ P,  

where I h is a subspace o f  S h and satisfies 

S h = D h @ I h. 

119 

(9) 

(lO) 

The method described in Approach 2 is the diveryence free f inite element method (DFFEM). 
Efficient use of this method depends on whether the divergence free subspace D h can be derived at 
a reasonable cost. If L = dim(S*) and N = dim(Ah), then the system resulting from (6)-(7) of 
Approach 1 is of dimension L + N, while the system resulting from (9) of Approach 2 is of 
dimension L - N. 

As 2 in (7) varies over a basis for A h, a system of N equations in L unknowns is generated. The 
coefficient matrix of this system is called the discrete divergence operator. The problem of finding 
a basis of vector functions for D n is equivalent to that of finding a null basis for this N × L matrix. 

3. The literature 

There have been many constructions of explicit bases of the divergence-free subspace for various 
finite element and finite difference schemes. Griffiths [7-9] obtained an element level divergence 
free basis for several finite element schemes on triangular and quadrilateral elements. Approximate 
values of the stream function at corner nodes are used to eliminate the unknown velocity 
components  at midside nodes so that a typical divergence free function on each element is derived. 
In I-7, 8] three types of finite element schemes were investigated on triangular elements which were 
given in [2]. A divergence free basis was given for a nonconforming velocity field where the 
components  of velocity are represented by piecewise linear functions defined in terms of their 
values at the midside nodes of the triangles. A divergence free basis also was given for a velocity 
field where the components  of the velocity are piecewise quadratic functions defined in terms of 
values at the vertices and midside nodes of each triangle. The (discontinuous) piecewise constant 
pressure space was used for both of the above velocity spaces. Another divergence free subspace 
derived in [7] involved a velocity field which comes from adding a cubic term to the quadratic 
representation. The pressure space used was a piecewise linear function with a single element 
support. Griffiths [9] derived a basis for the divergence free subspace of the 9-node biquadratic 
element velocity field on quadrilateral elements. The following corresponding pressure spaces were 
investigated: constant, linear and bilinear elements. The basis functions for these pressure spaces 
have support on a single element. This allows the incompressible constraint to be analyzed one 
element at time. But unlike our approach here, the basis functions for the pressure space are 
discontinuous at element boundaries. 
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Gustafson and Hartman [10, 11] combine group theory and principles of fluid mechanics to 
obtain a basis for the divergence free subspace associated with the choice of quadratic velocity and 
constant pressure triangular elements in two dimensions. Similar results have been obtained in 
three dimensions for the scheme referred to as APX 3 in [19]. The later work in [11] can be viewed 
as augmenting and extending their previous work. 

Stephens et al. [18] and Goodrich and Soh [6] applied the Galerkin finite difference method 
(GFDM) to Eqs. (1)-(3). This approach is similar to the Galerkin finite element method. For the 
GFDM, the discrete finite difference equations approximating (1)-(3) are considered using various 
subspaces of mesh vector functions and mesh scalar functions (i.e., vector and scalar functions 
defined only at the nodes of specified finite difference meshes). The subspaces of discrete divergence- 
free mesh vectors are constructed for several finite difference schemes. It is required that the discrete 
divergence and discrete gradient operators are formally adjoint. Stephens et al. [18] gave a more 
general form of GFDM which did not require the adjointness of the discrete divergence and 
gradient operators. In [4] a subspace of S h is constructed in which a function satisfies (7) for 
a subspace of the pressure space. This subspace is the orthogonal complement of the piecewise 
constant pressure space. This reduces the 5-node velocity and linear discontinuous pressure 
element to a 4-node velocity and discontinuous constant pressure element. 

All of the above constructions of divergence free basis velocity vectors require that the approx- 
imations to pressure be discontinuous. Ye [20] and Hall and Ye [15] constructed a divergence free 
basis for 8-node velocity and 4-node pressure elements where the finite element approximation to 
pressure is continuous. It was proved that this is the optimal basis in the sense of minimal nonzero 
support. There must be basis functions with nonzero support of 9 elements. In contrast, the present 
paper establishes that if S h is chosen as 9-node velocity elements then there is a basis for D h with 
maximal nonzero support of 4 elements. Further, it was shown in [15, 20] that DFFEM is 
equivalent to applying the dual variable method (DVM) to the standard finite element system (6) 
and (7). The DVM [1, 3, 12] applied in the context of finite element methods (see [13]) also involves 
construction of a basis for the discrete divergence operator in (7) and uses this to eliminate the 
pressure from (6) through a matrix transformation. 

2 5 1 2 

6 

3 3 

T' ~) ,1) 

(1,~ 8~m' 

4 

9 NODE VELOCITY 4 NODE PRESSURE 
(a) (b) 

Fig. 1. 9-node velocity and 4-node pressure element. 
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4. Divergence free basis: 9-node velocity and 4-node pressure 

In this section we will determine the dimension of and obtain a basis for the null space of the 
discrete divergence operator  or equivalently the divergence free space D h for the popular  choice of 
9-node isoparametric  velocity elements to generate S h and 4-node isoparametric pressures to 
generate A n . We first consider only uniform meshes on rectangular domains,  however extensions to 
curved domains  follow in a fashion similar to [15]. 

The typical element is shown in Fig. 1. The two velocity componen t s  are associated with each of 
the 9 nodes shown in Fig. l(a) and the pressures are associated with the 4 corner  nodes shown in 
Fig. l(b). The  nodes shown for velocity and pressure are labeled independently.  The 9-node element 
construct ion on a master  element ([ - 1, 1] × [ - 1, 1]) involves a biquadrat ic  polynomial  t/'i asso- 
ciated with node  i which is one at node i and is zero at the other  nodes, and they are defined as 

~, = ¼x(x + 1)y(y + 1), ~02 = ¼x(x - 1)y(y + 1), 

~3 = 1 X (  X - -  1)y(y - 1), ~04 = ¼x(x + 1)y(y - 1), 

~t 5 = - -  ½(X - -  1 ) (X -'{- 1 ) y ( y  -{- 1), ~6 = - ½x(x - 1)(y - 1 ) ( y  + l ) ,  

~7 = - ½(x - 1)(x + l ) y ( y -  1), ~08 = - ½x(x + 1 ) ( y -  1)(y + 1), 

(11) 

~ 9 = ( x  - 1 ) ( x +  1 ) ( y -  1 ) ( y +  1). 

At each corner  node j, j = 1, 2, 3, 4 shown in Fig. l(b), there is a bilinear polynomial  flj defined as 

fll = ¼ ( x +  1 ) (y+  1), f12 = - -¼(x--  1 ) (y+  1), 
(12) 

f13 --'~k( X -  1 ) ( y -  1), f14= - ¼ ( x +  1 ) ( y -  1). 

We assume, for simplicity, that  the velocities on the boundary  of the domain  are specified and 
hence we need not  consider velocity nodes on the boundary.  For  the mesh shown in Fig. 2(a), 
a piecewise biquadrat ic  basis function tki is associated with an interior node i and can be 
constructed by using the local functions qJg defined in (11). Associated with each corner  node of an 
element (including boundary  nodes) shown in Fig. 2(b), a piecewise bilinear tent function 2i can be 
derived by using the local functions flj in (12). The number  of ~b~ is the same as the number  of 
interior nodes which is l = (2m - 1) (2n - 1). The number  of 2j is same as the number  of corner 
nodes which is (m + 1)(n + 1). 

We choose the following basis for the finite element velocity space sh: 

4 1  = ( O , ,  o )  ¢, = (o ,  . . . . .  = O) ¢, = (0,  4, ,)  ¢ 

and the following basis for the finite element pressure space Ah: 

f i b ) . 2 ,  . - .  , ~ N ,  

where L = 21 is the dimension of S h and N = (m + 1)(n + 1) is the dimension of A h. 

(13) 
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1 2 . . . . .  m 

P R E S S U R E  N O D E S  

(b) 

Fig. 2. m × n mesh. 

Define the discrete divergence free subspace D n of sn: 

D h = { I ) ~ s h :  ( d i v v , ) ~ i ) = 0 ,  i - -  1, ... ,N}. (14) 

We will find the dimension of, and a basis for, D h. 
The simple fact is that  any element in the vector space S h (in particular, those in D h) can be 

expressed as a linear combina t ion  of the basis functions q~i,i = 1, . . . ,L .  Therefore, the basis 
functions of the discrete divergence free subspace D h can be found if the appropria te  coefficients of 
this combina t ion  can be found• 

Suppose D h -~ s p a n { ~ l ,  q~2, . . . ,  ~t}. We have 

L 
7Ji= ~ c i  iq~j, i = l , . . . , t .  

j = l  

Since ~i is in D h, ¢ij must  satisfy the following equat ion (see (8) and (14)): 

L 

(divq~i,~.k)= ~ (divcbj ,  2k)Ci j=O,  i =  1 , . . . , t ,  k = l , 2 , . . . , N .  (15) 
j = l  

This implies that  (c~1, ci2 . . . . .  c~L) must  be the solution of the equat ion 

A X  = O, 

where 

A = ( a i j ) = ( ( d i v c I ) j ,  2i)), i =  1 . . . .  , N ,  j =  1 . . . . .  L. (16) 

To derive the dimension of, and basis for, the discrete divergence free space D h for any m × n mesh, 
the 2 × 2 mesh is considered first. A 2 × 2 mesh and the order  of the nodes for velocity and pressure 
are shown in Figs. 3(a) and (b), respectively• For  the 2 × 2 mesh, there are 9 interior nodes and 
S h = span{qq,  q~2 . . . . .  4~18}, where 4~, 42, . . . ,  4~8 are defined in (13). There are 9 corner  nodes 
and A h = span{)~l . . . . .  ~-9}. 
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The 9 x 18 
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Velocity nodes 
(e) 
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t, 
1 2 3 

Pressure nodes 
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Fig. 3. 2 x 2 mesh. 

matrix A in (16) for the 2 x 2 mesh is 

4 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

4 0 4 4 4 0 1 0 1 0 1 0 0 0 0 0 0 

0 - 1  0 - 4  4 0 0 0 0 0 1 0 0 0 0 0 0 

--4 1 0 0 0 4 0 1 0 0 0 4 4 1 0 0 0 

- 4  0 - 4  4 - 4  - 4  0 0 0 4 0 - 4  4 0 4 4 4 

0 - 1  0 - 4  - 4  0 0 - 1  0 - 4  0 0 0 - 1  0 - 4  4 

0 0 0 0 0 0 - 1  0 0 0 0 4 - 4  1 0 0 0 

0 0 0 0 0 0 - 1  0 - 1  0 - 1  - 4  - 4  0 - 4  4 --4 

0 0 0 0 0 0 0 0 0 0 - 1  0 0 - 1  0 - 4  - 4  

(17) 

Based on Theorem 4 in [15], 

dim(D h) ~< (number of the velocity variables) - ( n u m b e r  of the pressure variables)+ 1, (18) 

and in fact for all cases considered the above inequality was an equality. Hence, the dimension of 
D h <<. 18 - 9 + 1 = 10 where 18 is the number of velocity variables and 9 is the number of pressure 
variables for the 2 x 2 mesh. Using the turnback algorithm [16, 17] the matrix A in (17) is shown to 
have rank 8 and a basis for the null space is constructed. Manipulat ion of this basis leads to the 
following more symmetrical basis ~vt, ~u2, . . . ,  ~-/lO for the space Dh: 

~1 = 4t3 - 4415 + 417, ~u2 = 41 --  4 4 3  + 45 ,  

~(-/3 = 4 2  - -  448 + 4 1 4 ,  ~/4 = 46 -- 4412 + 418, 

I/-/5 = - -  4 1  + ~J~2 "1- 8~J9 - -  8 4 1 0  - -  (J)17 -Jr" tJg18, 
(19) 

I / /6  = ( ~ 5  "[- 4 6  - -  8 4 9  - -  8 4 1 0  "[- 4 1 3  + 414 ,  

~ 7  = 2 4 1 1  - -  2 4 1 6  - -  ~J~17 "~ ~J)18, ~T'/8 = 41  - -  1 4 2  + 2 4 4  - -  247, 

I//9 ~--- - -  2 4 4  + 4 5  + 4 6  - -  2 4 1 1 ,  t//lO ----- 2 4 7  - -  (~13 - -  tJ~14 "~- 2 4 1 6 .  
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Fig. 4. Support nodes for the divergence free functions of a 2 x 2 mesh. 

It is easy to verify tha t  ~ul, ~2 . . . . .  tPlo belong to the divergence free space D n for a 2 x 2 mesh by 
checking that  the coefficient vector of ~i belongs to the null space of the matr ix  A in (17). 

The linear independence  of tp~, ~2, . . . ,  q'lo can be verified by comput ing  the rank of  the matr ix  
with the linear combina t ion  coefficients of ~ui as its columns.  In fact, such a matr ix  has l inearly 
independent  columns,  therefore ~ ,  I / / 2  . . . . .  I//10 are linearly independent .  Combin ing  this with 
(18), we have that  ~ ,  ~u2 . . . . .  ~1o form a basis of D h for a 2 x 2 mesh. 

The  basis vector  funct ion ~ui has nonzero  linear combina t ion  coefficients only for certain 4~fs. In 
Fig. 4, for each ~i ,  the nodes  are ma rked  if the coefficients are nonzero.  

Since any  m x n mesh conta ins  m a n y  2 x 2  submeshes,  the divergence free funct ions 
~ul, tP2 . . . . .  ~1o in (19) for a 2 x 2 mesh or macro  element can be used as blocks to build 
a divergence free basis of D n for an m x n mesh. We now discuss such a construct ion.  Fo r  an m x n 
mesh, there are (m - 1)(n - 1) such macro  elements. If 10 funct ions in (19) are generated for each 
macro  element,  then a total  of 1 0 ( m -  1 ) ( n -  1) functions can be derived. However ,  by the 
inequal i ty  (18), the d imens ion  of D n for an m x n mesh satisfies 

d i m ( D  h) ~< 2(2m - 1)(2n - 1) - (m + 1)(n + 1) + 1 = 7ran - 5m - 5n + 2, (20) 

where (2m - 1)(2n - 1) is the number  of interior  nodes  for velocity and  (m + 1)(n + 1) is the 
numbe r  of the nodes  for pressure. N o w  10(m - l)(n - 1) >~ 7mn - 5m - 5n + 2 for m , n  >~ 2. 

Hence, the 10(m - 1)(n - 1) funct ions in D h generated above will be l inearly dependent .  In fact, 
a m o n g  these 10(m - l)(n - 1) functions,  m a n y  of them coincide with each other.  Fo r  example,  if 
the 2 × 3 mesh is considered in Fig. 5, 20 discrete divergence free funct ions can be derived 
cor responding  to two 2 × 2 macro  elements. The ~u~ in (19) for the 2 × 2 submesh shaded in Fig. 5(a) 
is the same as ~2 in (19) for the 2 × 2 submesh shaded in Fig. 5(b). Similarly, if a 3 × 2 mesh is 
considered,  7J4 in one 2 × 2 submesh will be 7"5 in ano ther  2 × 2 submesh.  Based on these simple 
cases, we have Observa t ion  1. 

Observation 1. Fo r  an m × n mesh, if 10 funct ions defined in (19) are derived associated with each 
2 x 2 submesh,  a total  of 10(m - 1)(n - 1) such functions can be obta ined  and  (m - 1)(n - 2) + 
(m - 2) (n - 1) = 2ran - 3m - 3n + 4 funct ions of types 1-4 are duplicates. 
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(a )  ( b )  

Fig. 5. 2 x 3 mesh. 

5 

1.L 

Fig. 6. 3 x 3 mesh. 

Therefore, the number of the possible independent functions among the 1 0 ( m -  1 ) ( n -  1) 
functions is 10(m - 1)(n - 1) - (2mn - 3m - 3n + 4) = 8ran - 7m - 7n + 6. By the inequality 
(20), these 8mn - 7m - 7n + 6 functions are still linearly dependent for m, n ~> 2. To obtain a basis 
for O h , m o r e  functions need to be eliminated. 

Consider a 3 x 3 mesh: there are four 2 x 2 macro elements and 10 divergence free functions 
~1,  ~u2, - . . ,  ~Ulo in (19) can be constructed associated with each of them. Let the five nodes be 
labeled as in Fig. 6 and 4)~, ~b~, q~, ~b~, and ~b~ be constructed as piecewise biquadratic basis 
functions corresponding to these nodes. Then vector functions q~'~, ~ ,  . . . ,  q~'lO can be defined as in 
(13) that is q~'~ = (~b], 0) v, q~ = (0, ~b'~), etc. The divergence free vector function ~7 in (19) for the 
2 x 2 macro element shaded in Fig. 7(a) can be written as the linear combination of ~ ]  . . . .  ,4"~o as 
follows: 

= - - ¢ ;  + 

Similarly, ~8, I//9 and ~Ulo in (19) for the 2 x 2 macro elements shaded in Figs. 7(b), (c) and (d), 
respectively, can be written as 

! ¢ ¢ 

! ,, ! 

~ o  = 2~'~ - ~ - 4~ + 24~.  
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( a )  ( b )  ( c )  ( d )  

Fig. 7. Four 2 x 2 macro elements in a 3 x 3 mesh. 

IME 

Fig. 8. Typical interior element in an m x n mesh. 

Hence for a 3 x 3 mesh, the divergence free vector funct ions ~u7, Ms, ~9 and  ~1o in (19) associated 
with the four 2 x 2 macro  elements are l inearly dependent  since 

~ 7 + ~ u 8 - ~ u g - ~ l o = 0 .  

Based on this fact, Observa t ion  2 is s tated as follows. 

Observation 2. Fo r  each inter ior  element (ABCD in Fig. 8) in an m x n mesh, one of the four vector 
funct ions of the types ~7, ~8, ku9 and  ~1o has to be e l iminated to guarantee  their  linear indepen- 
dence. F o r  an m × n mesh, the total  number  of interior  elements is (m - 2) (n - 2). This implies tha t  
ano ther  (m - 2) (n - 2) funct ions of  types 7, 8, 9 or 10 a m o n g  the 10(m - 1) (n - 1) functions can be 
el iminated.  N o w  we are ready to construct  a discrete divergence free basis of D h for an m x n mesh. 

Theorem 1. For an m x n uniform mesh on a rectangular domain shown in Fig. 2, 7mn - 5m - 5n + 2 
vector funct ions in D h can be formed in the fol lowing way. 

Step 1. For each 2 x 2 macro element, construct lO funct ions ~x,  . . . ,  ~1o defined as in (19). Since 
there are a total o f  ( m - 1 ) ( n - 1 )  different 2 x 2  submeshes in an m x n  mesh, a total o f  
10(m - 1)(n - 1)functions can be derived in this way. 
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g! "'{i{{iiii, 
ii{ii" i 
2 a 

Fig. 9. 2 x 2 m a c r o  e lement .  

Step 2. By Observations 1 and 2, a total of (m - 2)(n - 1) + (m - 1)(n - 2) + (m - 2)(n - 2) 
functions can be eliminated from the lO(m - 1)(n - 1)functions obtained in Step 1. Therefore, the 
number of the functions remaining in 7ran - 5m - 5n + 2. 

These 7mn - 5m - 5n + 2functions form a basis for the discrete divergence free space D h such that 
each basis function has a maximum support of four elements arranged in a 2 x 2 submesh. 

Proof. This proof  includes three parts: 
(1) prove that these functions are in D h, 
(2) prove that they are linearly independent, and 
(3) prove that the dimension of S h is 7ran - 5m - 5n + 2. 

It is obvious that all the functions generated by Steps 1 and 2 are defined on a 2 x 2 macro element 
and vanish outside that element. Let T be one of 7ran - 5m - 5n + 2 functions and assume it has 
support  on the 2 × 2 mesh as shown in Fig. 9. On this 2 × 2 submesh, it has been verified 

(divT,  2 0 = 0 ,  i =  1 , 2 , . . . , 9  

where 21,/.2, . - . ,  29 are bilinear polynomial basis functions for pressure associated with nodes 1 to 
9. For  the 2i e A h, i :/= 1 . . . .  ,9, T and ,a.i have no common nonzero support,  hence it is also true that 

(div ~', )q) = 0 

for any other 2 i in A h. Thus T satisfies condition (15), and it is in D h. This finishes the proof  of part {1). 
Now we prove that the discrete divergence free functions constructed in this theorem are also 

linearly independent by using mathematical induction on the number  of elements in the mesh. 
(1) By construction TI,  TE, . . . ,  Tlo defined in {19) are linearly independent for a 2 x 2 mesh. 
(2) Assume that the divergence free functions constructed in Steps 1 and 2 are linearly indepen- 

dent for an m x n mesh and prove that this is also true for an m x (n + l) mesh. 
The m x (n + l) mesh is constructed by adding one row of elements at the top of the m x n mesh. 

At the same time, 2(2m - l) interior nodes are added to the mesh marked in Fig. 10 and another 
{m - l) 2 x 2 macro elements are added. 

For  an m x (n + 1) mesh, 7m(n + l) - 5m - 5(n + l) + 2 discrete divergence free functions can 
be obtained by the following two stages. 
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1 2 m 

Fig. 10. 2(2m - 1) new nodes for m x (n + 1) mesh. 

9 9 9 • 

i , / * 

n 

1 2 m 

Fig. 11. Supporting nodes of the repeated functions. 

Stage 1. 7mn - 5m - 5n + 2 basis funct ions in D h for the m x n submesh are generated by the 
procedure  described in the theorem. Obviously,  they also belong to D h for the m x (n + 1) mesh and  
are l inearly independent .  

Stage 2. Cor respond ing  to the m - 1 2 x 2 macro  elements shaded in Fig. 10, 10(m - 1) discrete 
divergence free funct ions can be generated.  However ,  m a n y  of them will be duplicates. The qJi of 
types 1 4  in Fig. 4 with suppor t ing  nodes  as ma r k e d  in Fig. 11 are repeated. The total  number  of 
them is 2m - 3. Also f rom an m x n mesh to the m x (n - 1) mesh, ano ther  m - 2 interior  elements 
are added.  By Observa t ion  2, m - 2 funct ions should  be e l iminated f rom the 10(m - 1) functions 
genera ted in the first stage. Therefore,  a total  of 10(m - 1) - (2m - 3) - (m - 2) discrete divergence 
free funct ions can be constructed.  

Since D h is a subspace of S h, these 7m(n + 1) - 5m - 5(n + 1) + 2 funct ions can be expressed as 
a l inear combina t ion  of the basis funct ions for S h. These linear combina t ion  coefficients can be used 
as co lumns  to form a matrix,  say C "×t"+ll .  C "×("+ 1~ is a 2(2m - 1)(2n + 1)× 7m(n + 1) - 5m - 
5(n + 1) + 2 matr ix  where 2(2m - 1) (2n + 1) is the d imension  of  S h for an m x (n + 1) mesh. To 
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prove that these 7 m ( n  + 1) - 5m - 5(n + 1) + 2 divergence free functions for the m × (n + 1) are 
linearly independent is equivalent to proving that the matrix C re×t"+ 1~ has linearly independent 
columns. This will follow from the linear independence of the basis functions q~i in S h. 

Like the divergence free basis functions, the columns of the matrix C m× ~" +1~ can also be divided 
into two parts as shown in Fig, 12. The first part contains the columns corresponding to the 
discrete divergence free functions defined on the m x n submesh generated in Stage 1. Since all of 
them have support  on the m x n submesh, the linear combinat ion coefficients of these functions 
corresponding to the basis functions of S h defined at the 2(2m - 1) nodes shown in Fig. 10 are zero. 
This is why the matrix C m×~"+ ~ has a zero block matrix in the (2, 1) position. Since the divergence 
free functions generated in Stage 1 form a basis of D h associated with the m × n mesh (by the 
assumption of mathematical induction), they are linearly independent; consequently the submatrix 
C" ×" has linearly independent columns. The second block column of the matrix C" × I" + 1 ~ contains 
the columns corresponding to the discrete divergence free functions constructed in Stage 2. 

If the submatrix C 1 has linearly independent columns, the matrix C "× t" ÷ 1~ has linearly indepen- 
dent columns and the proof  is complete. 

Now we prove that C ~ has linearly independent columns. We first remark that we can consider 
an m × n mesh as an extension of an m × (n - 1) mesh. The 7 m n  - 5m - 5n + 2 discrete divergence 
free functions can be constructed also by 2 stages similar to the case for an m x (n + 1) mesh. The 
corresponding matrix C "×" has a form in Fig. 13, where C m×l"-~) has 7 m ( n - 1 ) -  
5m - 5(n - 1) + 2 columns corresponding to the basis functions in D h for the m × (n - 1) mesh. The 
matrices C 1 in C m×" and C ~ in C z×¢"+~) are identical. But the matrix C ~ in Fig. 13 must have 
linearly independent columns as we now prove by contradiction. Assume this is not the case. Then, 
there exists a vector X # 0 such that C I X  = 0 and 

(C"- 1"~ r=\c,/, X =  

C m x (n+ l )~  

C 'nxn C n 

0 C I 

Fig. 12. The matrix C m × ~" + 1 

cmXn 

C m x (n-l) 

o 

C,-1 

C 1 

Fig. 13. The matrix C m ×". 
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(a) Veloci ty nodes (b) 

Fig. 14. 4 x 4 mesh. 

Pressure nodes 
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(e) 12 functions type 1 & 2 (b) 12 functions type 3 & 4 

Fig. 15. 24 discrete divergence free functions of types 1-4. 

Let A be the matrix in (16) for the m x n mesh. By the definition of the matrix A and Eq. (15), we 
have A C  "×" = 0. By the definition of the vector Y, A Y  = 0. This implies that a function, say q~ with 
the components  of the vector Y as linear combination coefficients of the basis functions of S h is in 
D h for the m x n mesh. Now Y has its last 4(2m - 1) components zero. These correspond to the basis 
functions of S h associated with nodes marked in Fig. 10. Thus, qJ is defined on the rn x (n - 1) 
submesh and belongs to D h for the m x (n - 1) mesh. Hence, vector C"- 1X can be expressed as the 
linear combination of the columns in C "× ~"- 1) because the columns in C " × ~"- 1) are corresponding 
to the basis functions of D h for m x (n - 1) mesh. But this implies that the columns in the matrix 
C"×" are linearly dependent and contradicts the assumption in mathematical  induction that the 
discrete divergence free functions generated by this theorem for an m x n mesh are linearly 
independent. Therefore, the matrix C'  has linearly independent columns. Hence, we have proven 
that the matrix C "×~"+ 1) has linearly independent columns, which is equivalent to the fact that 
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7 m ( n  + 1) - 5m - 5(n + 1) + 2 discrete divergence free functions generated in the theorem for an 
m x (n + 1) mesh are linearly independent. 

The exact same method can be used to prove that if the discrete divergence free functions derived 
in this theorem are linearly independent for an m x n mesh, then they will be linearly independent 
for an (m + 1) x n mesh. Since the two proofs are very similar, the second proof is omitted here. 

Hence, by mathematical  inducation the 7ran - 5m - 5n + 2 discrete divergence free functions 
derived in this theorem are linearly independent. This finishes the second part of the proof. 

By Eq. (18), we have 

dim(D h ) ~ < 2 ( 2 m - 1 ) ( 2 n - 1 ) - ( m + l ) ( n +  1 ) + 1  = 7 m n - 5 m - 5 n + 2 ,  (21) 

where 2(2m - 1) (2n - 1) is the number  of the velocity variables and (m + 1)(n + 1) is the number  of 
the pressure variables. Combining Eq. (21) and the linear independence of the 7 m n  - 5 m  - 5n  + 2 

discrete divergence functions, we have that the dimension of D h is 7 m n  - 5 m  - 5n  + 2. []  

The result of Theorem 1 can be extended to curved domain using appropriate domain trans- 
formations as described in [15, 20]. 

5. An example 

To illustrate Theorem 1, we consider the 4 x 4 mesh in Fig. 14. There are 49 interior nodes for 
velocity marked in Fig. 14(a) and 25 corner nodes for pressure marked in Fig. 14(b). Hence, 
the dimensions of S h and A h are 98 and 25, respectively. By Theorem 1, a total of 
7 x 4 x 4 - 5 x 4 - 5 x 4 + 2 = 74 discrete divergence free function can be constructed. Twelve 
functions of types 1 and 2 are illustrated in Fig. 15(a) and 12 functions of types 3 and 4 are 
illustrated in Fig. 15(b). Nine functions of types 5 and 6 are shown in Figs. 16(a) and (b), 
respectively. Finally, 32 functions of types 7-10 are shown in Fig. 17. Note that in each of these 
figures, the nodes common to the support of two or more basis functions are physically offset so as 
to clarify the support of these basis functions. 

• • , , •  • , ,  ( I . ,  e .  

I .4"" , ,o • ~ ; "b 
• s* o" ••~ ~• 

(a) 9 f u n c t i o n s  t ype  5 (b) 9 f u n c t i o n s  t ype  6 

Fig. 16. 18 discrete divergence free functions of types 5 and 6. 
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,..:. . . ,  : . . .  
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9 functions type 7 

5 functions type 8 

9 functions type 9 

9 functions type 1 0  

Fig. 17. 32 discrete divergence free functions of types 7-10. 

6. Conclusions 

The divergence free finite element method (DFFEM) for the numerical solution of the incom- 
pressible Navier Stokes equations requires that the velocity be approximated not in the standard 
finite element space but in the discretely divergence free finite element subspace. There are two 
inherent advantages to this method. One is that the number of variables is reduced and the other is 
that the discrete divergence free condition is satisfied a priori, not just approximated as with many 
other methods. 

However the main difficulty to implementing the D F F E M  is the lack of an explicit basis for the 
discretely divergence free subspace. In this paper, a divergence free basis is constructed for the 
9-node velocity and 4-node pressure elements. This problem is equivalent to finding a basis for the 
null space of a discrete divergence operator. The construction of a basis makes use of the turnback 
algorithm for finding the null space of associated matrices for a 2 x 2 macro element. This basis is 
then modified in such way that translates of the macro element yields a basis for a general m x n 
mesh. The basis functions have maximal support of 4 elements arranged in a 2 x 2 submesh. This 
construction also verifies that a basis with smaller maximal support does not exist. 
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