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Abstract

In Aleksandrov and Peller (2010) [2] we obtained general estimates of the operator moduli of continuity
of functions on the real line. In this paper we improve the estimates obtained in Aleksandrov and Peller
(2010) [2] for certain special classes of functions. In particular, we improve estimates of Kato (1973) [18]
and show that

IS+ 1Tl
S| —IT||| <C|S — T||log(2+log4

for all bounded operators S and 7 on Hilbert space. Here |S | (S>'< S)l/ 2. Moreover, we show that this
inequality is sharp. We prove in this paper that if f is a nondecreasing continuous function on R that
vanishes on (—00, 0] and is concave on [0, 00), then its operator modulus of continuity £2¢ admits the
estimate

Qf(S) const/ f;ét)dt, 65> 0.
t<logt

We also study the problem of sharpness of estimates obtained in Aleksandrov and Peller (2010) [2,3]. We
construct a C* function f on R such that || f||f o < 1, I fllLip < 1, and

* The first author is partially supported by RFBR grant 11-01-00526-a; the second author is partially supported by NSF
grant DMS 1001844.
* Corresponding author.
E-mail address: peller@math.msu.edu (V.V. Peller).

0022-1236/$ — see front matter © 2011 Elsevier Inc. All rights reserved.
doi:10.1016/j.jfa.2011.07.009


https://core.ac.uk/display/82296491?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2742 A.B. Aleksandrov, V.V. Peller / Journal of Functional Analysis 261 (2011) 2741-2796

[ 2
.Qf(8) > constd,/log 3 §e€(0,1].

In the last section of the paper we obtain sharp estimates of || f(A) — f(B)|| in the case when the spectrum
of A has n points. Moreover, we obtain a more general result in terms of the e-entropy of the spectrum that
also improves the estimate of the operator moduli of continuity of Lipschitz functions on finite intervals,
which was obtained in Aleksandrov and Peller (2010) [2].

© 2011 Elsevier Inc. All rights reserved.
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1. Introduction
In this paper we study operator moduli of continuity of functions on subsets of the real line.

For a closed subset § of the real line R and for a continuous function f on §, the operator
modulus of continuity §2 sz is defined by

2556 L sup| £(A) — £(B)

, 6>0,
where the supremum is taken over all self-adjoint operators A and B such that

0(A)CS, o(B)Cg, and |A—-B|<é.

If § =R, we use the notation 2 def £2yr. Recall that a continuous function f on § is called
operator Lipschitz if 27 5(8) < constd, § > 0.
It turns out that a Lipschitz function f on R, i.e., a function f satisfying

|f(x) = f()| <const|x —y], x,yeR,

does not have to be operator Lipschitz. This was established for the first time by Far-
forovskaya [9]. It was shown later in [18] that the function x — |x| on R is not operator Lipschitz.



A.B. Aleksandrov, V.V. Peller / Journal of Functional Analysis 261 (2011) 2741-2796 2743

The paper [18] followed the paper [22], in which it was shown that the function x + |x| is not
commutator Lipschitz. We refer the reader to Section 5 for the definition of commutator Lips-
chitz functions. Note that nowadays it is well known that operator Lipschitzness is equivalent to
commutator Lipschitzness.

We would like to also mention that in [27] necessary conditions for operator Lipschitzness
were found that also imply that Lipschitzness is not sufficient for operator Lipschitzness. On the
other hand, it was shown in [27] and [28] that if f belongs to the Besov class B;ol (R), then f is
operator Lipschitz (we refer the reader to [25] and [30] for the definition of Besov classes).

In our joint papers [1] and [2] we obtain the following upper estimate for continuous functions
fonR:

o0
t té
£2¢(5) <Const8/ wr (@) dt—const/ wft(z )dt, 8§ >0, (1.1)
5 1

where w ¢ is the modulus of continuity of f, i.e.,

w8 Lsupl|f(X) = FO): x,y R, [x —y| <8}, §>0.

We deduced from (1.1) in [2] that for a Lipschitz function f on [a, b], the following estimate for
the operator modulus of continuity §2 4,5 holds:

b—
2f1a,b1(8) < const&(l +log( )) Il £ lILips

where

1 f i def If(X) — f(y)I.
x;&y |x —)’|

A similar estimate was obtained earlier in [18] in the very special case f(x) = |x|. Namely, it was

shown in [18] that for bounded self-adjoint operators A and B on Hilbert space, the following
inequality holds:

2 Al + Bl

[Al—IBl| < =llA— BII(2+10g7 .

It turns out, however, that for the function x +— |x| the operator modulus of continuity admits a
much better estimate. Namely, we show in Section 6 that under the same hypotheses

A B
[IA] = |B]| < const| A — B||log<2+logw>.

A= Bl

‘We also prove in this paper that this estimate is sharp.
Note that in [24] an estimate slightly weaker than (1.1) was obtained by a different method.
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In Section 8 we show that if f is a continuous nondecreasing function on R such that f(x) =0
for x < 0 and the restriction of f to [0, 00) is a concave function, then estimate (1.1) can also be
improved considerably:

ot)dt
.Qf(8)<const/ f§ ) , 6>0.
t*logt

We also obtain other estimates of operator moduli of continuity in Section 8.
It is still unknown whether inequality (1.1) is sharp. It follows easily from (1.1) that if f is a
function on R such that || f|| g <1, || flLip < 1, then

1
2¢0) < const8<1 + log §> 6 €(0,1].

We construct in Section 9 a C* function f on R such that || f{lz <1, || fllLip < 1, and

[ 2
§27(8) = consté, |/ log E §e€(0,1].

To construct such a function f, we use necessary conditions for operator Lipschitzness found
in [27]. We do not know whether the results of Section 9 are sharp.

In Section 10 we obtain lower estimates in the case of functions on the unit circle and unitary
operators.

Finally, we obtain in Section 11 the following sharp estimate for the norms || f(A) — f(B)||
for Lipschitz functions f and self-adjoint operators A and B on Hilbert space such that the
spectrum o (A) of A has n points:

| £(A) — FB)| <CU +logn)| fllLipll A — BI. (1.2)

Moreover, we obtain in Section 11 an upper estimate in the general case (see Theorem 11.5) in
terms of the e-entropy of the spectrum of A, where ¢ = ||A — B||. It includes inequalities (1.1)
and (1.2) as special cases. Note that (1.2) improves earlier estimates in [9] and [10].

In Section 2 we give a brief introduction to Schur multipliers, in Section 3 we collect auxiliary
estimates of certain functions in the space of functions with absolutely converging Fourier inte-
grals. The estimates collected in Section 3 are used in Section 4 to estimate the Schur multiplier
norms of certain functions of two variables. To obtain upper estimates for operator moduli of
continuity of concave functions, we estimate in Section 7 the operator modulus of continuity of
a very special piecewise continuous function on R.

2. Schur multipliers

In this section we define Schur multipliers and discuss their properties. Note that the notion
of a Schur multiplier can be defined in the case of two spectral measures (see, e.g., [27]). In this
section we define Schur multipliers in the case of two scalar measures. This corresponds to the
case of spectral measures of multiplicity 1.
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Let (X, n) and (), v) be o-finite measure spaces. Let k € L2(X x ), 1 @ v). Then k induces
the integral operator Z; = II’:’V from L2(Y, v) to L2(X, W) defined by

T f)(x) = / k) fO)V V(). f € LX),
Yy

Denote by [kllg = Ikl g« o the operator norm of Z;. Let @ be a ;4 ® v-measurable function

defined almost everywhere on X x V. We say that @ is a Schur multiplier with respect to i and
v if

def
1@ llasr, < sup{ | @kl s: k. Pk € L2(X x Y, n @), [kl < 1} < oc.

We denote by i)ﬁ“ - the space of Schur multipliers with respect to i and v. It can be shown eas-
ily that Iy, C LOO(X x Y, @ v) and ||® | Lo sy, pon) < 19 lgns . Thus if @ € myy,
then

1P llon s, = sup{||Pkllp: k€ L2 (X x Y, n®v), |lkllg < 1}.
Note that ‘J.Ttg(”y is a Banach algebra:
191 Pallgnre, < N P1llonree (1 P2llgns -

It is easy to see that ||¢||£m’”y = ||‘1’||zm§,“ for ¥ (y,x) =®(x,y).

If A is a u-measurable subset of X', then we denote by (Xp, i) the corresponding measure
space on the o-algebra of p-measurable subsets of Ajp.

Let X = U;’;l X, and Y = U;',OZ 1 Vu, where the X}, are u-measurable subsets of X', and the
Y, are v-measurable subsets of ). It is easy to see that

o0 o
2
sup [[klljgpe < ||k||,3;.vy<22||k||8w

s X
m,n>1 Xm . Yn m=1 n=1 m\Yn

for every k € L2(X x Y, u®v), and

o o0
S A L S B I L] @.1)

m, n>1 Xm Yn m=1 n=1 Xm.Yn
forevery @ € L*(X x ), u ®v).
We state the following elementary theorem:

Theorem 2.1. Let (X, w), (X, no), (I, v) and (Y, vy) be o-finite measure spaces. Suppose that
Wo is absolutely continuous with respect to | and vg is absolutely continuous with respect to v.
Let d € zm;‘(”y Then @ € ‘.)ﬁ;?;o and ||€D||m)ﬂ(e;o < ||¢||9ﬁ§53,'
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Proof. By the Radon—Nikodym theorem, duo = ¢ du and dvy = v dv for nonnegative measur-
able functions ¢ and ¢y on X and ). Let k € LZ(X X Y, o ® vg). Put

(Tk)(x, y) L k(x, VU ().

Clearly, T is an isometric embedding from L2 (X x Y, Lo ® vp) in LZ(X x Y, L ®v). Moreover,
ITklgry = |kl grov0. We have
XY EIRY

1@kl gm0 = [T (@0)| s = 1@ Tl

< v R v )
< NPl 1Tk g, = 1@ o Ikl 000
2 Ho,Vo v N
forevery k € L“(X x Y, up ® vp). Hence, @ € SDKX)y and ||d>||mi%}o < ||d>||§m?y. O

Note that if X and ) coincide with the set Z of nonnegative integers and p and v are the
counting measure, the above definition coincides with the definition of Schur multipliers on the
space of matrices: a matrix A = {a i} ;x>0 is called a Schur multiplier on the space of bounded
matrices if

A x B is amatrix of a bounded operator, whenever B is.

Here we use the notation

AxB={ajibji};r>0 2.2)

for the Schur—-Hadamard product of the matrices A = {a i} k>0 and B = {b ¢} x>0
Let X and ) be closed subsets of R. We denote by 901y 3> the space of Borel Schur multipliers
on X x ), i.e., the space of Borel functions @ defined everywhere on X’ x ) such that

def
@ llony y = sup ||<1§||9ng(-”y < 00,

where the supremum is taken over all regular positive Borel measures n and v on X and Y. It
can be shown easily that

sup [ D(x, )| <[Pl -
(x,y)eXxy

It is also easy to verify that if @, € My y, @ is a bounded Borel function on X x ), and
D, (x,y) = D(x,y) forall (x,y) € X x ), then

19 Nl 5 < liminf [0, ..

In particular, ® € My y if liminf,— o0 | Pyl 5, < 0O.

We are going to deal with functions f on X x ) that are continuous in each variable. It
must be a well-known fact that such a function f has to be a Borel function. Indeed, one can
construct an increasing sequence {)),}°2, of discrete closed subsets of ) such that UnZ D is
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dense in ). Let us consider the function f, : X x R — C such that f|(X X Vn) = fau |(X X Vi)
and f,(x,-) is a piecewise linear function with nodes in ), for all x € X. Clearly, the function
fn 1s defined uniquely if we require that f;(x, -) is constant on each unbounded complimentary
interval of )),. It is easy to see that f, is continuous on X x R and lim, .« f;,(x,y) = f(x,y)
for all (x, y) €e X x V. Thus, f belongs to the first Baire class, and so it is Borel.

Theorem 2.2. Let X and Y be closed subsets of R and let @ be a function on X x Y that is
continuous in each variables. Suppose that u and g are positive regular Borel measures on
X, and v and vg are positive regular Borel measures on ). If supp o C supp i and supp vy C
Supp v, then | gy oo < gy

We need two lemmata.

Lemma 2.3. Let X and Y be compact subsets of R and let ;v and v be finite positive Borel
measures on X and ). Suppose that {v; }°° | is a sequence of finite positive Borel measures on Y
that converges to v in the weak-* topology o ((CQ))*,C). If k is a bounded Borel function
on X x Y such that k(x,-) € C()) for every x € X, then

lim ||IM K

i oy = |2 Ly

I 5
Proof. Clearly, II’: i (I,’: v )* is an integral operator on L2(X, w) with kernel [;(x,y) =
fy k(x,t)k(y,t)dv;(t). Besides, the sequence {/;} converges in L2(X x X, u® ) to the func-

tion / defined by /(x, y) = fyk(x, t)k(y,t)dv(t), which is the kernel of the integral operator
I,’:’U(If’v)*. Hence,

lim ||IM i ”Bu Y= lim ||IM Y (IM v’)
i i

=17 @) s, = ||I“”||Bw .0

s

Corollary 2.4. Let X and Y be compact subsets of R, and let i and v be finite positive Borel
measures on X and ). Suppose that {v j} 2| is a sequence of finite positive Borel measures
on Y that converges to v in o ((C()))*, C(y)). If @ is a Borel function on X x Y such that
D(x,-) € C(Y) forall x € X, then | @ | gpur <liminf; ”(D”m” j

E Ry ERY

Proof. It is easy to see that
1P llgny, = SUP{H@kIIB;&I ke CX <), lkligey < 1}.
Letk € C(X x V) with [|k||z2(,gy) > 0. Then
i,y = 1 L,V g 1 1 Wi Wi
IPkllgsy, jlgglo II‘DkIIBim]} li_rgloréf(”é”m:’)j}”k”B:‘(Jj})
= Hminf |y Tim [kl ey = Kl Hininf @ g

which implies the result. O
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We are going to use the following notation: for a measure p and an integrable function ¢, we
write v = g u if v is the (complex) measure defined by dv = ¢ dpu.
The following fact can be proved very easily.

Lemma 2.5. Let v and vg be finite Borel measures on R with compact supports. Suppose that
supp vo C supp v. Then there exists a sequence {¢ j}?"zl in C(R) such that ¢; > 0 everywhere on
R for all j and vo =1im;_ o0 @;jv in o ((C(suppv))*, C(supp v)).

Proof of Theorem 2.2. Put X, & [—n,n]N X and Y, & [—n, n] N Y. Clearly, {||® oz Vis

a nondecreasing sequence and
lim |® wy =D v .
n—00 I llfmx,,,y,l I me,y

This allows us to reduce the general case to the case when X and ) are compact. Besides, it
suffices to consider the case where g = . Indeed, the case vy = v can be reduced to the case
o = i, and we have

¢ L0V < QD TRy < (P J7R
1@ o < 19 gty < I s,

Let X and Y be compact, and u = po. Applying Lemma 2.5, we can take a sequence

{p f}?il of nonnegative functions in C(IR) such that vp = lim;_, ¢;v in the weak topology
def ;

a((CQ)*, CQ)). Put v; = @;jv. By Theorem 2.1, ||¢||m/’-v”j < ”Cb”&"ﬁ?.”y forevery j > 1.1t

ERY
remains to apply Corollary 2.4. O

Theorem 2.2 implies the following fact:
Theorem 2.6. Let X and Y be closed subsets of R and let @ be a function on X x Y that is

continuous in each variables. Suppose that u and v are positive regular Borel measures on X
and Y such that supp u = X and suppv = Y. Then || P |lon  ,, = ||q)||£m§‘("”y-

The following result is well known.

Let f € C(R). Put ®(x,y) &ef f(x—y). Then ® € Mg R if and only if f is the Fourier transform
of a complex measure on R. Moreover, || ||ong, r = [1](R).

A similar statement holds for any locally compact abelian group. In particular, it is true for
the group Z:

Let f be a function defined on Z. Put ®@(m,n) def f(m —n). Then @ € Mz 7 if and only if
{ f (n)}nez are the Fourier coefficients of a complex Borel measure p on the unit circle T. More-
over, [|P|lony,, = [1l(T).

We need the following well-known fact.
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Lemma 2.7. Let

I
H(m,n)déf{m—nv ifmneZ, m#n,
0, ifm=neZ.

Then |H |on, , = .

Proof. It suffices to observe that

{ 2 { 2
Hn,0)= — [i(r—0)e™di and — | |7 —tldi=2. 0O
27 27 2
0 0

3. Remarks on absolutely convergent Fourier integrals

In this section we collect elementary estimates of certain functions in the space of absolutely
convergent Fourier integrals. Such estimates will be used in the next section for estimates of
certain functions in the space of Schur multipliers.

We are going to deal with the space

=I'®EFL'®). Iflp=1flpe < |77 f]

Here we use the notation .% for Fourier transform:

def

(F ))& / Fe™di, feL'(®R).
R

Unless otherwise stated, an interval throughout the paper means a closed nondegenerate (not

necessarily finite) interval. For such an interval J, we consider the class ZI(J ) defined by

L' f1: Fel')If feC(), we put

def .
lelzicy) = inf{ll flizi: f17 = e},

For ¢ € C(R), we put [l¢liz1(,) &f lolJlIz1(y)- Clearly, ll@llLew) < l@lizi -

For an interval J, we use the notation |J| for its length. R

It is easy to see that the constant functions belong to the space L' (J) for bounded intervals J
and ||1||z1(1) = 1. Moreover,

L'Dh={(FwlJ: ned®} and | flp, =inf{llxle: (FwlJ = f}

for every bounded interval J, where .# (R) denotes the space of (complex) Borel measures on R.
In this section we are going to discuss (mostly known) estimates for || - |71 )
First, we recall the Pélya theorem, see [32].

Let f be an even continuous function such that f |[O, o0) is a decreasing convex function van-
ishing at the infinity. Then f € L' and || f||71 = f(0).

This theorem readily implies the following fact.
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Lemma 3.1. Let [ be a continuous function on a closed ray J that vanishes at infinity. Suppose
that f is monotone and convex (or concave). Then f € L'(J) and I fliz1yy = maxy | f].

In what follows by a locally absolutely continuous function on R we mean a function whose
restriction to any compact interval is absolutely continuous.

Lemma 3.2. Let f be a locally absolutely continuous function in L?>(R) such that ' € L*>(R).
Then f € L'(R) and || 113, < I fllz2ll 'l 2.

Proof. Puta = || fl|;2, b= | f'll;2. By Plancherel’s theorem,

a2 a? IR

|77 = e =

Hence,
272
i =

and by the Cauchy—Bunyakovsky inequality,

g <Pl L | b

7l < 2] | =va

Corollary 3.3. Let a > 0. Put

_2 .
def | a™*x, if|x|<a,
faloy & Yamx TIxIS

x7,  iflx|>a.

Then fy € L'(R) and || full 1 < 2.
Proof. It suffices to observe that || 4|2, = 5=, || /1|2, = % and \/g <2. O

Lemma 3.4. Let J be a bounded interval and let f be a Lipschitz function on R such that
supp f C J. Then f € L' and

1
I fllzr < %W NS e

Proof. Let J =[—a,a]. Clearly, | f(x)| < (a — |x])|| f/||L> for all x € J. Hence,

A 1
191 <201 [ [@=0dr =511 1P
0

Using the obvious inequality ||f’||i2 < ||f’||%oo|J|, we get the desired estimate. O
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Corollary 3.5. Let f be a Lipschitz function on R such that f(0) = 0. Then

21717
J12 L=

11z <

for every bounded interval J that contains 0.
def

Proof. Put 2J = {2x: x € J}. Clearly, there exists a function fy in C(R) such that f; = f on
J,supp fy C2J,and || fyllLee <[ f'llLe. O

Lemma 3.6. Let f be a locally absolutely continuous function on R such that (1 + |x|) f'(x) €
L2(R). Suppose that limy_, _oo f(x) =0 and limy 0 f(x) = 1. Then

”f”[l —00,a < 1 ”f/”[ \ ”xf/H[ 1Oga
( al = ﬁ : T : 2 s
fOl everya}Z.

Proof. Put

X

F )L f)—a! / Xia2a) (D) dt.

—00

Clearly, || fI71(—00.a) < I fallf1-

We have
7 | SR SR eZaix_eaix
—i - =F = F - -
W Ja (f“) (f ) 2maix
def 1,
Puth = . #7'(f'). Then
2aix aix
e —e dx
™ = h _— ] ¢ —
Il fall /‘ (*) Tmaix ]
R
1 1 .
</|h(x)—h(0)|d N 1 /eZM—emx dx
| ——dx+— | |—————-1|-—
|x] 2w aix |x]
—1 —1
|7 (x)]| I / e — 1]
d — —dx.
/ x Y 24 2
{lx|=>1} {lx|>1}
We have
1 n 0 1 | X 1
/de</;</|h’(l)|dl>dx=/|h’(t)|-|10gt|dt.
0 0 0 0

Hence,
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1 1

[ Mm < [Iw ) - rogir|ar
X

-1 -1

1

l 2 v 2 1
<l [frogar) = Zlxrl,s

.
because h’ = .Z L (ixf).

By Taylor’s formula for the function ¢** — ¢, we have

. . 5
|621x — e —ix| < EXZ'
Thus
1 eZaix _ eaix dx 1 4 eZix _ eix dx
- - === - " .=
2 aix ‘ x| 2w / ix ‘ |x]
— —dad
a
1 15 2
< — [ ming —,
2w 2 |x|
—dad
Finally,
|7 ()] 1
el dx <N2 k2 = —|| f
/ x| X 1721l .2 ﬁ”f HLz
[x1>1

by the Cauchy—Bunyakovsky inequality and

X Ta
{lx1=1}

{lx|=a}

for a > 2. This implies the desired inequality. O

Theorem 3.7. Let J be a bounded interval containing 0. Then

e* —1 o 1 1< 3 |
€x+1 Zl(‘l)\j/lz \5 ’
Proof. Ii suffices to observe that || (Zij Yo = % and apply Corollary 3.5. O

A.B. Aleksandrov, V.V. Peller / Journal of Functional Analysis 261 (2011) 2741-2796

1
}dx < — (G +4loga).
2

1 le?® — 1] 1 le — 1| 2
————dx=— dx < — <
2ra x2 2 2

3.1)

Theorem 3.7 gives a sufficiently sharp estimate of the L'-norm for little intervals J. For big

intervals J, this estimate will be improved in Corollary 3.9.
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Theorem 3.8. Let a > 2. Then

er 2
. <2+ —loga.
1+e Zl(_oo’a] T
Proof. We have
o0
et /2_/ e dx _/ rdr 1
1) |2 ) @+ ) ¢+DF 6
R 0

and!

o0

2 ® 2
=2 Ld)igZ/xzefzxdx=l,
L2 (e*+1) 2
0

”x(e"e:— 1)/

whence fora > 2,

1 1 7 2 2
S—+—F—=+5-+-loga<2+ —loga
Zl(foo)a] A4 \/E 2 b4 b4

e.X
” 14e*
by Lemma 3.6. O
Remark. Lemma 3.1 implies that

ea

ex
” It e i ooa  1+et
for a < 0 but we do not need this inequality.
Corollary 3.9. Let J be a bounded interval containing 0. Then

e* —1 4 1
<5+ —log| <|J|
Zl(]) b 2

e*+1

] =4

Proof. We may assume that the center of J is nonpositive. Then J C (—o0, %lJ |]1. We have

X

2
e +1

er —1

e+ 1

~

4 4 1
<54+ —loga=5+ —log| =|J] ). O
’El(}) 2

ZI(J) b b

x2
18

e*

VA
12,

! In fact, [lx( 1
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4. Estimates of certain multiplier norms
In this section we are going to obtain sharp estimates for the Schur multiplier norms

v —1

et —e H
xX=y
e +1 My, 1y

eX +ev

My, .

.1

for all intervals Jq and J,. First, we consider two special cases. In the first case J; = J» while in
the second case J; and J, do not overlap, i.e., their intersection has at most one point.

Theorem 4.1. Let J| and J, be nonoverlapping intervals. Then

et —e
et +eY

~
My, .,

Proof. Clearly, either J1 — J, C (—o0,0] or J1 — J> C [0, 00). It suffices to consider the case
when J; — Jp C (—00, 0]. Then

Xy X

eX —eY ”
X—=y
¢ +1 U

e’ +ev

=2
L1(~00,0]

<142
My,

<1I+2

e* +1
by the P6lya theorem [32], see also Lemma 3.1. O

Theorem 4.2. Let J be a bounded interval. Then

e e gmin{§|J|,5+ilog+|J|}
e +eon,, 5 T
and so
e —e”
e <410g(1 + |J|).
Proof. We have
et —e¥ e* —1
e tedlon,, et +1zg_y

Note that |J — J| =2|J| and 0 € J — J. The result follows now from Theorem 3.7 and Corol-
lary 3.9. O

Theorem 4.3. Let J| and J, be nonoverlapping intervals and let J be the convex hull of J1 U J.
Then

et —e
e’ +e¥

¢ i1, 171} <
e+1m1n , <

6
gmin{l —|J|}.
My, .1, 5
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Proof. The upper estimate follows readily from Theorems 4.1 and 4.2. Let us prove the lower
estimate. We have

eMl—1 e—1
= =
117 et1

et —e
e’ +eY

et —e

e’ +eY

= su
EUI]]JZ xely, yel,

min{1, |J]}

e'—1

because the function ¢ — ] in-

creases. O

decreases on [0, c0), while the function ¢ —

6
t(e’+1)

Theorem 4.4. Let J be a bounded interval. Then

e > L {171, 1+1og, |71}
> —min{|J|, og, )
e* +e¥lom,, 7
Proof. Put Q. (t) of %ﬂ i 7, where & > 0. Let us consider the convolution operator Cp, on

L3(R), Co.f deff * Q. Clearly, |Co, |l = |.# Q¢llL> = 1, see, for example, [13, Chapter III,
§1]. Note that Cgp, is an integral operator with kernel Q¢(x — y). We can define the integral
operator X ;.. on L>(J) with kernel

1 xX—=y et —e
T (x—y)2+eter +ev

‘We have
ex—eyd J
J-IX > (X , X
- M Xsell =2 (Xgexs, xs) = // o y)2+szex+ey y
JxJ
[J]
_2/ L= yar
Tx ) 2462 4+ 1
0
and
c er —e) ef —e¥
1 X5l <lCo,l - = .
et e’ My et +e’ My
Hence,
|
e — e 2 1 t e —1
> — . — ﬁ—(|J|—t)dt
ef+elgy,, w JIJ t*+e el +1
’ 0

for every ¢ > 0, whence

[/] [J]
e —e 2 el —1 t 1 el —1
=0 o U 1 K=
e +eloy,, w te'+1) |J] t(e’ )
' 0 0
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because the function ¢ decreases on (0, 00). It follows that

t(c’+1)

et —eY
et +eY

e— 1 /
— mm
m‘]"] 7T e + 1
This implies the desired estimate. O

Remark 1. Every rectangle J; x J» is the union at most of three rectangles, each of which
satisfies the hypotheses of either Theorem 4.2 or Theorem 4.3. This allows us to obtain a sharp
estimate for the norms in (4.1) for every rectangle J; x Ja.

Remark 2. Remark 1 and the change of variables x — logx, y +> logy allow us to obtain a

sharp estimate for |22 y 2 lom e where J; and J; are intervals containing in (0, 00).

We proceed now to estimates of multiplier norms that will be used in this paper.
Theorem 4.5. There exists a positive number C such that

eX —¢e)

et +eY

<Clog(2+ (b —a)4)
Mia,00),(~o00,b]

foralla,b eR.
Proof. The result follows from Theorems 4.1 if a > b. If a < b, then
[Cl, OO) X (_OO, b] = ([a’ b] X [a’ b]) U ([av b] X (—OO,a]) U ([ba OO) X (—OO, b])a

and we can apply Theorem 4.2 to the first rectangle and Theorem 4.1 to the remaining rectan-
gles. O

Theorem 4.6. There exists a positive number C such that

eX —e)

et +eY

<Clog2+b—a)
MR [a.5]

forall a, b € R satisfying a < b.
Proof. We have
R x [a,b] = ([a, b] x [a, b]) U ((—oo,a] X [a,b]) U ([b, 00) X [a,b]).

It remains to apply Theorem 4.2 to the first rectangle and Theorem 4.1 to the remaining rectan-
gles. O
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Theorem 4.7. There exists a positive number ¢ such that

Xty Mia,00).[0,b]

b
< clog<2+logJr —)
a

forall a,b € (0, c0).

Proof. Theorem 4.5 with the help of the change of variables x — logx and y — log y yields

— b+e
u y” <c10g<2—i—10g+ + )
x+y Ma,00),[e.b+¢] a
for every ¢ > 0, whence
—y— b
roy-e gclog(Z—Hog+ j)
x+y+e M4, 00),[0,b] a

for every ¢ > 0. It remains to pass to the limitase — 0. O
Theorem 4.8. There exists a positive number ¢ such that

xX—Yy
X +y

b
H <c10g<2+10g —>
Ma,b),[0,00) a

whenever a, b € (0,00) and a < b.

Proof. The result follows from Theorem 4.6 in the same way as Theorem 4.7 follows from
Theorem 4.5. 0O

Theorem 4.9. There exists a positive number ¢ such that

=
x+y Ma.bl.la,b]

b
> clog(l + log —)
a

whenever a, b € (0, 00) and a < b.

Proof. The result follows from Theorem 4.4 with the help of the change of variables x — logx
and y —~ logy. O

5. Operator Lipschitz functions and operator modulus of continuity

In this section we study operator Lipschitz functions on closed subsets of the real line. It is
well known that a function f on R is operator Lipschitz if and only if it is commutator Lipschitz,
ie.,

| (AR — Rf(A)|| < const||[AR — RA]|

for an arbitrary bounded operator R and an arbitrary self-adjoint operator A.
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The same is true for functions on closed subsets of R; moreover the operator Lipschitz con-
stant coincides with the commutator Lipschitz constant. The following theorem was proved in
[2, Theorem 10.1] in the case § = R. The general case is analogous to the case § = R. See also
[19] where similar results for symmetric ideal norms are considered.

Theorem 5.1. Let f be a continuous function defined on a closed subset § of R and let C > 0.
The following are equivalent:

1) If(A) — f(B)|| £ C||A — B]| for arbitrary self-adjoint operators A and B with spectra
ing;
@) || f(A)R — Rf(A)|| < C||AR — RA|| for all self-adjoint operators A with o (A) C § and
all bounded operators R,
(i) [|f(A)R — Rf(B)|| < C||AR — RBY|| for arbitrary self-adjoint operators A and B with
spectra in § and for an arbitrary bounded operator R.

A function f € C(5) is said to be operator Lipschitz if it satisfies the equivalent statements
of Theorem 5.1. We denote the set of operator Lipschitz functions on § by OL(F). For f €
OL(3), we define || floL(z) to be the smallest constant satisfying the equivalent statements of
Theorem 5.1. Put || flloLg) = o0 if f ¢ OL(J).

It is well known that every f in OL(F) is differentiable at every nonisolated point of F,
see [17]. Moreover, the same argument gives differentiability at co in the following sense: there
exists a finite limit limy|— 100 x 1 f(x) provided § is unbounded.

Let f € OL(5). Suppose that § has no isolated points. Put

f&O-f»
def | ————> lfx, e&’, X S
@f),y &) T HoYes xAy
1), ifxed, x=y.
The following equality holds:
£ oL@ = 1D £ lomg - 5.1)

The inequality || f lloLz) < D f llang ; is an immediate consequence of the formula

f(A) = f(B) =f (D) (x,y)dEA(x)(A— B)dEg(y), (5.2

where A and B are self-adjoint operators with bounded A — B whose spectra are in §, and E 4 and
Ep are the spectral measures of A and B. The expression on the right is called a double operator
integral. We refer the reader to [4—6] for the theory of double operator integrals elaborated by
Birman and Solomyak. The validity of formula (5.2) under the assumption ® f € Mz 5 and the
inequality

H f/(@f)(x, W AEA()(A - BYdE5(y) H < I Dllan, 1A — B

was proved in [6]. The opposite inequality in (5.1) is going to be proved in Corollary 5.4.
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In the general case for f € OL({§) we can define the function

| fO-fO)
def | ===, ifx,ye¥g, ,
@) & ey My ES XAy
s ifx e S, X =Y.
The following inequalities hold:
I flloL@ < 1D fllang 5 < 21 flloL)- (5.3)
The first inequality in (5.3) follows from the formula
f(A) - f(B)= f/(Qof)(x, VAEs(x)(A— B)dEg(y), (5.4

whose validity can be verified in the same way as the validity of (5.2). The second inequality in
(5.3) is going to be verified in Corollary 5.5.

Let f be a continuous function on a closed set §, § C R. We define the operator modulus of
continuity §2 5 as follows

def
25.58) = sup{[[ f(A) = f(B)[: A=A*, B=B*, (A),0(B)C3, |A—BI <3},
and the commutator modulus of continuity as follows

2%+ E sup{[| F(AR — RF(A)|: A= A*, 6(A) CF. IRI< 1. |AR— RA| <6}.

One can prove that we get the same right-hand side if we require in addition that R is self-adjoint.
On the other hand, || f(A)R — Rf(B)|| < Q;S(HAR — RBY||) for all self-adjoint operators with

o (A),o(B) C § and for every bounded operator R with || R < 1. Also, 275 < .Q; 5 S 2925 3.
These results were obtained in [2] in the case § = R. The same reasoning works in the general
case.

Lemma 5.2. Let § be a closed subset of R and let . and v be regular positive Borel measures

on §. Suppose that k is a function in L*(§ x §, u ® v) such that k = 0 on the diagonal Az &ef
{(x,x): x € §} almost everywhere with respect to u @ v. Then

k@ ,vg k L,V
16D llges < IL.f lowc) Ikl g

for every continuous function f on §.

Proof. Let §, déf% N [—n, n], and let u,, and v, be the restrictions of p and v to §,. Clearly,

hlll k Un,Vn — k M,V f()] e\/e]y k (S L {E ;;, //L ®
and

Jdim [ flloLg,) = Il flloL) forevery f e C(3).
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Thus we may assume that § is compact. It suffices to consider the case when k vanishes in a

neighborhood of the diagonal Az. Put /(x, y) &ef (x —y)"'k(x, y). Denote by A and B multipli-
cations by the independent variable on L2(F, n) and L2(§, v). Then I]’:’U = AII’"U — IIM’VB and
I,’(‘,}’Dvo ;= f(A)Il“’v — Il”’vf(B). It remains to observe that

| FZ =2 B <l fllove AL =7, B
|AZ" = 21" B = Ikl

’

and
| FAZE =T fB)| = 1kDof g O

Corollary 5.3. Let § be a closed subset of R with no isolated points, and let p and v be finite
positive Borel measures on §. Suppose that f is a differentiable function on § and k € L*>(§ x §,

w ®v). If k vanishes p ® v-almost everywhere on the diagonal Ag &ef {(x,x): x € F}, then
L,V < WV,
||k©f||5§,& < ||f||0L(g>||/’<||B§3
Proof. It suffices to observe that k® f = kDo f almost everywhere with respectto u @ v. 0O

Corollary 5.4. Let § be a closed subset of R with no isolated points, and let i and v be finite
positive Borel measures on §. If f is a differentiable function on §, then

19 fllonz 5 < IIf lloLe)-

Proof. Let u be a regular Borel measure on § with no atoms and such that supp u = §. Then
(1 ® n)(Agz) =0 and Corollary 5.3 implies that

k o < k TN
l Qfllgévé < flloL i IIB/&/S

for all k € L2(§ x §, 1 ® p). Hence, ||CDf||§m§,g < |l fllon)- It remains to apply Theo-
rem2.6. O N

Corollary 5.5. Let § be a closed subset of R. Then
190 f llonz 5 < 2 flloL)
for every f € C(F).
Proof. Let i and v be regular Borel measures on §. We have to verify that

k v <2 k v
I Qofllggﬁ I flloL) IIB§3

for every k € L2(§ x §, 1 ® v). Put ko & ya k and ky £ k — ko. We have



A.B. Aleksandrov, V.V. Peller / Journal of Functional Analysis 261 (2011) 2741-2796 2761
k wy < ||kl gy .
lholl s < el sen

This inequality can be verified easily. We leave the verification to the reader.
It follows that ||k ”Bé"é < ||k0||8§’§ + ||k||8§’§ < 2||k||8§,g. It remains to observe that

Vo= Y < Y < SV,
1690 fllge: = ki Do fllges < I fllov ki llges <21 f oL Iklges. O

Let §1 and §> be closed subsets of R. We define the space OL(§1, §2) as the space of func-
tions f in C(§1 U §2) such that

|f(A)R—Rf(B)| <CIIAR — RB]| (5.5)
for all bounded operator R and all self-adjoint operators A and B such that o (A) C §; and

o (B) C §2 with some positive number C. Denote by || flloL(g,,3,) the minimal constant satis-

fying (5.5). Clearly, || flloL(F,,5,) = Il floL,. 51 and |1 flloL. 5 = I1f loL). As in the case
$1 = F2, we can prove that

I flloL.32) < 1Dof g, 5, < 21 f o352 (5.6)
(cf. (5.3)).

Remark. In the case when § # §> we cannot claim that the inequality

| fa) = fB)| <cla-Bj (5.7)
for all self-adjoint A and B such that 0 (A) C §1 and o (B) C §> implies (5.5).

Indeed, in the case f(¢) = |t], §1 = (—00,0], and §2 = [0, 00), inequality (5.7) holds with
C =1 because

IA— Bl <A+ B

for positive self-adjoint operators A and B. However, inequality (5.5) does not hold with any
positive C. Indeed,

=00

IXI x| =1yl H

o

x+y

M (00, 11,[1,00) 50),[1,00)

by Theorem 4.9.

Theorem 5.6. Suppose that inequality (5.5) holds for every bounded operator R and arbitrary
self-adjoint operators A and B with simple spectra such that o (A) C §1 and o (B) C §2. Then
f € OL(S1,82) and || flloL,,52) < C-
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Proof. We have to prove inequality (5.5) for arbitrary self-adjoint operators A and B with
0(A) C §1 and o(B) C §2. It is convenient to think that the operators A and B act in differ-
ent Hilbert spaces. Let A actin H; and B in H;. Then R acts from H> into ;. We are going to
verify that

|(f(A)Ru,v) — (Rf(B)u,v)| = |(Ru, f(A)v) — (f(B)u, R*v)| < C||AR — RB||

for all unit vectors u € H, and v € H;. Denote by H? and Hg the invariant subspaces of A

and B generated by v and u. Clearly, Ag &ef AIH? and By &ef BIHg are self-adjoint operators

with simple spectra. Consider the operator Ry : Hg — H?, Roh & pRh for h e ‘H>, where P is

the orthogonal projection from H; onto H?. Note that for i € Hg, we have AgRoph = APRh =
PARhK and RyBoh = PRBh. Clearly, ||AgRy — RoBo|l < ||AR — RB]||. Applying (5.5) to the
operators Ag, By, and Ry, we obtain

|(f(A)Ru,v) — (Rf(B)u,v)| =|(Ru, f(A)v) — (Rf(B)u,v)|
|(Rou, f(Ao)v) — (Rof (Bo)u,v)|
|(f (Ao) Rou, v) — (Ro f (Bo)u, v)|

CllAoRo — RoBoll < C|AR—RB|. O

N

Remark. Theorem 5.6 allows us to give alternative the proofs of (5.1), (5.3) and (5.6) that do not
use double operator integrals.

Theorem 5.7. Let f be a function defined on 7. Then
2}, =51 floLe
fors €0, 2].
Proof. The inequality
255, <8l fllov@, 8> 0,

is a consequence of Theorem 5.1. Let us prove the opposite inequality for é € (0, %]. Fix ¢ > 0.
There exists a self-adjoint operator A and a bounded operator R such that [AR — RA| =1,
0(A) CZ,and || f(A)R — Rf(A)|l = | flloLz) — €. Put

Ry E S EA(U)REA(IK) = R =Y Ea(Uj))REA(()))-
J#k jet

Clearly, AR — RA=ARs — RgA and f(A)R — Rf(A) = f(A)R4 — R4 f(A). Thus we may
assume that R = R 4. Note that

AR—RA=Y (j—EA(li)REA({K).
JF#k
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Since

1
R=Ra=3 —— (G =REA(U})REA(K),
j#k !

we have R=H x (AR — RA), where

1 o
H( k)def{/ L, if j £k,
0, ifj=k,

where * denotes Schur—-Hadamard multiplication, see (2.2). It follows that

IRl < [Hllonz , IAR — RA|l = || H ||mz, ,, =

|

by Lemma 2.7.
Let 6 € (0, %]. Then |[A(SR) — (6R)A| =6 and ||§R]|| < 1. Hence,

2},70) > 8 F(AR = RFA)] = 8(Iflloz) —#).
Passing to the limit as ¢ — 0, we obtain the desired result. O

Let wy gz denote the usual scalar modulus of continuity of a continuous function f defined

on §. Clearly, w5 < 275 Put a)f = a)f R and .Qf = .Qf Rr. We are going to get some estimates
for the commutator modulus of continuity .Q 5 We consider first the case when § = R. The
following theorem is contained implicitly in [24]

Theorem 5.8. Let f be a continuous function on R. Then
b
2;(8) <207(8/2) + 2Hf(6x)||OL(Z).

Proof. Let |[AR — RA| < § with ||R|| = 1. We can take a self-adjoint operator As such that
AsA=AA;s, |A— As|| <6/2and 0 (As) CSZ. Then || f(A) — f(As)|| < wy(§/2) and

|AsR — RAs|| < [|[AsR — AR| + ||[AR — RA| + ||[RA — RAs|| <26
Hence,

[ (AR — FADR| + | f(As)R — Rf(As)| + | Rf(As) — Rf(A)|
207(6/2) + 1 43R — RAs| - I fllowsz) < 207/2) + 251 fllovz)
205(8/2) + 2| f(8x) ”OL(Z)' -

| (AR —Rf(A)| <
<

Theorem 5.9. Let f be a continuous function on R. Then

2
9;(5) > max{wf(‘s)’ ;Hf(‘sx)”ouz)}

forall § > 0.
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Proof. Clearly, w; < 2 < 9; It remains to prove that || £ (5x)[loLz) < %Q; (8). We have

b b b b 2 2
*Qf(‘” Z Qf,az(g) = ‘Qf(sz),Z(l) Z 'Qf(Sx),Z<; -7 ”f((sx)”OL(Z)

by Theorem 5.7. O

We consider now similar estimates of .{2; 5 for an arbitrary closed subset § of R. Recall that
a subset A of R is called a §-net for § if § C |, 5[t — 8.1 + 5]

Theorem 5.10. Let f be a continuous function on a closed subset § of R. Suppose that §s is a
subset of § that forms a (6/2)-net of §. Then

2} 5(8) <207,5(5/2) + 281 f loLss)-

Proof. The proof is similar to the proof of Theorem 5.8. It suffices to replace the (6/2)-net §Z
of R with the (6/2)-net §s of §. O

Theorem 5.11. Let f be a continuous function on a closed subset § of R and let § > 0. Suppose
that A and M are closed subsets of § such that (A — M) N (=6, 8) C {0}. Then

8
9;3(5) = max{wf,g(S), S 1P0f lloma }

b
Proof. Clearly, ws3z < 273 < 82 I%s Note that

190 f llont 4 = SUP 1D0.f 199 g1 a1

a>0

Thus it suffices to prove that

)
b
2,:0)> 3 1D0.f llom am

in the case when A and M are bounded.
Let ¢ > 0. There exist positive regular Borel measures A on A, u on M, and a function & in
L?(A x M, A ® u) such that €l gw =1 and IIki)oflle = Do fllon, y — & We define the
AM AM ’

function kg in L>(A x M, A ® i) by

def | k(x,y), if ,
ko(x,y);{o(x A

Then kDo f = koDof and [lkollgin < 2. Put @(x,y) E f3(x — y) where fs denotes the
AM

same as in Corollary 3.3. We define the self-adjoint operators A:L*(A, 1) — L%(A, 1) and
def def
B:L*(M, u) — L*(M, ) by (Af)(x) = xf (x) and (Bg)(v) = yg(y). Put

h(x,y) L@ (x, yk(x, y) = D (x, y)ko(x, y).
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Clearly,

SN

Villgin, < 1Pl Ikl g < 1@ o <

by Corollary 3.3.
Clearly, AZ, — Iy B =1y, and f(A)L;, — Iy f(B) = Ix,o, r- (Recall that Z,, is the integral
operator from L*M, p) into L2(A, ) with kernel ¢ € L2(A x M, A ® v).) Then

) )
=Tl ==kl o <1,
13 = St

) ) )
Al =In ) — | =Zn | B|| = = Ik <6,
[1(5m) - (3] = st

and
8 ) ) )
Hf(A)<§Ih> - (5%)]‘(3)” = Ellkoi)ofllgﬁm > §(||©0f||93?A.M —¢).

b
Hence, .Qf,g((S) > %(H’Dof”gmAM —e¢) foreverye >0. O
Theorem 5.11 allows us to obtain another proof of Theorem 4.17 in [3].

Theorem 5.12. Let f be a continuous function on an unbounded closed subset § of R. Suppose
that 2 1,5(8) < oo for § > 0. Then the function t — i1 f () has a finite limit as |t| — oo, t € §.

Proof. Assume the contrary. Then there exists a sequence {A,};° ; in § such that A, 1| — [A,] >
1 forall n > 1, lim,_, » |A,| = 00 and the sequence {A;l f(n)}o2, has no finite limit. Denote
by A the image of the sequence {)»n},‘;o: 1- Then || flloLa) = oo. This fact is contained implic-
itly in [17]. Indeed, Theorem 4.1 in [17] implies that every operator Lipschitz function f is
differentiable at every nonisolated point. It is well known that the same argument gives us the dif-
ferentiability at oo in the following sense: the function ¢ — ¢! £ (r) has a finite limit as |f| — oo,
provided the domain of f is unbounded. Applying Theorem 5.11 for M = A and § = 1, we find
that .Qf)g(l) =00. O

We need the following known result, see [20]. We give the proof for the reader’s convenience.

Theorem 5.13. Let f be a bounded continuous function on a closed subset § of R. Suppose that
f € OL((—o00, 11N ) and f € OL([—1, 00) N F). Then f € OL(F) and

I flloL) < C<||f||0L((—oo,1]ng) + I flloLq=1,00)nF) + sup |f|),
5

where C is a numerical constant.
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Proof. Put 3 = 3N (=00, =11, 52 L FN[=1,1], and 3 ' FN[1, 00). We have

3 3
£ loL) < I1Dof s 5 <D D~ 190 f oy, 5,

j=1 k=1

3
Z 190 llang, 5, + 2190 llamg, 5, +21D0 fllans, 5, +21D0f loms, 5, -

Each term ||©()f||gﬁ3j,3k except ||530f||gmsh33 can be estimated in terms of 2| f lloL(z,Uz,)

or 2| flloL,Uz3)-
Let us estimate ||©0f||gmgl_33 . We have

J@-fO»
190 fllsms, 5, “4
93?3133
< (sup111) ’ + (sup1 /1) H

gl X—y mgl,cﬁ 33 x_y 9.7{3:]_53

1
2((sup1£1)| — <2suplf|
5 xX=y 93?31,33 T
because by Corollary 3.3,
1

<[ e =g, , <1.

X =Yy HEUI&lﬂ}

where f> means the same as in Corollary 3.3.
Thus

Il flloL) <6l flloLE ugs) + 41 flloLE.uzs) +4SUP [fl. O

6. The operator Lipschitz norm of the function x — |x| on subsets of R
In this section we obtain sharp estimates of the operator modulus of continuity of the function
X > |x| on certain subsets of the real line. This allows us to obtain sharp estimates of || |S|—|T]| ||

for arbitrary bounded linear operators S and 7. Note that our estimates considerably improve
earlier results of [18]

Put Abs(x) |x| For J C [0, c0), we put log(J) = {logt teld, t>0}.
Theorem 6.1. There exist positive numbers C1 and Co such that
Cylog(2 + [log(J1 N J2)|) < IAbSlloL((—spus) < C2log(2+ [log(Ji N J)])

for all intervals Ji and J> in (0, 00).
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Proof. Put J = J; N J>. Let us first establish the lower estimate. Note that || Abs|loL((-J)up) =
|Abs|loL(s,) = 1. This proves the lower estimate in the case |log(J)| < 1. In the case [log(J)| > 1
we have

T
Xty My

x| — |yl
|Abs|loL((—7)ur) = IIAbs|loL(-sus) = H — =
X=Y lom_,;,

> cylog(1 + [log(J)|) = c2log(2 + [log(/)])

by Theorem 4.9.
We proceed now to the upper estimate. We consider first the case when J = J;. Then
xX—Yy
| AbslloL((—J)us) < IAbS[loL((—s1)u0,00)) < 2 +2
X4y M 710,00

and we can apply Theorem 4.8. The case J = J; is similar. Suppose that J # J; and J # J>.
Then inf J; #£ inf J5. Let inf J; > inf J,. Put a def inf J; and b def sup J>. Then

=1

Xty Ma,00),[0,5)

[IAbs|loL((—)us) < IIADS|lOL((—0o_ajul0,p)) < 2+ 2

and the result follows from Theorem 4.7. O
Let us state two special cases of Theorem 6.1.

Theorem 6.2. There exist positive constants C1 and Cy such that
C1log(2 +log(ba™")) < | Abs|loL((—oc,01ula.)) < C210g(2 + log(ba™))
forall a,b € (0, 00) witha < b.
Theorem 6.3. There exist positive constants C1 and Co such that
Clog(2+log, (bcfl)) < [|AbsloL((=b,01U[a,00)) < C2log(2 + log,, (bail))
foralla,b € (0, o).

Theorem 6.4. Let £, = Abs|[—a, 00) and n, = Abs|[—a, al, where a > 0. Then there exist pos-
itive numbers C1 and C, such that

C181og(2 +log(as ™)) < £2,,(8) < 2, (8) < C2810g(2 + log(as ™))

for§ €(0,a],
C18 < 26,(8) < C28

for § € [a, 00), and

Cia < £2,,00) < Caa

for § € [a, 00).
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Proof. Put §s dof [—a,00)\ (0, §). Clearly, §s is a §/2-net of (—oo, a]. Hence, by Theorem 5.10
we have

b

£2¢,(8) < £2¢,(8) <8 +25(|8alloLgs)-
Applying Theorem 6.3, we obtain the desired upper estimate for £2¢, . Clearly, §2,,, < 2a every-
where because 0 < n, < a.

To obtain the lower estimates, we use Theorem 5.11. We consider first the case § € (0, 5). Put
A =[—a,0] and M = [§, a]. By Theorem 5.11,

1 1)
$20,8) 2 52,,() = 7 1Donallon -

Theorem 4.9 implies now that £2,,,(5) > constd log(2 + log(aé —1)). The lower estimates in the
case 8 € [5, 0o) are trivial because §2,, > wy, and ¢, > wg,. O

Theorem 6.5. There exists a positive number C such that

A|l+|IB
l1Al - 1BI| < CllA - B] 1og<z+1ogw>

A — B

for all bounded self-adjoint operators A and B.

Proof. This is a special case of Theorem 6.4 that corresponds to a = ||A|| + ||B]|. O
Theorem 6.4 also allows us to prove that the upper estimate in Theorem 6.5 is sharp.

Theorem 6.6. Let a > 0. There is a positive number c such that for every § € (0, a), there exist
self-adjoint operators A and B such that ||All + |B|| < a, ||A — B|| <6, but

|1A1 = 1B]| > 0810g<2+log ;—1)

We proceed now to the case of arbitrary (not necessarily self-adjoint) operators. Recall that
for a bounded operator S on Hilbert space, its modulus |S| is defined by

NEIS N
Theorem 6.7. There exists a positive number C such that

S+ 1T
lIsI=1T1] < ClIs - T log<2+10gw>

IS =TI

for all bounded operators S and T.

0 S* 0 T*
A_(S 0) and B_<T 0).

Proof. Put
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Clearly, A and B are self-adjoint operators with

_ (11 0 (111 0
|A|—<0 m) and |B|—<0 |T*|).

Hence,

IS =171 < 1Al = 1BI| < ClA — B||1og<2+log M)

A= Bl

S T
=C|S—T]|log <2+logw>.

IS =TI
Remark. Theorem 6.7 significantly improves Kato’s inequality obtained in [18]:

1 IS+ 1Tl

ISI =T < =IIS - T||(2+10g7 .
| | < S=TT
7. The operator modulus of continuity of a certain piecewise linear function

In this section we obtain a sharp estimate for the operator modulus of continuity of the piece-
wise linear function » defined by

W[l =1
x(t)é{z, if—1<t<1.
-1, ifr>1.

The results obtained in this section will be used in the next section to estimate the operator
modulus of continuity of functions concave on R .
It is easy to see that x(¢) = %(ll 4+t — |1 —t]).
Theorem 7.1. There exist positive numbers C| and Cy such that
C1log|logd| < 1% [loL((—c0, —1-81U[—1.1]U[1+8.00)) < C2 log[log |

1
for every § € (0, 3).

Proof. Put x; = x|((—o0, —1 —8]U[—1, 1]) and 2, = x|([—1, 1]U[1 + 8, 00)). Note that

(11—t —1]).

N =

a1 (1) = %(Il +1l—1+1) and ()=
It follows from Theorem 6.3 that
Cilogllogd| < [[x1llor < C2 logllogd|
and

Cilogllogé| < [lx2]loL < C2 log|logs].
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Thus the desired lower estimate is evident and the desired upper estimate follows from Theo-
rem5.13. O

Theorem 7.2. There exist positive numbers ¢ and c; such that
c181og(1 +1log(1+87")) < £2,,(8) < c281og(1 +log(1 +571))
for every § > 0.

Proof. Note that lim;_, , # log(1 4+ log(1 + t~1)) = 1. Thus it suffices to consider the case when

0<6< % Put §s déf(—oo, —1—8]U[—1,1JU[1l + 8, 00). Clearly, §s is a §-net for R. Hence,
by Theorem 5.10, we have

£2,:(8) < 2,(8) <8 + 281 xlloL(zy)-
The desired upper estimate follows now from Theorem 7.1.
To obtain the lower estimate we can apply Theorem 6.4 because »(t) = %(|1 +1t|—1+41) for
t<1l. O

8. Operator moduli of continuity of concave functions on R,

Recall that in [2] we proved that if f is a continuous function on R, then its operator modulus
of continuity £2 s admits the estimate

o0 oo 8
t
Qf(a)gconsus/“”"z() / 219 45 50,
8 1

In this section we show that if f vanishes on (—oo, 0] and is a concave nondecreasing function
on [0, co), then the above estimate can be considerably improved.
We also obtain several other estimates of operator moduli of continuity.

Theorem 8.1. Suppose that " = u € .# (R) (in the distributional sense), it(R) = 0, and

flog(log(|t| + 3))d|,u|(t) < 0.

R
Then
27 <cllnl.amdlog(log(s~" +3)),
where c is a numerical constant.
Proof. Put

def 1 t—s|
Ps() = = (|t|+|s|)—T, s,t €R. 8.1
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It is easy to see that

2
o B (2 ) B s 0
2 s 2

Clearly,
go;/ = 80 — (Ss and Dy (0) =0. (82)
Theorem 7.2 implies that

£y, (1) < consttlog(l + log(l + 2%'))

< consttlog(l + log<l + %')) t>0. (8.3)

It is easy to see that
tlog(l + log(l +17! |s|)) < const(log(log(lsl + ?))))z‘log(log(t_l + 3))
To complete the proof, it suffices to observe that
f@®)=at+b— /gos(t) du(s), forsomea,beC,
R

which follows easily from (8.2). O

The assumption that ;£ (IR) = 0 in the hypotheses of Theorem 8.1 is essential. Moreover, the
following result holds.

Theorem 8.2. Suppose that f" = € .# (R) and n(R) # 0. Then $2 (1) = oo for every t > 0.

Proof. Indeed, it is easy to see that there exists ¢ € R such that f'(t) = ¢ + u((—00,t)) for
almost all # € R. Hence,

i P = i 0=t p®) and - im R = i o=

The result follows from Theorem 5.12. O

Let G be an open subset of R. Denote by .#],.(G) the set of all distributions on G that are
locally (complex) measures.

Theorem 8.3. Let f € C(R). Put u & f" in the sense of distributions. Suppose that
limy o0t 7! £ (1) =0, | (R\{0}) € Moc (R \ {0}) and

/ log(1 +log(1 + Is])) dlul(s) < oo.
R\{0}
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Then

27(8) < const$ / log(1 +log(1 + [s1871)) dlul(s).
R\{0}
Proof. Put
g(t)=— / @s (1) dus),
R\{0}
where @y is defined by (8.1). Inequality (8.3) implies that
2,(8) < const$ / log(1 +log(1+ Is[87")) d|ul(s). (8.4)
R\{0}

In particular, g is continuous on R. Clearly, g’ = f” on R\ {0}. Hence, f(x) — g(x) = alx| +
bx + ¢ for some a, b, ¢ € C. It follows from (8.4) that
wWge ()

$2,(¢ 1
< lim == < lim ﬂ:(): lim @
t—00 t t—00 t [t|>o00 t

lim &

[t|—>o0| t

which implies that f — g =const. O

Corollary 8.4. Let a > 0 and let f be a continuous function on R that is constant on R\ (—a, a).
Put u & " in the sense of distributions. Suppose that M’(R \ {0}) € Aoc R\ {O}) and

C < sup |ul(Is, 251U [~2s, —s1]) < 0. (8.5)
s>0

Then
240 < Cconst8<log g) log(log g) fors e <0, %’)

Proof. By Theorem 8.3,

a a

270) < const(S( /log(l +10g(1 +56_1))d|u(s)| +/log(1 +log(1 +55_1))d|u(—s)|)
0 0
27"q

= consts ) _ log(1 +log(1 +s871)) d|pl(s)

+consts Y log(1 +log(1+s871)) d|ul(—s).
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It follows now from (8.5) and the inequality
log(l + log(1 —}—ozx)) < 210g(1 + log(1 +x)), O<x<oo, 1 <a<?2,
that

27"q
27(8) <consts Y log(1 +1log(1+s871)) ‘i—s

n202—n—1a
a
_iy ds
= constd log(l +10g(1 + 56 )) v
0
a/sé
= constd / log(l +log(1 +s))
0

ds
s

alé
< const§ + constd / log(1 + log(1 + 5))
1

ds
S

als

= const6<1 + (10g(1 + log(1 + s)) logs)

5
< constd + const 8 (log(1 + log(1 + s)) log s) “

a a
< const§ <log 5) log <log E)

for sufficiently small 5. O

1

a/é / logsds
1 (14 s)log(l +log(l +5))
1

)

2773

Corollary 8.5. Let f be a continuous function on R that is constant on R\ (—a, a). Suppose that

f is twice differentiable on R \ {0} and
c¥ sup|sf”(s)| < oo.
s#£0
Then

240 < constC8(log g) 10g<10g %) fors e (0, %)

The following result shows that in a sense Theorem 8.1 cannot be improved.
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Theorem 8.6. Let h be a positive continuous function on R. Suppose that for every f € C(R)
such that

fleped®, u®=0, and /h(r>d|m<r><oo,
R

we have §2¢(8) < 0o, § > 0. Then for some positive number c,
h(t) > clog(log(lf| +3)), teR.
We need the following lemma, in which g is the function defined by (8.1).

Lemma 8.7. There is a positive number c such that for every s > 10, there exist self-adjoint
operators A and B satisfying the conditions:

s 3s
o(A),0(B) C (5, 7), IA—B| <1, and |¢s(A)—¢s(B)| > cloglogs.

Proof. Clearly, it suffices to prove the lemma for sufficiently large s. By Theorem 6.4, there
exist self-adjoint operators Ag and By such that ||Agll, |Boll < 1, [|[Ag — Boll < 2/s, and

|||A0| — |Bo||| > consts~'log(2 + logs). Put A e 1 + 340 and B & o1 + 5Bo. Then
0(A),o(B) C (%, %) and |A — B]|| < 1. Let us estimate ||¢s(A) — ¢s(B)]|. Clearly,

s s
¢s(A) = ¢s(B) = (Ao — Bo) — Z(|AO| — |Bol).

Hence,

los(A) — 0 (B)] > §|\|Ao| —1Bol| - }nAo — Byl

1
> constloglogs — > > constloglog s

for sufficiently large s. O

Proof of Theorem 8.6. Assume the contrary. Then there exists a sequence {s;} of real numbers
such that lim,,_, || = o0 and limn%w(log(logﬂsn|)))_1h(s,,) = 0. Passing to a subsequence,
we can reduce the situation to the case when s, > 0 for all n or s, < O for all n. Without
loss of generality we may assume that s, > O for all n. Moreover, we may also assume that

51> 10, spi1 > 25, and loglogs, = n®(1 + h(sy)) for every n > 1. Put an = n(loglog s,)!

£ .
for n > 1 and f(¢) &o Zn> 1 @s, (). Note that the series converges for every ¢ because

def
0 =) ,5 0 < 0o. Moreover,
=

f'=080—) and, and oh(0)+ Y anh(sy) < oo.
n>1 n=>1
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By Lemma 8.7, there exist two sequences {A;},>1 and {B,},> of self-adjoint operators such
that

Sn 38y
o(Ay),0(Bn) C > ) lAn — Bull <1,

and

”(psn (An) — Psn (Bn) ” = CIOg IOg Sn-

Note that ¢, (A,) = @5, (B,) = s¢ ! for k <n. Also, ¢y, (A,) = A, and ¢y (B,) = B, for k > n.
Hence,

F(AR) = f(Bn) = an (95, (An) — 05, (Bn)) + D _ (A — Bn),

k>n

and so

”f(An) - f(Bn)” Z oy H(Psn (An) — @s, (Bn)” - Zak |An — Bull

k>n
> Cayloglogs,, — Zak — 00 asn— o0.
k>n

Thus £2 (1) = oo and we get a contradiction. O

In [2] it was proved that

[
2,0 < / wfs(zs) ds

1

for every f € C(R). The following theorem shows that this estimate can be improved essentially
for functions f concave on a ray.

Theorem 8.8. Let f be a continuous nondecreasing function such that f(t) =0 for t <0,
lim; s oo t’lf(t) =0, and f is concave on [0, 00). Then

r f(és)ds

2r0) < ,
r@®se s2logs

e

where c is a numerical constant.
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Proof. Let u = — f” (in the distributional sense). Clearly, u = 0 on (—o0, 0) and j is a positive
regular measure on (0, 00) because f is concave on (0, 00). Hence, u € #oc(R \ {0}). By
Theorem 8.3, we have

o
24(8) gconsw/log 1+1log(1 +587")) du(s).
0

To estimate this integral, we use the equality f/(r) = u(z, oo) for almost all ¢ > 0 and apply the
Tonelli theorem twice.

o0
Sflog 1+1log(1 +587")) dpu(s)
0
o0

s dt
- f ( / (1 +log(1 +15-1))(1 + ra—l)) dp(s)
0 0

f()dt
(1 +log(1+15-1)A +1571)

_ s—1 ? oo (2+10g(1+s(§*1))ds /
=5 /(/(1+10g(1+35l))2(1+s51)2)f(t)dt
0 t

o0
B 71/ 2+log(1+s871)
= q

d
T log(1 455 )2(1 55 12! WD
2+1log(1+s)
8)d
(1+10g(1+s))2(1+s)2f(s )ds
<2 ! f(s8)d
X S .
(1 +1log(1 +s)(1+s)? s
It remains to observe that
1 1

(T log( +s))( a2’ EDds < f(e{s)o/ A+ log(d +s) A 52 %S

T ds
<f(€5)/m=f(€5)
0

T f(sé)ds

s2logs
e

< const
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and

| T F(s8)ds
(1 +1log(1+s))(1 +5)2 f(sd)ds < s2logs

e

Corollary 8.9. Suppose that under the hypotheses of Theorem 8.8, the function f is bounded and
has finite right derivative at 0. Then

M M
£2¢(8) < constadlog(log— | foréde |0, — ),
aé 3a

where a = f (0) and M = sup f.

Proof. Since f(t) < min{at, M}, t > 0, the result follows from Theorem 8.8 and the following
obvious facts:

adds M Mds Mds
=adlog(log— ] and m|
slogs as 52 logs

SIS

e
In [2] we proved that if f belongs to the Holder class A4 (R), 0 <« < 1, then

27(8) < const(l —a) 1| fll4,8% 8>0, (8.6)

where

1 fll a2 sup SO = SO
x£y X =Y

The next result shows that if in addition to this f satisfies the hypotheses of Theorem 8.8, then
the factor (1 — )~! on the right-hand side of (8.6) can considerably be improved.

Corollary 8.10. Suppose that under the hypotheses of Theorem 8.8, the function f belongs to
Ag(R), 0<a < 1. Then

2
270) < const(log1 )||f||Aa5a

for every § > 0.

Proof. Indeed,

oo oo

o0
d dt —Idt 2
/7”? :/e(“*l)’— / ¢ < constlog ) m]
s2—logs t t l -«
—o

e 1 1
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Remark. The function x = 1 4 2 (x — 1) satisfies the hypotheses of Corollary 8.9 with a =1
and M =2, and Corollary 8.9 yields a sharp result in this case. That means that Theorem 8.8 is
also sharp in a sense.

The following theorem is a symmetrized version of Theorem 8.8.

Theorem 8.11. Let f be a continuous function on R such that f is convex or concave on each
. . L. _ def
of two rays (—o0, 0] and [0, 00). Suppose that there exists a finite limit limj;| oo t Lrin = a.

Then

’

27 <03+cf |f(5s)—f(0)—8as|2+|f(—8s)—f(0)+5as| "
s<logs

where c is a numerical constant.

Proof. It suffices to consider the case where f(0) =a = 0. We assume first that f(¢) = 0 for
t < 0. To be definite, suppose that f is concave on [0, 0o0). Then f is a nondecreasing function
because limy,|— t_lf(t) = 0, and so the result reduces to Theorem 8.8. The case f(t) =0
for t > 0 follows from the considered case with the help of the change of variables t > —t.
It remains to observe that each function f with a = f(0) = 0 can be represented in the form
f =g+ h in such way that g(¢#) =0 for ¢ <0, h(¢) = 0 for ¢ > 0, and the cases of the function
g and & have been treated above. O

Theorem 8.12. Let [ be a nonnegative continuous function on R such that f(x) = 0 for all
x < 0 and the function x — x~ f (x) is nonincreasing on (0, 00). Suppose that £2¢(8) < oo for
6 > 0. Then

f(x) < const
loglogx

for every x > 4.

Proof. By Theorem 5.11,

1
b

Qf(l) 2 Ellgof”m[l.oo).(—oo,o]'
Making the change of variables y > —y we get

f @)
xX+y

’ < 29;(1).
M1, 00),[0,00) ’

Thus for every a > 1
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= i ==
<ma
.X+y la 1.[1,a] f(x) x+y la][la]
b
. f(x) H 2a82 (1)
S @l vl e | f@

It remains to apply Theorem 4.9. O

Remark. Let x(o > e and let g, be a continuous function such that

go((X)z{lOga(XW’ ifx>X0>O’
0, if x <0.

Then £2,,(8) < oo for o > 1. Indeed, in this case g, coincides with a function satisfying Theo-
rem 8.8 outside a compact subset of R. On the other hand, £2,,(5) = oo for o < 1. This follows
from Theorem 8.12. Indeed, outside a compact subset of R the function g, coincides with a
function f, for which the function x x! f(x) is nonincreasing on (0, o). The case o =1 is
an open problem.

9. Lower estimates for operator moduli of continuity

Recall that it follows from (1.1) that if f is a function on R such that || f||zee < 1, || fllLip < 1
then

1
250) < const(S(l + log E)’ 6 €(0,1].

It is still unknown whether this estimate is sharp. In particular, the question whether one can
replace the factor (1 + log %) on the right-hand side with (1 + log %)S for some s < 1 is still
open.

In Section 6 we established a lower estimate for the operator modulus of continuity of the
function x — |x| on finite intervals.

The main purpose of this section is to construct a C* function f on R such that || ||z < 1,

Il fllLip <1, and
[ 2
£27(8) = constd logg, §e€(0,1].

Let o > 0. Denote by & the set of entire functions of exponential type at most o.
Let F € & N L*(R). Then

P =y o= F(”—”)
o7 —Tn o
nez
see, e.g., [21, Lecture 20.2, Theorem 1]. Let f € &, N L°°(R). Then

FIMOC D) o n 2w,
o(z—a)



2780 A.B. Aleksandrov, V.V. Peller / Journal of Functional Analysis 261 (2011) 2741-2796

Hence,

FoIE ) 5 los ) e = (22

o(z—a) 207 —Tmn o(3x —a) 20

mn

_ 22 sin(2oz — n) sin(oa — 5 f(nn)

(207 — wn)(2oa — nn) 20

nez

Substituting z = a, we obtain

Flo) = 22 sin(2Qoz — rn) sin(oz — &) f<7r_n>

_ 2
= 2oz — mn) 20
sin(oz — Grycos(oz — %) (mn
ZZ (cz— )2 ! 20 G
nez 2

for f € & N L*®(R).

Denote by &, (C?) the set of all entire functions f on C? such that the functions z — f(z, £)
and z — f(&, z) belong to &, for every & € R (or, which is the same, for all £ € C). Equality
(9.1) implies the following identity:

Fleow) = Z sin?(0z — ) cos(oz —n”me)zsinz(Uu;n— :Tn)cos(aw -5 (ﬂ ﬂ)
(oz =) (cw—5) 20 20

9.2)

(m,n)eZ?

for every f € &, (C?) N L>®R?).

Theorem 9.1. Let 0 > 0 and @ € &,(C?). Suppose that D (5 +a, 52+ B) € My, z for some
o, B eR. Then @ € MR r and

269, . <2|2(50 +a 32 +5)]
’ Mrr 20 ' 20 Sﬁz.z.

Proof. Clearly, it suffices to consider the case when o = =0, 0 = /2 and || @ (m, n)| o, ,
= 1. Then (see [31, Theorem 5.1]) there exist two sequences {¢,, }mez and {, },cz of vectors in
the closed unit ball of a Hilbert space H such that (¢,,, ¥,,) = @ (m, n). Put

def 4 sin®(% (x —m)) cos(% (x — m))
= F meZ (x - m)2 o
and
det 4 < sin? (5 (y —n))cos(5 (y —n))
hy = - 2 Vn-
T (y—n)

nez
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We have

4 in>(Z (x —m))| cos(Z (x —m))
”gx”Hg_zzsm 7 (x —m))[cos(5 (x —m))|

_ 2
meZz (x m)
Z sm2 ”2" | cos & Z sin? — 3| cos(F5- — F)|
72 2n)2 72 = (x —2n—1)?
= cos?‘ + sin?‘ <V2.

In the same way, Ayl < V2 for all y € R. Clearly |®| < 1 on Z2. The Cartwright theorem
(see [21, Lecture 21, Theorem 4]) implies that @ is bounded on R x Z. Applying once more the
Cartwright theorem, we find that @ € L°°(R?). Hence, we can apply formula (9.2) to the function
@, whence @ (x, y) = (gx, hy) forall x, y € R. It remains to observe that by Theorem 5.1 in [31],

” ” R xeR yeR ! h
Theorem 9.2. Let [ € &,. Then

o HOF ‘f(X) f ) ”

MR R
for every § € (0

’20

Proof. The general case easily reduces to the case 0 = 7 /4. By Theorem 9.1, we have

(x) (6)) Cm+1)— f(2n)
HMH \2” il b <20 fllova.
ZD?RR m—2n+ mZ.Z
Hence, by Theorem 5.7,
x) = f»
258) > 25,6) =581 floLa > ZIM”
Mg r

for§ e (0,2]. O

Theorem 9.3. Let [ € &,. Then

Q50) > @) —f(y) ”

4 ’ M ¢
forevery § € (0, %].

Proof. It suffices to observe that Q (5) 2827(8) by Theorem 10.21in [2]. O
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Theorem 9.4. For every 6 € (0, 1], there exists an entire function f € &5 such that || f || Lo ®)

<L I fllzem) < 1and 25(8) > C8,/log %, where C is a positive numerical constant.
We need some lemmata.

Lemma 9.5. For every positive integer n, there exists a trigonometric polynomial f of degree n
such that || f||pee < 1, | fllLee < 1, and

‘ f® -1 > c¢y/logn.

ix _ iy H
e IM0,271,[0,27]

Proof. It follows from the results of [27] that for every function % in C Ly,

H h(e™) — h(e"™)

eix — ely

‘ > const ||h||311, 9.3)
M [0,271.[0,27]

where Bl1 is a Besov space (see [30] for the definition) of functions on T. Note that this result was
deduced in [27] from the nuclearity criterion for Hankel operators (see [26] and [30, Chapter 6]).
It is easy to see from the definition of Bl1 (T) (see, e.g., [30]) that

Il > const )~ 27[A(27)]. 9.4)
>0

It is well known (see, for example, [12]) that for every positive integer n, there exists an
analytic polynomial / such that

h©0)=0,  degh=n, || =1 and Y 2/[h(2/)| >dy/logn,
j=0
where d is a positive numerical constant. Then inequality (9.3) implies that

h ix —h iy
HM > const/logn.
eix — ely

‘97?[0,271],[0.2;1]

Put f(x) def h(e™). It remains to observe that | f'|lz~ = A | Loery = 1 and || fllLe =

Lo < 1. O
Lemma 9.6. Let n € Z. Then

xX—y—2mn
eix — ely

< 32

My, 4

for all intervals Ji and Jo with J| — J, C[(2n — %)n, 2n + %)71’].
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Proof. We can restrict ourselves to the case n = 0. We have

x—y _ xX—y ”
elix _ oly 93'(/1,]2 el(X7y) -1 fmjl.Jz
< t _ ’ t
X - — |\~ - A< .
et = D33 -3
Consider the 37 -periodic function & such that §(7) = 5 n’(t o) fort e [—3 3 3—”] We can expand

& in Fourier series

)= Zane%"it.

nez

Note that a, = a_, € R for all n € Z because £ is even and real. Moreover, £ is convex on
[—3X, 32 ]. Hence, by Theorem 35 in [16], (—1)"a, >0 for all n € Z. It follows that

<Xl = (3—”) = 3‘?’7.

nez

t
H 2 Sln(l/Z) Zl ([73771 3

Corollary 9.7. Let J; = [rj, j + ] and Jy = [tk — 5, wk + 5], where j, k € Z. Then

xX—y—2nn

< 327

X
My, 1

elx — ey
for some n € Z.

Proof. We have J; — b =[n(j —k) — 5, 7(j —k) + 37”]. If j — k is even, then we can apply

Lemma 9.6 with n = %(j — k). If j — k is odd, then we can apply Lemma 9.6 with n = %(j -
kK+1). O

Lemma 9.8. Let g be a 27 -periodic function in C'(R). Then

Hg(x) —8) H < 3v3n Hg(x) g(y) H
e M 0,271,[0,27] MR R
Proof. Note that
Hg(X) g(y) ” _ | g®) =k
Mz » xX—y—2mn My »
for all n € Z and
‘ g(x) — g(y) H H 80 —g() ”
et — M10,271,[0,27] ¥ —ely M 2pp (3T

T 2T
22
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Now we can represent the square [0, 2] x [—%, 37”] as the union of four squares with sides of

length 7, each of which satisfies the hypotheses of Corollary 9.7. O

Proof of Theorem 9.4. It suffices to consider the case when § € (0, 2] Then § € [n i —] for an
integer n > 2. By Lemma 9.5, there exists a trigonometric polynomial f of degree n such that
I fllzee < L1 f'll < 1 and

Hf(x)—f(y)

— el_}

> c/logn.

H M0,271,10.27]

Hence,

Hf(x)_f(Y)H >C\/@

Mg R

by Lemma 9.8. Clearly, g € &, C &1/5. Applying Theorem 9.3, we obtain

£y(t) =2 consty/lognt, 0<t<—

1 V1 2
Q) > 9f<%) >R > ca,/log(g)

for some positive numbers Cp and C. O

Hence,

Theorem 9.9. There exist a positive number ¢ and a function f € C*°(R) such that || f|lr~ < 1,
£/l < 1, and $27(8) > c8,/log 2 for every § € (0, 1].

Proof. Applying Theorem 9.4 for 6 = 27", we can construct a sequence of functions {f,},>1
and two sequences of bounded self-adjoint operators {A,},>1 and {B;},>1 such that || || L~ <
L[ fullee <1, | An — Bl <27 and || £ (An) — fu(Bn)|| = C/n27" for all n > 1. Denote by
A, the convex hull of 0 (A,) Uo (By). Using the translations f, — f,(x —ay), Ap = An +aul,
B, — B, 4+ a,lI and A, — a, + A, for a suitable sequence {an}g"=1 in R, we can achieve the
condition that the intervals A, are disjoint and dist(A,,;, Ay) > 2 for m #~ n. We can construct
a function f € C*°(R) such that ||f||Loo L | f'llLe <1 and flA, = fulA, forall n > 1.
Clearly, £27(27") > C/n27" forall n > 1 and some positive C which easily implies the re-
sult. O

To obtain the lower estimate in Theorem 9.9, we used the inequality

H f(e‘x) — f(e)

— el

> constz2j|f(2j)|, 9.5)

Lﬁ[o,zn],[o,zn] >0

which in turn implies that there exists a positive number C such that for every positive integer n
there exists a polynomial f of degree n such that
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” f(e“‘) — f(")

— ey

2 Cy/logn|| fllLip- (9.6)

‘ M0,271,[0,27]

We do not know whether Theorem 9.9 can be improved. It would certainly be natural to try to
improve (9.6). The best known lower estimate for the norm of divided differences in the space of
Schur multipliers was obtained in [27]. To state it, we need some definitions.

Let f € L'(T). Denote by & f the Poisson integral of f,

e 1 —
df/( IZI)f(C)d m@). zeD,

24 =
(P f(2) 0

where m is normalized Lebesgue measure on T.
Fort e Rand § € (0, 1), we define the Carleson domain Q(t, §) by

Q(r,9)

Clres: 0<1—r<h, |s—1] <6},

A positive Borel measure on p on D is said to be a Carleson measure if
def -
E(1) = w(D) +sup{8~'u(0(1,8): teR, (0, )} <00
If ¢ is a nonnegative measurable function on D, we put

C W) def‘f(,u), where du e v dm,.

Here m; is planar Lebesgue measure.
It follows from results of [27] (see also [29]) that

Z const || fll., 9.7
M0,271,[0.27]

H f(E”‘) — f(e?)

— ey

where

I1flle €% (

),

where for a function ¢ of class C?, its Hessian Hess(¢) is the matrix of its second order partial
derivatives.
It turns out, however, that for a trigonometric polynomial f of degree n,

I fll. < consty/log(l + n)|| flLip, 9.8)

and so even if instead of inequality (9.5) we use inequality (9.7), we cannot improve Theorem 9.9.
Inequality (9.8) is an immediate consequence of the following fact:

Theorem 9.10. For a trigonometric polynomial f of degree n, n > 2, the following inequality
holds:

‘5(|V(<@f)|) < consty/logn || f L.
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We are going to use the well-known fact that a function f in L'(T) belongs to the space
BMO(T) if and only if the measure w defined by d u = |V(<@f)|2(l — |z])dm is a Carleson
measure. We refer to [13] for Carleson measures and the space BMO.

Proof of Theorem 9.10. Suppose that || f| Lo = 1. We have to prove that

/ |V(<@f)|dxdygconst(S\/logn. 9.9
0(t,9)

Note that |V(Z f)| < 2n by Bernstein’s inequality. Hence,

/ |V(Z)|dmr <2nma({¢: 1—n7" < ¢ <1} N 0, 8))

{1-n=1<[t|<1}NQ(1,5)
=2n5(1— (1—n"")?) < 4.
This proves (9.9) in the case § > 1 —n~!. In the case § < 1 —n~! it remains to estimate the

integral over the set {¢: || <1 —n~'} N Q(t, 8). Note that || f|[gmo < const || f||~. Hence,
there exists a constant C such that

/\V<9’f)}2(1—|c|)dmz(c)<ca
0(t,9)

Thus

/ V(2 f)| dm>
{lgl<1-n—1}NQ(,8)

1/2 1/2
/ v (1 - |c|)dm2<;)) ( / (1— ICI)_ldm2(§)>

Q(1,8) {Ig1<1=n=1NQ(#,8)

const&(log(n(S)) constB(logn)l/2.

O
10. Lower estimates in the case of unitary operators
The purpose of this section is to obtain lower estimates for the operator modulus of continuity

for functions on the unit circle.
We define an operator modulus of continuity of a continuous function f on T by

£25(8) défsup{”f(U) - f(V)”: U and V are unitary, ||U — V| < 8}.
As in the case of self-adjoint operators (see [2]), one can prove that

|f@WR—Rf (V)| <22(IUR—-RV])
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for all unitary operators U, V and an operator R of norm 1. We define the space OL(T) as the
set of f € C(T) such that

def
Il flloLer) = supd~'824(8) < oo.
>0

Given a closed subset § of T, we can also introduce the operator modulus of continuity £27
and define the space OL(§) of operator Lipschitz functions on §.

For closed subsets §1 and §> of T, the space Mz, 3, of Schur multipliers can be defined by
analogy with the self-adjoint case. Note that the analogues of (5.1) and (5.3) for functions on
closed subsets of T can be proved as in Section 5.

Let f € C(T). We put fa(t) & f(e"). It is clear that 2, < 2. Hence, | falloL®) <
| flloL(r). Lemma 9.8 implies that || oL < 3x/§n||f.||0L(R). One can prove that 27 <

const 2f,.
Recall that it follows from results of [27] that for f € C(T),

Il f loL(T) = const ||f||Bll;

actually we used this estimate in Section 9, see inequality (9.3).

We would like to remind also that for each positive integer n, there exists an analytic polyno-
mial f such that deg f =n, || f'||zoo(T)y = 1, and || f loL(T) = const i/logn; see Lemma 9.5.

Put

def 12" —1 1 k
0 = — = — .
n(2) nz—1 nE <

It is easy to see that

 iea " _é-n

—1 _ d—n.n—1 -1
0. (¢z7") =z w1 ~° ¢ (et ).

Denote by T, the set of nth roots of 1, i.e., T, o {ceT: ¢"=1}.
Let f be an analytic polynomial of degree less that n. Then

f@)= Z F(©,(z¢7") forevery e T.

cetrT,

If f is a trigonometric polynomial and deg f < n, then for every & € T, the function
7" £(2)02,(zE 1) is an analytic polynomial of degree less than 4n. Hence,

I f@o(zE) = D F(@)02(¢E oun(z 7).

fer T4n

Substituting & = z we get

f@O=2"Y" f@0(tz Y om(zt ) = Y f@Faz Q) (10.1)

;ETTM’ ;ETT4n
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for every v € T, where

def 13, |—4n (Z2n _ §2n)(z4n _ §4n)
Fl’l(Za ;) =2z ;‘ 8n2(z—§)2

Denote by P, (T?) the set of all trigonometric polynomial f on T? such that the functions

2+ f(z,€) and z — f (&, z) are trigonometric polynomials on T of degree at most n for every
& € T. Equality (10.1) implies the following identity:

fwy= > Y @ EFu( O F(w,§) (10.2)

tet Ty, £t Ty,
for every f € P, (Tz) and for arbitrary 71 and 75 in T.

Theorem 10.1. Let @ € P, (T2). Then

YT Y P a—

forall T, € T.

Proof. Clearly, it suffices to consider the case when 71 = 70 = 1 and ||<D||gm1I4 Ty = 1. Then

(see [31, Theorem 5.1]) there exist two sequences {¢;}seT,, and {V¢}seT,, of vectors in the
closed unit ball of a Hilbert space ‘H such that (¢;, ¥) = @ (¢, §). Put

&Y R Oge and by =Y Fyw ).

€Ty £e€Ty,

Taking into account that for z € T,

2 2n 2n |2
_ §-2n 1 ZZn _ {211 z _é-
—Z =5 2 || =)= | @ =2,
€Ty, ¢ €T \T2y T
we obtain
gl < Y |[Fuz, 0]

€ET411

_ |Z2n+1| Z 2n_§-2n 2 |Z2n_1| Z Z2n_é.2n 2

= 2 _ 2 —

8n (€T, ¢ ; 8n ¢ €Ty, \TZn ¢ é‘

2n 1 2n_1
_ e+ |42r|z |<ﬁ.

In the same way, ||hy|lH < < /2 for every w € T. By (10.2), we have @ (z, w) =

(g2, hy) for all
z, w € T. It remains to observe that by Theorem 5.1 in [31],

|9 w) gy, < supllgelia - sup lully <2, O
’ zeT weT
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We need the following version of Theorem 5.7:

Theorem 10.2. Let f be a function on T,,. Then
b
24, () =8l flloL(t,)

forevery § € (0 41

‘n

To prove Theorem 10.2, we need a lemma. Put

def [ 771, ifzeC, z#£0,
Mz = ’
@ {0, if 7=0.

Lemma 10.3. Let n be a positive integer. Then

T if n is even,
n

if n is odd.

21
4n >

e, , =]

Proof. It is easy to verify that

n

n+1 nz" 7"—1 n+1 7" -1
Z k — Zk: — 7~ Z :l’l)»(Z—l)
Pt 2 z—1 (z—=1) 2 z—1

for z € T,,. Hence,

Az—w)=w "A(zw! - 1)=1Z<k— ﬂ)ﬂwrk—l. (10.3)

Thus

n

1
|1 —=w)gn, , < - >

n+1’ T if n is even,
= 2_ [
%, if n is odd.

The opposite inequality is also true. It can be deduced from the observation that equality (10.3)
means that the function A(z — 1) on the group T, is the Fourier transform of the n-periodic
sequence {ag }xez defined by a; =k — % for k=1,2,...,n. Here we identify the group dual

to T,, with the group Z/nZ. We omit details because we need only the upper estimate. O
Proof of Theorem 10.2. The inequality

b
27,8 <3l flloLcr,), 8>0,

is a consequence of a unitary version of Theorem 5.1, which can be proved in the same way as
the self-adjoint version, see also [3, Theorem 4.13].
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Let us prove the opposite inequality for é € (0, %]. Fix & > 0. There exists a unitary operator
U and bounded operator R such that |[UR — RU| =1,0(U) C Ty, and || f(U)R — Rf(U)| >
I flloLct,) — €. Put

RuE Y Ey(8)REu(§)=R— Y. Eu({g)REu((¢)).
¢.5€Ty, £ ¢eTy,

Clearly, UR— RU =URy — RyU and f(U)R—Rf(U) = f(U)Ry — Ry f(U). Thus we may
assume that R = Ry . Note that

UR-RU= Y (—©Eu(lg})REu({€}).
C.E€Ty, ¢#E

Since

R=Ry= ) (—&8rM—&Ey(IZ)REy(1€)),
¢,E€Ty, ¢#&

we have R = H, x (UR — RU), where H,({,&) = A(¢ — &), where ¢,& € T,. Thus by
Lemma 10.3,

n
|RI< I Hallons, 5, IUR = RUI = | Hyllans, 1, < 5-

Let § € (0, %]. Then ||[U(BR) — (R)U|| =4 and ||6R|| < 1. Hence,
Q50,8 28| FAWIR = RFW)| = 8(I flowr,) — &)
Passing to the limit as ¢ — 0, we obtain the desired result. O

Theorem 10.4. Let f be a trigonometric polynomial of degree n > 1. Then
b s
£7® 2 1 oL

for§ e (0,1,

Proof. Applying Theorems 10.1 and 10.2, we obtain

fQ - sw .
‘ H =257120 () <257'2700)

‘ f@)— f(w) H

zmm Mr,, T,

fors€(0,1]. o
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Theorem 10.5. Let f be a trigonometric polynomial of degree n > 1. Then

8
2510 2 lefllomr)
for§ € (0,1,

Proof. It suffices to observe that .Q;.’T((S) <28241(8). O

Theorem 10.6. Let f € C(T). Then

22 > 2 (72 + (-2

k=0

).

where C is a positive constant.

Proof. Applying the convolution with the de la Vallée Poussin kernel, we can find an analytic
polynomial f, such that deg f, < 2", f,(k) = f(k) for k <2"~! and 2y, < 382;. Applying
inequalities (9.3) and (9.4), we obtain

n—1

I fulloLery > const > 2¢(| £(24)| + | £(=2)]).

k=0
It remains to apply Theorem 10.5 for § =27". O

In the following theorem we use the notation C4 for the disk-algebra:

Cal{fec: fin)y=0forn<0}.

Theorem 10.7. Let w:(0,2] — R be a positive continuous function. Suppose that w(2t) <
constw(t), the function t i1 (log %)*lw(t) is nondecreasing, and

2
2
/M <00, (10.4)

3loe2 4
> log” 7

Then there exists a function f € C such that f' € Ca and $25(8) > w(8) for all § € (0, 2].

Proof. Note that the inequality £27(8) > w(8) for 6 =27" implies that £2/(5) > constw(5) for
all 8 € (0,2]. Thus it suffices to obtain the desired estimate for § = 27". Taking Theorem 10.6
into account, we can reduce the result to the problem to construct a function g € C4 such that

w2y 1L
LR MER]

k=0

for all nonnegative integer n.
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Indeed, in this case the function f defined by

Z

—2(0
f(z):/g(s“) 8( )d;

¢
0
satisfies the inequality
1 n—1
aw< LY @)
k=0

Condition (10.4) implies that {a,},>0 € 2. Moreover, {ay, }n>0 is a nonincreasing sequence be-
cause the function 7 — ! (log ‘t—‘)’1 w(t) is nondecreasing.
We can find a function g € C4 such that §(2k) = ay for all k > 0, see, for example, [12]. Then

1n—l ln—l
;Z|§(2k)|zgzak Zap—1 2 an. O
k=0 k=0

Remark. Theorem 10.7 remains valid if we replace the assumption that the function 7 +—
t~!(log ‘t—‘)’lw(t) is nondecreasing with the assumption that there exists a positive constant C
such that

t
@) <C w(s)’ whenever 0 <t <s < 2.

z‘log‘l—L h slog?

11. Self-adjoint operators with finite spectrum. Estimates in terms of the e-entropy of the
spectrum

In this section we obtain sharp estimates of the quasicommutator norms || f(A)R — Rf (B)||
in the case when A has finite spectrum. This allows us to obtain sharp estimates of the operator
Lipschitz norm in terms of the Lipschitz norm in the case of operators on finite-dimensional
spaces in terms of the dimension.

Moreover, we obtain a more general result (see Theorem 11.5) in terms of e-entropy of the
spectrum of A, where ¢ = ||AR — RA||. This leads to an improvement of inequality (1.1).

Note that the results of this section improve some results of [10] and [11].

Let § be a closed subset of R. Denote by Lip(§) the set of Lipschitz functions on §. Put

1 £ llLip) = inf{C > 0: [£(x) = F()| < Clx — y| Vx, y € F).

Let {s;(T )};?‘;O be the sequence of singular values of a bounded operator T. We use the nota-
tion S, for the Matsaev ideal,
def def o
So S T:ITls, = ) (A +)71s;(T) <o
Jj=0

We need the following statement which is contained implicitly in [23].
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Theorem 11.1. Let f be a Lipschitz function on a closed subset § of R. Then for every nonempty
finite subset A in §,

D0 fllon, 5 < C(1 4 log(card(A))) Il £ lILipe3)-

where C is a numerical constant.

Proof. Let k € L?(u ® v), where u and v are Borel measures on A and §. Clearly, rankI,’: v
card(A). Hence, ||Z;"" ||s, < (1 + log(card(A)))[IZ;"" |l. Now Theorem 2.3 in [23] implies that

| Zis, £ | < const(1 +log(card(D)) [T - flLipz)- O
Theorem 11.2. Let A and B be self-adjoint operators. Suppose that o (A) is finite. Then
| f (AR = Rf(B)|| < C(1 +log(card(o (A)))) Il f lLip( o8y | AR = RB|
for all bounded operators R and f € Lip(o (A) U o (B)), where C is a numerical constant.

Proof. The result follows from Theorem 11.1 if we take into account the following generaliza-
tions of (5.2) and (5.4) (see [7]):

F(A)R - RF(B) = / / (D0f)(x y)dEA(x)(AR — RB)dE5(y)
o(A)xo(B)
and
H / f (Dof)(x. y) dEA(X)(AR — RB)dEp(y) H <190 f It oy I AR — RB]

a(A)xa(B)
which proves the result. O
Corollary 11.3. Let A, B be self-adjoint operators and let R be a linear operator on C". Then
| f (AR =Rf(B)| < C +logn)| fllLipayuom)llAR = RBJ| (1L1)
for every function f on o (A) U o (B), where C is a numerical constant.
Remark 1. Note that in the special case f(¢) = |¢| inequality (11.1) is well-known, see, e.g., [8].
This special case also follows from Matsaev’s theorem, see [15, Chapter III, Theorem 4.2] (see

also [14] where a finite-dimensional improvement of Matsaev’s theorem was obtained).

Remark 2. We also would like to note that inequality (11.1) is sharp. Indeed, it follows immedi-

ately from Lemma 15 of [8] that for each positive integer n there exist n x n self-adjoint matrices
A and R such that

[IAIR — R|A]|| > constlog(1 +n)||[AR — RA|| and AR— RA#0. (11.2)
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We also refer the reader to [22] where inequality (11.2) is essentially contained. Moreover, (11.2)
can be deduced from the results of Matsaev and Gohberg mentioned above.

The following result is a special case of Corollary 11.3 that corresponds to R = 1.
Theorem 11.4. Let A, B be self-adjoint operators on C". Then
|.f4) = £(B)| < CU +logm)| fIlLip(aresyllA — Bll
for every function f on o (A)U o (B), where C is an absolute constant.

Remark. The estimate in Theorem 11.4 is also sharp. Indeed, for each positive integer n there
exist n x n self-adjoint matrices A and B such that A # B and

[IA] = |B|| = constlog(l +n)||A — B||.
This follows easily from (11.2), see the proof of Theorem 10.1 in [2].

Definition. Let § be a nonempty compact subset of R. Recall that for ¢ > 0, the e-entropy K. (§)
of § is defined as

K. (%) € inflog(card(A)),

where the infimum is taken over all A C R such that A is an e-net of §. The following result is a
generalization of Theorem 11.2. On the other hand, it improves inequality (1.1) obtained in [2].

Theorem 11.5. Let A and B be self-adjoint operators and let R be bounded operator with
|R|l < 1. Suppose that o(A) C §, where § is a closed subset of R. Then for every f €
Lip(o(A) Uo (B)),

| f(AR = Rf (B)| < const(1 + K: ()| £ ILip (Ao sy I AR — RBII,

where ¢ < ||AR — RB|.
Proof. We repeat the argument of the proof of Theorem 5.8. Clearly, f can be extended to a

Lipschitz function on R with the same Lipschitz constant. We can find a self-adjoint operator A,
such that A, A = AA,, ||A — A.|| < ¢, and log(card(o (Ag))) < K¢ (). Then

| f(A)R — Rf(B)| < const(1+ K¢ (3)) Il £ lILipo (a)uo 8y | Ac R — RB]|
< 2constd (1 + Ko ()1 f ILipto(A)uo (8))
by Theorem 11.2. It remains to observe that since A commutes wit A,, we have

[fF(OR—=RFB)| <|f(A — f(A)| +]||f(ADR — RF(B)|
<ell fllLip@ay + | F(A)R — RF(B)||. O
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Corollary 11.6. Let A and B be self-adjoint operators and let o (A) C §, where § is a closed
subset of R. Then for every f € Lip(c (A) Uo (B)),

| £(A) = f(B)] < const(1 + Ke (@)1l f ILipo a)uo sy | A — B,
where ¢ def |IA — Bj.
Proof. Itsufficestoput R=17. O

If we apply Theorem 11.5 to the case K = [a, b], we obtain the following estimate, which
improves inequality (1.1) in the special case R = 1.

Corollary 11.7. Let f € Lip(R). Let A be a self-adjoin t operator with o(A) C [a, b]. and
|R|| < 1. Then for every self-adjoint operator B,

—a

| £ (AR~ RF(B)[ < const | flLip 1°g<2 T AR —RBI

>||AR—RB||.

Note that we do not impose any assumptions on the spectrum of B.

Corollary 11.8. Ler f € Lip(R). Let A be a self-adjoint operator with o (A) C |a, b]. Then for
every self-adjoint operator B,

b—a
| £(A) = f(B)| < const]| fIlLip log(z + M) A — BJ.
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