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Let V be a non-singular projective variety defined over a number field K and
let , : V � V be a morphism defined over K. Suppose there is a divisor class '
on V which is an eigenclass for , with eigenvalue :>1. Call and Silverman [2]
have shown that there is a unique canonical height h� V, ', , on V(K� ) charac-
terized by the properties that h� V, ', , is a Weil height for the divisor class ' and

h� V, ', ,(,P)=:h� V, ', ,(P) for all P # V(K� ).

The construction in [2] generalizes the work of Ne� ron [12] and Tate (see
[8]), who have proven the existence of canonical heights on abelian varieties,
and of Silverman [19], who constructed canonical heights on K3 surfaces.

Suppose , : Pn � Pn is a morphism of degree d>1. If ' is any divisor
class on Pn, then ,*'=d', so every divisor class is an eigenclass for ,.
Since the divisor class group on Pn is isomorphic to Z, we will restrict our
attention to the divisor class on Pn of degree one. In this case, by the con-
struction in [2], there is a unique canonical height h� , which differs from
the standard Weil height on Pn by a bounded amount and satisfies

h� ,(,P)=dh� ,(P) for all P # Pn(K� ).

The purpose of this paper is to give explicit formulas for computing these
canonical heights h� , on Pn and to begin the study of their arithmetic
properties. We now describe the contents of the paper in more detail.

article no. NT972099

211
0022-314X�97 �25.00

Copyright � 1997 by Academic Press
All rights of reproduction in any form reserved.

* Research supported by NSA MDA904-93-H-3022. E-mail: gscall�amherst.edu.
- Research supported by NSF DMS-9301161. E-mail: goldstin�math.harvard.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82296485?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


File: 641J 209902 . By:DS . Date:02:04:97 . Time:13:14 LOP8M. V8.0. Page 01:01
Codes: 3348 Signs: 2416 . Length: 45 pic 0 pts, 190 mm

In Section 1 we recall Tate's averaging procedure to describe how the
canonical height h� , may be obtained as a limit of Weil heights on the
points in the ,-orbit of P. Although constructions of this type are well-
known (Cf. [8], pp. 82�83), it was only recently observed in [2] that for
all P # Pn(K� ), h� ,(P)=0 if and only if the ,-orbit of P is finite (i.e., P is pre-
periodic under ,). Combining this remark with the non-degeneracy of the
height h� , yields Northcott's theorem (see [13] and Lewis [9]) that , can
have at most finitely many K-rational pre-periodic points. Furthermore,
this suggests that by obtaining formulas for the canonical height h� , we may
be able to count the number of K-rational pre-periodic points of ,. The
related question of bounding the maximum period of K-rational periodic
points for polynomial maps on Pn is studied by Morton and Silverman
[10], Narkiewicz [11], and Pezda [14] and [15]. In addition, Silverman
[20] has used canonical heights to bound the number of integer points in
a ,-orbit. We will turn to the question of counting pre-periodic points for
polynomial maps in Section 6.

In Section 2 we describe how the canonical height h� , may be decom-
posed into a sum of canonical local heights. Specifically, for each hyper-
plane H on Pn and each rational function f # K(Pn) such that

,*H=dH+div( f ),

it follows from [2] that there is a unique canonical local height *� H, ,, f

which is a Weil local height for the divisor H and satisfies

*� H, ,, f (,P, v)=d*� H, ,, f (P, v)+v( f (P))

for all absolute values v # MK� and all P # Pn(K� ) such that P, ,P � |H|.
(If E is a number field or the field of algebraic numbers K� , we use ME

to denote the set of standard absolute values on E described in Sections 1
and 2.) Then for all number fields L and all points P # Pn(L)"|H|,

h� ,(P)=
1

[L : Q]
:

v # ML

[Lv : Qv] *� H, ,, f (P, v).

With this decomposition formula for h� ,(P) in hand, we focus our attention
on developing methods for computing the canonical local heights
*� H, ,, f (P, v).

If v # MK is non-archimedean and ? is the prime ideal of K determined
by v, then we say that , has good reduction at v if , extends to a morphism
Pn�R? � Pn�R? of schemes over the local ring R? . Thus , has good reduc-
tion at v for all but finitely many non-archimedean v # MK . At each v where
, has good reduction, we show in Theorem 2.2 and Lemma 2.3 how any
canonical local height *� H, ,, f (P, v) may be computed via a simple formula.
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For the finitely many remaining absolute values v # MK , including the
archimedean v, we give both series and sequence formulas for *� H, ,, f (P, v)
in Section 3. In particular, given any v # MK and any P # Pn(Kv), we can
explicitly describe a series which rapidly converges to *� H, ,, f (P, v). If the
choice of homogeneous polynomials defining , is fixed, then this series can
be shown to telescope. If, in addition, the orbit of P under , does not inter-
sect |H|, then we obtain a limit formula for *� H, ,, f (P, v) which is analogous
to the limit formula for h� ,(P) derived in Section 1. We conclude Section 3
by computing the canonical local heights *� H, {e, f (P, v) at all non-
archimedean v for a family of degree two morphisms on {e on P1.

Motivated by the limit formula obtained in Section 3, we restrict our
attention beginning in Section 4 to those morphisms , : Pn � Pn which
have a hyperplane eigendivisor W; i.e., a hyperplane W such that
,*W=dW as a divisor on Pn. For such a morphism , with a hyperplane
eigendivisor W, Theorem 2.1 shows that there is a unique canonical local
height *� W, , such that

*� W, ,(,P, v)=d*� W, ,(P, v),

for all P # Pn"|W|. In Section 4 we show that given any Weil local height
*W , for all v and all P � |W|, *� W, ,(P, v) is the limit of the values of
d&m*W (,mP, v) as m goes to infinity. It follows that a point P will be a pre-
periodic point of , if and only if *� W, ,(P, v)=0 for all v # MK� . This
provides us with a strong criterion for determining the pre-periodic points
of ,. To facilitate our computations, it is convenient to describe how
canonical local heights are affected by a change of coordinates. This is
accomplished in Section 4 and applied to give exact formulas for all
canonical local heights, and thus all canonical heights, associated to
diagonalizable morphisms (i.e., morphisms on Pn which possess n+1 dis-
tinct hyperplane eigendivisors whose intersection is empty).

A hyperplane eigendivisor for a morphism , : P1 � P1 is simply a totally
ramified fixed point, so the morphisms on P1 which possess hyperplane
eigendivisors are precisely the polynomial maps. Beginning in Section 5 we
focus on polynomial maps on P1. For any polynomial map , with hyper-
plane eigendivisor W, we demonstrate how to compute the canonical local
heights *� W, ,(P, v) for all P # P1(K)"|W| and all non-archimedean v # MK .
In the special case where the Newton polygon of , is a straight line which
intersects the line x=1 below the x-axis, our method can be refined to give
an explicit formula for *� W, ,(P, v). As a corollary we obtain explicit for-
mulas for the canonical local heights associated to any degree two polyno-
mial map , on P1 and non-archimedean v # MK .

In Section 6 we develop the connection between the v-adic dynamics of
polynomial maps on P1 and the v-adic canonical local heights associated to
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them. Suppose that an embedding of K� into C is fixed and v� denotes the
standard archimedean absolute value on C. Recall that the filled Julia set
of , as defined in complex dynamical systems (Cf. Devaney [4], Sec-
tion 3.8) consists of those points P # P1(C) whose orbit under , is bounded
with respect to v� . We extend this definition to all v # MK� by defining the
v-adic filled Julia set of , to be the set of points P # P1(K� v) whose orbit
under , is v-adically bounded. If W is a hyperplane eigendivisor of the
polynomial map , and |W|{[P], we prove that, for each v # MK� ,
*� W, ,(P, v)=0 if and only if P lies in the v-adic filled Julia set of ,. Then
we deduce that the pre-periodic points of , are precisely the points which
lie in the intersection of all the v-adic filled Julia sets of ,. Combining the
calculations of the non-archimedean canonical local heights made in Sec-
tion 5 with some archimedean estimates, we conclude the paper by using
this criterion to bound the number of rational pre-periodic points of any
quadratic Q-polynomial map in terms of the number of primes dividing the
denominators of its coefficients.

Canonical heights have proven to be invaluable tools in the study of
abelian varieties and their applications throughout arithmetic geometry.
The recently developed theory of canonical heights on K3 surfaces (Cf. [3]
and [19]) has already produced several interesting arithmetic applications
and open conjectures. It is our hope that canonical heights on projective
space will likewise prove to be useful in the study of the geometry and
dynamics of morphisms on Pn.

In this course of this research we have been fortunate to receive many
valuable comments. We would like to thank David Cox for helpful conver-
sations on geometry and dynamical systems, and Barry Mazur for sharing
his insight into the connection between canonical local heights and v-adic
dynamics. We gratefully acknowledge the care the referee took in reviewing
the paper and, in particular, his�her comments which improved Theorem 6.1
and the results of Section 5. We also appreciate John Tate's generous
suggestions which included showing us how to refine Propositions 3.4 and
3.5. Finally, we would like to extend special thanks to Joe Silverman,
whose continuing help and numerous comments have had much to do with
the success of our work.

1. CANONICAL GLOBAL HEIGHTS

We set the following notation for use throughout the paper.

K an algebraic number field.

Pn Pn(K� ), where K� is the field of algebraic numbers.
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Our starting point is the standard height on Pn.

Definition. The set of standard absolute values over Q is the set
MQ =[ | |�] _ [ | |p : p a prime], where | | � is the ordinary archimedean
absolute value on Q and the non-archimedean p-adic absolute values | |p

are normalized so that | p|p=1�p. The set of standard absolute values over
K is the set

MK=[ | | v : the restriction of | | v to Q is in MQ ].

For each | | v # MK , define a map v : K* � R by v(x)=&log |x| v . Since
we will use logarithmic heights throughout this paper, it will be convenient
to abuse notation and write v # MK instead of | | v # MK . When it is
necessary to distinguish between them, we will refer to v as a valuation and
to | | v as the absolute value associated to v.

Definition. The standard height on Pn(K) is the map h : Pn(K) � R
where

h([x0 , ..., xn])=
1

[K : Q]
:

v # MK

[Kv : Qv] log max[ |x0 | v , ..., |xn | v]

=
&1

[K : Q]
:

v # MK

[Kv : Qv] min[v(x0), ..., v(xn)].

The product formula assures that this function yields the same value for
any choice of homogeneous coordinates. It is worth noting that when we
are working with P # Pn(Q), we can pick coordinates x0 , ..., xn for P that
are integers with no common prime factors and thus eliminate all the non-
archimedean terms in the standard height formula; in this case,
h(P)=log max[ |x0 | � , ..., |xn |�]. Also note that the standard height on
Pn(K) is non-degenerate, i.e., for any C>0, the set [P # Pn(K) | h(P)�C]
has only finitely many elements.

The standard height on Pn(K) can be extended to Pn(K� ) as follows; for
any [x0 , ..., xn] # Pn(K� ), take an algebraic number field L which contains
x0 , ..., xn and compute h([x0 , ..., xn]) over L with the definition given
above. The extension formula (Cf. Lang [7], Cor. 1, p. 39) guarantees that
this computation yields the same height independent of the choice of L.
The non-degeneracy of h extends to K� in the following manner; for any
C, D>0, the set

[P # Pn | P # Pn(L) for some L such that [L : K]�D and h(P)�C]

is finite (Cf. Silverman [17], Thm. 5.11, pp. 213�214).

215CANONICAL HEIGHTS ON PROJECTIVE SPACE



File: 641J 209906 . By:DS . Date:02:04:97 . Time:13:14 LOP8M. V8.0. Page 01:01
Codes: 3027 Signs: 1803 . Length: 45 pic 0 pts, 190 mm

The following theorem, which is essential to our canonical height con-
struction, is a well-known consequence of the Hilbert Nullstellensatz (Cf.
Lang [8], p. 81).

Theorem 1.1. If , : Pn � Pm is a morphism of degree d, then there exists
C>0 such that for all P # Pn, |h(,P)&dh(P)|�C.

If n=m, the existence of the canonical height on Pn may be established
using a limit argument due to Tate.

Theorem 1.2. For any morphism , : Pn � Pn of degree d>1, there exists
a unique function h� , : Pn � R, called the canonical height associated with ,,
which has the following properties:

(i) For all P # Pn, h� ,(,P)=dh� ,(P).

(ii) The function h&h� , is bounded on Pn; i.e., h� , is a Weil height
on Pn. Furthermore, the canonical height h� , satisfies

h� ,(P)= lim
k � �

h(,kP)
dk , (1)

for all P # Pn.

Proof. This result follows directly from Theorem 1.1 and Proposi-
tion 1.2 of [2] by taking the variety V to be Pn and the divisor class ' to
be the degree one class on Pn. K

Note that the standard height h on Pn is a canonical height. In par-
ticular, if \ : Pn � Pn is the morphism of degree d>1 defined by
\[x0 , x1 , ..., xn]=[xd

0 , xd
1 , ..., xd

n], then h(\P)=dh(P) for all P # Pn by the
definition of h. By Theorem 1.2, the canonical height associated with \ is
unique, so h=h� \ .

Recall that if , : Pn � Pn is a morphism and P # Pn, the ,-orbit of P is the
set [,kP | k�0], and also that P is called a pre-periodic point of , if the
,-orbit of P is finite. Since h is non-degenerate and the difference between
h and h� , is bounded, h� , is clearly also non-degenerate. Combining these
remarks with the limit formula (1) produces the following corollary.

Corollary 1.3. Let , : Pn � Pn be a morphism of degree d>1 defined
on K.

(a) For all P # Pn, P is pre-periodic if and only if h� ,(P)=0.

(b) For any D�1, the set

[P # Pn | P is a pre-periodic point of , and P # Pn(L) where [L : K]�D]

is finite.
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Proof. This is Corollary 1.1.1 of [2] with V=Pn and ' the divisor class
of degree one on Pn. K

If d>1 and n�1 are fixed, the following conjecture of Morton and
Silverman [10] asserts that the number of pre-periodic points of a degree
d morphism , on Pn is bounded independently of ,.

Boundedness Conjecture. For any positive integers D, n, and d>1, there
exists a constant C(D, n, d )>0 such that for any field K with [K : Q]=D
and any morphism , : Pn � Pn of degree d defined over K,

*[P # Pn(K) | P is a pre-periodic point of ,]�C(D, n, d ).

We will return to the special case D=n=1 and d=2 of the Bounded-
ness Conjecture in Section 6.

2. CANONICAL LOCAL HEIGHTS

In this section we will specialize the theory developed in [2] to construct
canonical local heights on Pn. Then, in Theorem 2.2, we will show that
whenever , has good reduction at v # MK , the canonical local heights
associated to v are standard Weil local heights. This provides us with a
simple method for computing any canonical local height at all but finitely
many v # MK . We will derive a formula for the difference between any two
canonical local heights and recall from [2] that the canonical global height
h� , may be constructed by summing canonical local heights over the
absolute values v.

To the notation established in Section 1, we add the following.

M=MK� the set of absolute values on K� extending those in MK .

, a morphism , : Pn � Pn of degree d�2 defined over K.

l a linear form l(x0 , ..., xn) # K[x0 , ..., xn].

H the hyperplane defined by l(x0 , ..., xn)=0,

considered as a divisor on Pn. We write H=div(l ).

*l a Weil local height function *l : (Pn(K� )"|H| )_M � R

associated to H, defined by

*l (P, v)=max {v \ l(P)
x0(P)+ , ..., v \ l(P)

xn(P)+= .
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We will say that a Weil local height *W associated to the hyperplane W
is standard if there is a linear form g such that div(g)=W and

*W (P, v)=max {v \ g(P)
x0(P)+ , ..., v \ g(P)

xn(P)+= .

Thus *l is a standard Weil local height. Note that if *W is any standard
Weil local height, and L is any number field, then by the product formula

h(P)=
1

[L : Q]
:

v # ML

[Lv : Qv] *W (P, v),

for all points P # Pn(L)"|W|, where h is the standard height on Pn and ML

is the set of standard absolute values on L.
To aid the reader we recall some basic definitions and terminology (Cf.

[8]). An MK-constant is a function } : MK � R such that }(w)=0 for all
but finitely many w # MK . Given an MK-constant }, we may extend } to
an M-constant by setting }(v)=}(w) if v # M extends w # MK . It is useful
to think of } as a family of constants [c(v)] parametrized by M. A function
; : Pn_M � R is said to be M-bounded if there is an M-constant } such
that

|;(P, v)|�}(v)

for all (P, v) # Pn_M. ; is said to be M-continuous if for all v # M the map

P [ ;(P, v)

is continuous with respect to the v-topology on Pn.
Let f # K(Pn) be a rational function such that

,*H=dH+div( f ). (2)

By the functoriality property of Weil local heights ([8], Proposition 2.6,
p. 258), there is an M-bounded and M-continuous function # : Pn_M � R
such that

*l (,P, v)=d*l (P, v)+v( f (P))+#(P, v), (3)

for all v # M and all P # Pn"( |H| _ |,*H| ). It follows from Theorem 2.1(b)
of [2] (with V=Pn and divisor E=H) that , and f uniquely determine a
canonical local height *� H, ,, f associated to H which satisfies the
functoriality relation (3) without the # term; i.e., we have
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Theorem 2.1. Let f # K(Pn) be a rational function such that

,*H=dH+div( f ).

Then there exists a unique function *� H, ,, f which is a Weil local height for the
divisor H and which satisfies

*� H, ,, f (,P, v)=d*� H, ,, f (P, v)+v( f (P)), (4)

for all v # M and all P # Pn such that P, ,P � |H|.

Remark. Fix v # M and let K� v denote the completion of K� at v. Then it
follows from the proof of Theorem 2.1(b) of [2] that the domain of the
canonical local height may be extended to Pn(K� v)"|H|. In particular, there
is a unique function *� v : Pn(K� v)"|H| � R such that

(i) the difference *� v(P)&*l (P, v) is bounded and v-continuous on
Pn(K� v), and

(ii) *� v(,P)=d*� v(P)+v( f (P)), for all P # Pn(K� v) such that P, ,P � |H|.

Of course, by uniqueness, we have *� v(P)=*� H, ,, f (P, v) for all P # Pn(K� ),
P � |H|.

Suppose v # MK is non-archimedean and let ?=?v denote the prime
ideal of K determined by v. We will say that , : Pn�K � Pn�K has good
reduction at v if , extends to a morphism Pn�R? � Pn�R? of schemes
over the local ring R? . In particular, let F? denote the residue field of
R? and let F� ? denote an algebraic closure of F? . Then to say that ,
has good reduction at v means that , can be written in the form
,=[ f0(x0 , ..., xn), ..., fn(x0 , ..., xn)], where f0 , ..., fn # K[x0 , ..., xn] are
homogeneous polynomials of degree d with v-integral coefficients, so that
the reduced polynomials f� 0 (mod ?), ..., f� n (mod ?) in R?[x0 , ..., xn] have
no common roots in Pn(F� ?). Furthermore, as our next result shows, the
polynomials f0 , ..., fn may be used to define a rational function f # K(Pn)
such that *� H, ,, f (P, v)=*l (P, v) for all P # Pn(K)"|H|.

Theorem 2.2. Suppose v # MK is non-archimedean and , has good reduc-
tion at v. Write ,=[ f0 , ..., fn] as above, where f0 , ..., fn # K[x0 , ..., xn] are
homogeneous polynomials with v-integral coordinates whose reductions
modulo ? have no common roots in Pn(F� ?). Define f # K(Pn) by
f (P)=l( f0(P), ..., fn(P))�l(P)d. Then ,*H=dH+div( f ) and

*� H, ,, f (P, v)=*l (P, v),

for all P # Pn(K)"|H|.
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Proof. Since div(l )=H, div( f )=,*H&dH by the definition of f.
By Theorem 2.1, *� H, ,, f is the unique Weil local height for H satisfying

(4). Since v # MK is fixed, by the remark following Theorem 2.1 it suffices
to show that #(P, v)=*l (,P, v)&d*l (P, v)&v( f (P))=0 for all P # Pn(K� v)
such that P, ,P � |H|. Using the definitions of *l and f, and the fact that
,P=[ f0(P), ..., fn(P)], we compute

#(P, v)=*l (,P, v)&d*l (P, v)&v( f (P))

=max{v \l( f0(P), ..., fn(P))
f0(P) +, ..., v \l( f0(P), ..., fn(P))

fn(P) +=
&d max{v \ l(P)

x0(P)+, ..., v \ l(P)
xn(P)+=&v( f (P))

=max[&v( f0(P)), ..., &v( fn(P))]

&d max[&v(x0(P)), ..., &v(xn(P))]

=d min[v(x0(P)), ..., v(xn(P))]&min[v( f0(P)), ..., v( fn(P))]

for all P in the Zariski open set Pn(K� v)"( |H| _ |,*H| ). However, since
v-continuous functions on Pn(K� v) which agree on a Zariski open subset
must be identically equal (Cf. [8], Lemma 1.4, p. 251), we conclude

#(P, v)=d min[v(x0(P)), ..., v(xn(P))]&min[v( f0(P)), ..., v( fn(P))]

for all P # Pn(K� v).
Given P # Pn(K� v) choose v-integral coordinates z0 , ..., zn for P such that

min[v(z0), ..., v(zn)]=0. Then since f0 , ..., fn have v-integral coefficients,

#(P, v)=&min[v( f0(z0 , ..., zn)), ..., v( fn(z0 , ..., zn))]�0.

But if #(P, v)<0, the reduction of [z0 , ..., zn] modulo ? would be a
common root of f� 0 , ..., f� n in Pn(F� ?). Thus #(P, v) must be zero for all
P # Pn(K� v). K

We next observe that the difference between any two canonical local
heights associated to , equals the valuation of a rational function plus an
M-constant. In particular, suppose that , has good reduction at v and
g # K(Pn) is any rational function such that ,*H=dH+div(g). Then the
following lemma combined with Theorem 2.2 gives a simple formula for the
canonical local height *� H, ,, g(P, v).
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Lemma 2.3. Let k # K[x0 , ..., xn] be a linear form and set W=div(k).
Suppose f, g # K(Pn) satisfy

,*H=dH+div( f ) and ,*W=dW+div(g). (5)

Then

c=\ f
g+\

k
l

b ,+\ l
k+

d

(6)

is a non-zero constant in K*, and the canonical local heights *� H, ,, f and
*� W, ,, g satisfy

*� H, ,, f (P, v)=*� W, ,, g(P, v)+v \ l
k

(P)++
1

1&d
v(c)

for all P # Pn"( |H| _ |W| ) and all v # M.

Proof. We first check that c is a non-zero constant by computing its
divisor,

div(c)=[div( f )&div(g)]+[,*W&,*H]+d[H&W]=0,

by (6) and (5). Hence, c # K* since f, g, l, k and , are defined over K.
Let

_(P, v)=*� W, ,, g(P, v)+v \ l
k

(P)++
1

1&d
v(c).

Since v((l�k)(P)) is a local height associated to the divisor H&W, and
(1�(1&d )) v(c) is an M-constant, _ has a unique M-continuous extension
_� to (Pn"|H| )_M. Furthermore, _� is a Weil local height associated to the
divisor H. To show that _� is in fact the canonical local height *� H, ,, f , we
compute

_� (,P, v)&d_� (P, v)&v( f (P))

=*� W, ,, g(,P, v)+v \ l
k

(,P)++v(c)

&d _*� W, ,, g(P, v)+v \ l
k

(P)+&&v( f (P))

=v(c)&_v( f (P))&v(g(P))+v \k
l

(,P)++dv \ l
k

(P)+&=0

for all v # M and all P in a Zariski open subset of Pn. Since any Weil local
height which is zero on a Zariski open subset of Pn must be identically
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zero ([8], Corollary 2.3, p. 257), _� (,P, v)&d_� (P, v)&v( f (P))=0 for all
v # M and all P # Pn such that P, ,P � |H|. Therefore, _� =*� H, ,, f by
Theorem 2.1. K

We conclude this section by observing that the canonical global height
h� , described in Section 1 may be computed by summing the canonical local
heights *� H, ,, f over the valuations v.

Theorem 2.4. Let f # K(Pn) be any rational function such that ,*H=
dH+div( f ). Then for all number fields L and all points P # Pn(L)"|H|,

h� ,(P)=
1

[L : Q]
:

v # ML

[Lv : Qv] *� H, ,, f (P, v),

where ML is the set of standard absolute values on L.

Proof. This is Theorem 2.3 of [2] with variety V=Pn and divisor
E=H. K

3. CONVERGENT SERIES AND SEQUENCES FOR CANONICAL
LOCAL HEIGHTS

For those non-archimedean absolute values v at which the morphism ,
has good reduction, combining Theorem 2.2 and Lemma 2.3 gives a simple
method for computing the canonical local height *� H, ,, f (P, v). This leaves
the task of determining the canonical local height at the finitely many
absolute values which are either archimedean or non-archimedean absolute
values at which , has bad reduction. In this section we will describe a spe-
cial case of the rapidly converging series given in [2] for computing the
canonical local height at any absolute value v. Then we will show that
when we fix a choice of polynomials which define ,, the series formula for
*� H, ,, f (P, v) telescopes. In the special case where the orbit of P under ,
does not intersect |H|, this enables us to derive a limit formula for
*� H, ,, f (P, v) which is analogous to the limit formula for the canonical
global height given in Theorem 1.2.

To the notation of the preceding sections, we add the following.

Hi the coordinate hyperplane div(xi), for i=0, ..., n.

*i a fixed standard Weil local height associated to Hi , defined by

*i (P, v)=max{v \xi (P)
x0(P)+, ..., v \xi (P)

xn(P)+=
=v(xi (P))&min[v(x0(P)), ..., v(xn(P))].
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Throughout this section, and only within this section, we will fix a single
valuation v. As in Section 2, we let f # K(Pn) denote a rational function
satisfying

,*H=dH+div( f ).

Let K� v denote the completion of K� at v. Recall that given any Weil
local height *W , the map P [ *W (P, v) may be defined for all points
P # Pn(K� v)"|W|. Our goal is to give a series for *� H, ,, f (P, v) which con-
verges for all P # Pn(K� v)"|H|. Tate [21] originally described a series for
computing canonical heights on elliptic curves. The idea of switching coor-
dinates to ensure convergence in all cases was first introduced by Silverman
[18]. The series for *� H, ,, f (P, v) will be constructed using the following
rational functions. For all integers i, j, with 0�i, j�n, define ti , sij # K(Pn)
by

ti=
l

xi
and sij= f }

td
i

tj b ,
. (7)

Theorem 3.1. Let P # Pn(K� v)"|H|. Choose any sequence of indices
i0 , i1 , i2 , . . . (depending on P) such that

v(xik
(,kP))= min

0� j�n
[v(xj (,kP))]. (8)

(a) For every k�0, the function sikik+1
is defined at ,kP. Furthermore,

the sequence of real numbers

ck=&v(sikik+1
(,kP)), k=0, 1, 2, . . . (9)

is bounded independently of k and P.

(b) The canonical local height satisfies

*� H, ,, f (P, v)=v(ti0(P))+ :
N&1

k=0

d&k&1ck+O(d&N), (10)

where the big-O constant is independent of both P and N.

Proof. This is Theorem 5.3 of [2] with variety V=Pn, divisors E=H
and Di=Hi , and local heights * |Di |=*i . Theorem 5.3 of [2] assumes that
the sequence of indices i0 , i1 , i2 , . . . satisfies

*ik
(,kP, v)= min

0�i�n
*i (,kP, v).
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Note that this is equivalent to (8) since, by the definition of the standard
local heights *i , for all Q # Pn(K� v) we have

min
0�i�n

*i (Q, v)=0,

and *j (Q, v)=0 if and only if v(xj (Q))=min0�i�n [v(xi (Q))]. K

To simplify our series formula for *� H, ,, f (P, v), we begin by fixing
homogeneous polynomials f0 , f1 , ..., fn # K[x0 , ..., xn] such that

,[x0 , ..., xn]=[ f0(x0 , ..., xn), ..., fn(x0 , ..., xn)].

Let 0 denote the (n+1)-tuple of zeros in K� n+1. Thus f0 , ..., fn have no
common zeros in K� n+1"[0], because , is a morphism. Define a map
8 : (K� n+1"[0]) � (K� n+1"[0]) by

8(a0 , ..., an)=( f0(a0 , ..., an), ..., fn(a0 , ..., an)).

Similarly, let X0 , ..., Xn denote the coordinate functions on K� n+1 corre-
sponding to x0 , ..., xn respectively. Note that ,[x0 , ..., xn]=[8(X0 , ..., Xn)],
so ,k[x0 , ..., xn]=[8k(X0 , ..., Xn)] for all k�0. As in Theorem 2.3, define
f # K(Pn) by

f =
l( f0(x0 , ..., xn), ..., fn(x0 , ..., xn))

l(x0 , ..., xn)d . (11)

Proposition 3.2. Let P # Pn"|H|, choose a=(a0 , ..., an) # (K� n+1"[0])
such that P=[a0 , ..., an], and define 8 and f as above. Choose any sequence
of indices i0 , i1 , i2 , . . . such that (8) holds. Then

*� H, ,, f (P, v)=v(l(a))& lim
k � �

v(Xik
(8ka))

d k . (12)

Proof. By (7) and (11), for all integers i, j, with 0�i, j�n, we find

sij= f }
td

i

tj b ,
=

l( f0 , ..., fn)
ld }

ld

(xi)
d } \xj

l
b ,+=

fj

(xi)
d .

Therefore,

sik ik+1
(,kP)=

fik+1
(,kP)

xik
(,kP)d =

fik+1
(8ka)

Xik
(8ka)d=

Xik+1
(8k+1a)

Xik
(8ka)d .

Then, by (9), we compute

ck=&v(sikik+1
(,kP))=dv(Xik

(8ka))&v(Xik+1
(8k+1a)).
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Plugging this expression into (10) and letting N go to infinity, we find a
telescoping sum which reduces to

*� H, ,, f (P, v)=v(ti0(P))+v(Xi0(a))& lim
k � �

v(Xik+1
(8k+1a))

d k+1

=v(l(a))& lim
k � �

v(Xik
(8ka))

d k ,

since by definition (7), ti0
=l�xi0 . K

Remark. As we have shown, a canonical local height is uniquely deter-
mined by the choice of a hyperplane H, a morphism , and a rational func-
tion f # K(Pn) such that

,*H=dH+div( f ).

It is worth noting that a canonical local height may also be specified by
choosing a linear form l # K[x0 , ..., xn] and a vector of homogeneous poly-
nomials 8=( f0 , ..., fn) which define a morphism , on Pn as above. In par-
ticular, given such an l and a 8, there exists a unique function *� l, 8 which
is a Weil local height associated to H=div(l ) and satisfies

*� l, 8(,P, v)=d*� l, 8(P, v)+v( f (P)),

for all P # Pn"( |H| _ |,*H| ), where f # K(Pn) is defined by (11). Indeed *� l, 8

is just the canonical local height *� H, ,, f of Proposition 3.2 and the following
corollary. This method of parametrizing canonical local heights is
developed in Goldstine [5].

Corollary 3.3. Suppose there exists an increasing sequence of non-
negative integers j0< j1< j2< } } } such that , jkP � |H| for all k�0. Define
8 and a as above. Then

*� H, ,, f (P, v)=v(l(a))+ lim
k � �

*H(, jkP, v)&v(l(8 jk a))
d jk

.

Proof. Let m�0 be any integer such that ,mP � |H|. Then, by the
definition of *H , we have

*H(,mP, v)=v(l(,mP))&min
i

[v(xi (,mP))]

=v(l(,mP))&v(xim(,mP)) by (8),

=v(l(8ma))&v(Xim(8ma)).

Hence, our desired result follows from Proposition 3.2. K
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For the purpose of making some explicit calculations, we will focus next
on a family of morphisms on P1. To simplify notation we identify P1(K)
with K _ [�]; i.e., we identify each point P=[x, y] with its affine coor-
dinate z= y�x. Let e # K and consider the morphism {={e : P1 � P1 defined
by

{[x, y]=[x2+ y2, exy] or, equivalently, {(z)=
ez

z2+1
.

Let l=x, so H=div(x)=[�]. Then the rational function f # K(P1)
defined by (11) is

f (z)=1+z2.

For simplicity we write *� (z, v) for the canonical local height *� H, {, f (P, v)
and *(z, v) for the standard local height *0(P, v) associated to the same
divisor H. Note that

*(z, v)=max {0, v \x
y+==max[0, &v(z)].

Our goal is to compute *� (z, v) for z # K and non-archimedean v # MK .
We first observe that if v(e)=0, then { has good reduction at v and the

polynomials f0(x, y)=x2+ y2 and f1(x, y)=exy satisfy the conditions of
Theorem 2.2. Therefore, *� (z, v)=*(z, v). If v(e){0, then we may have to
consider the valuations of the iterates of z. Given z # K, we will write
zk={k(z) for k�0. We would like to thank John Tate for his help in
obtaining the following two results.

Proposition 3.4. Let v # MK be non-archimedean and suppose v(e)>0.

(a) If v(z){0, then *� (z, v)=*(z, v).

(b) If v(zk)=0 for all k, then *� (z, v)=&v(e).

(c) Otherwise, there is an m>0 such that

v(zk)=0 for 0�k<m, v( f (zk))=v(e) for 0�k<m&1, and

v(zm)=v(e)&v( f (zm&1)){0.

In this case,

*� (z, v)=&\1&
1

2m&1+ v(e)&
1

2m min[v( f (zm&1)), v(e)].
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In particular,

&\1&
1

2m&1+ v(e)�*� (z, v)� &\1&
1

2m+ v(e).

Proof. By definition of *� =*� H, {, f , we have

*� ({z, v)=2*� (z, v)+v( f (z)). (13)

We observe that the region v(z)>0 is stable under { since

v({z)=v(e)+v(z)&v(1+z2)=v(e)+v(z)>0.

So suppose v(z)>0. Then

*(zk , v)=max[0, &v(zk)]=0 for all k�0,

and hence the sequence *� (zk , v) is bounded for k�0. But v( f (zk))=
v(1+z2

k)=0 for k�0, so by (13), *� (zk , v)=2k*� (z, v). Therefore,
*� (z, v)=*(z, v)=0.

Suppose v(z)<0. Then v( f (z))=v(1+z2)=2v(z) and

v({z)=v(e)+v(z)&v(1+z2)=v(e)&v(z)>0.

Therefore, *� ({z, v)=0, and thus by (13) we conclude

*� (z, v)=&1
2 v( f (z))=&v(z)=max[&v(z), 0]=*(z, v).

This completes the proof of part (a).
Now assume v(z)=0. If v(zk)=0, then v(zk+1)=v(e)&v( f (zk)). Hence,

if v(zk)=v(zk+1)=0, we have v( f (zk))=v(e). It follows that either
v(zk)=0 for all k�0 or there is an m>0 such that v(zk)=0 for 0�k<m,
v(zm)=v(e)&v( f (zm&1)){0, and v( f (zk))=v(e) for 0�k<m&1.

From (13) we have *� (z, v)=&1
2v( f (z))+ 1

2*� ({z, v) , and iterating this
equation yields

*� (z, v)=&
1
2

v( f (z))&
1
4

v( f (z1))& } } } &
1
2k v( f (zk&1))+

1
2k *� (zk , v) (14)

for all k�1.

227CANONICAL HEIGHTS ON PROJECTIVE SPACE



File: 641J 209918 . By:DS . Date:02:04:97 . Time:13:14 LOP8M. V8.0. Page 01:01
Codes: 2420 Signs: 1162 . Length: 45 pic 0 pts, 190 mm

Suppose v(zk)=0 for all k�0. Then v( f (zk))=v(e) for all k�0. Since
*(zk , v)=0 for all k�0, as above it follows that the sequence *� (zk , v) is
bounded. Hence, letting k � � in (14), we obtain

*� (z, v)= :
�

i=1

&
1
2i v(e)=&v(e),

which proves part (b).
Suppose there is an m>0 such that the conditions of part (c) are

satisfied. Applying (14) with k=m, we see that

*� (z, v)=&
1
2

v(e)&
1
4

v(e)& } } } &
1

2m&1 v(e)

&
1

2m v( f (zm&1))+
1

2m *� (zm , v)

=&\1&
1

2m&1+ v(e)&
1

2m [v( f (zm&1))&*� (zm , v)]. (15)

Since v(zm)=v(e)&v( f (zm&1)){0, by part (a) we have

*� (zm , v)=*(zm , v)=max[0, &v(zm)]

=&min[0, v(e)&v( f (zm&1))].

Combining this equation with (15) yields our desired formula for
*� (z, v). Finally, we note that v( f (zm&1)) = v(1+z2

m&1) � 0, so 0�
min[v( f (zm&1)), v(e)]�v(e), and we conclude

&\1&
1

2m&1+ v(e)�*� (z, v)�&\1&
1

2m+ v(e). K

In the remaining case where v(e)<0, we have the following simple for-
mulas when v(z) is not an integer multiple of v(e).

Proposition 3.5. Let v # MK be non-archimedean. Suppose v(e)<0 and
v(z) � Zv(e).

(a) If v(e)<v(z)<0, then *� (z, v)=& 2
3 (v(z)+v(e)).

(b) If v(z)<v(e) or v(z)>0, let m be the unique positive integer such
that v(e)<|v(z)|+mv(e)<0. Then

*� (z, v)=&
1

3 } 2m&1 ( |v(z)|+(m+1) v(e)).
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Remark. It will follow from our proof that the region v(e)<v(z)<0 is
stable under { and that m as defined in (b) is the smallest positive integer
such that v(e)<v(zm)<0.

Proof. Recall that v( f (z))=0 if v(z)>0, and v( f (z))=2v(z) if v(z)<0.
Hence,

v({(z))={v(e)+v(z),
v(e)&v(z),

if v(z)>0;
if v(z)<0.

Suppose v(e)<v(z)<0. Then

v(zk)={v(e)&v(z),
v(z),

if k is odd;
if k is even.

Hence, for all k�0, we have v(e)<v(zk)<0 and v( f (zk))=2v(zk). In
addition, *(zk , v)=0 for all k�0, so the sequence *� (zk , v) is bounded.
Therefore, applying (14) and letting k � �, we obtain

*� (z, v)=&v(z)&
1
2

(v(e)&v(z))&
1
4

v(z)&
1
8

(v(e)&v(z))& } } }

=&v(z) :
�

i=0 \&
1
2+

i

&
1
2

v(e) :
�

i=0 \
1
4+

i

=&
2
3

(v(z)+v(e)).

Suppose v(z)>0 or v(z)<v(e), and choose m to be the unique positive
integer such that v(e)<|v(z)|+mv(e)<0. If v(z)>0, then

v(z1)=v(e)+v(z)<v(z).

Hence, by the choice of m, we find

v(zk)=kv(e)+v(z) for 0�k�m.

On the other hand, if v(z)<v(e)<0, then

v(z1)=v(e)&v(z)>0.

So by the previous case

v(zk)=(k&1) v(e)+v(z1)=kv(e)&v(z) for 1�k�m.
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In either case, we conclude that v(zm)=mv(e)+|v(z)|. Therefore, by part
(a), we have

*� (z, v)=
1

2m *� (zm , v)=
1

2m \&
2
3

[v(zm)+v(e)]+
=&

1
3 } 2m&1 ( |v(z)|+(m+1) v(e)). K

4. MORPHISMS WITH HYPERPLANE EIGENDIVISORS

In this section, we will concentrate on a special class of morphisms for
which the calculation of canonical local heights is somewhat simpler.

Definition. Let , : Pn � Pn be a morphism of degree d and let D be a
divisor on Pn. D is a eigendivisor of , if ,*D=dD.

In the case where , has an eigendivisor W which is a hyperplane in Pn,
we will obtain a simple limit formula for the canonical local height
associated to , and W. We begin with a geometric characterization of
hyperplane eigendivisors.

Lemma 4.1. If W is a hyperplane in Pn, W is an eigendivisor of , if and
only if ,&1(|W| )=|W|.

Proof. Since W is irreducible, the only divisors with support |W| are
those of the form nW for n a nonzero integer, and the only one with degree
d is dW. K

When , is a morphism with hyperplane eigendivisor W, we will use the
notation that *� W, ,=*� W, ,, 1 . Thus, by Theorem 2.1, we have

*� W, ,(,P, v)=d*� W, ,(P, v) (16)

for all P # Pn, P � |W|, and all v # M. The following theorem and corollary
illustrate the reason for our interest in the hyperplane eigendivisor case.

Theorem 4.2. If W is a hyperplane eigendivisor of , and *W is any Weil
local height function associated to W, then

*� W, ,(P, v)= lim
m � �

*W (,mP, v)
d m .
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Proof. Iterating (16) shows that

*� W, ,(P, v)=
*� W, ,(,mP, v)

d m

for all m�0. Since the difference *� W, ,&*W is bounded for each v # M, the
theorem follows. K

Remark. Suppose g is a linear form, W=div(g), and *W is the standard
Weil local height

*W (P, v)=max{v \ g(P)
x0(P)+ , ..., v \ g(P)

xn(P)+= .

Then there is an M-constant # depending on g such that *W (P, v)�#(v) for
all P # Pn. Hence, by Theorem 4.2,

*� W, ,(P, v)�0 for all P # Pn and all v # M.

In addition, since *� W, ,(,nP, v)=d n*� W, ,(P, v) and *� W, ,&*W is bounded
for each v # M, we conclude that *� W, ,(P, v)=0 if and only if the sequence
*W (,nP, v) is bounded as n � �.

Corollary 4.3. Let W be a hyperplane eigendivisor for , and let
P # Pn"|W|. Then P is a pre-periodic point of , if and only if *� W, ,(P, v)=0
for all v # M.

Proof. Suppose P is pre-periodic and let v # M. Since the orbit of P is
finite, there exists a C>0 such that *W (,mP, v)�C for all m. Thus

lim
m � �

*W (,mP, v)
d m � lim

m � �

C
d m=0 and *� W, ,(P, v)=0.

Conversely, suppose that P # Pn"|W| and *� W, ,(P, v)=0 for all v # M.
There is some finite extension L of K such that P # Pn(L), and by
Theorem 2.4,

h� ,(P)=
1

[L : Q]
:

v # ML

[Lv : Qv] *� W, ,(P, v)=0.

By Corollary 1.3, P is pre-periodic. K

For computational purposes, it is often convenient to change coor-
dinates.
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Lemma 4.4. Let � be an isomorphism on Pn. Then a morphism
, : Pn � Pn has hyperplane eigendivisor W if and only if �,�&1 has hyper-
plane eigendivisor �W.

Proof. Suppose , has a hyperplane eigendivisor W=div(g). Note that
�W=div(g b �&1)=(�&1)* W. We find that

(�,�&1)* (�W)=(�&1)* ,*�*(�W)=(�&1)* ,*W

=(�&1)* (dW)=d(�&1)* W=d(�W), (17)

and thus �W is a hyperplane eigendivisor for �,�&1. The converse follows
by applying �&1. K

Theorem 4.5. If , has hyperplane eigendivisor W and � is an
isomorphism on Pn, then

*� W, ,(P, v)=*� �W, �,�&1(�P, v).

Proof. Let *W and *(�&1)* W be Weil local heights associated to W and
to (�&1)* W=�W respectively. By functoriality, there is an M-bounded,
M-continuous function # : Pn_M � R such that

*(�&1)* W (�P, v)=*W (P, v)+#(P, v).

We now see that

*� �W, �,�&1(�P, v)= lim
m � �

*(�&1)* W ((�,�&1)m (�P), v)
d m

= lim
m � �

*(�&1)* W (�(,mP), v)
d m

= lim
m � �

*W (,mP, v)
d m + lim

m � �

#(,mP, v)
d m

=*� W, ,(P, v)

by Theorem 4.2. K

Remark. By an argument similar to the preceding proof, we can show
that for any morphism , and any isomorphism � on Pn the global canoni-
cal heights satisfy

h� �,�&1(�P)=h� ,(P) (18)
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for all P # Pn. In particular, since this result follows directly from the limit
formula (1) for global canonical heights and Theorem 1.1 applied to �,
(18) holds even if , does not have an eigendivisor.

Given a morphism , with hyperplane eigendivisor W, choose an
isomorphism � such that �W=H0 . Then �,�&1 is a morphism with
hyperplane eigendivisor H0 and hence it can be written in the form
�,�&1(P)=[x0(P)d, f1(P), ..., fn(P)]. A morphism in this form lends itself
more readily to calculations than an arbitrary morphism, particularly when
n=1. In the next section we will use this remark in conjunction with
Theorem 4.2 to compute some canonical local heights on P1.

We will say that a morphism , : Pn � Pn is diagonalizable if there is an
isomorphism � : Pn � Pn such that �,�&1=_ where _ has the form

_[x0 , x1 , ..., xn]=[a0 xd
0 , a1xd

1 , ..., anxd
n].

These morphisms _ are characterized by the property that each coordinate
hyperplane Hi is an eigendivisor for _. Since any two sets of n+1 inde-
pendent hyperplanes are conjugate, we have the following characterization
of diagonalizable morphisms.

Lemma 4.6. A morphism , : Pn � Pn is diagonalizable if and only if it
has n+1 hyperplane eigendivisors W0 , W1 , ..., Wn such that

|W0 | & |W1 | & } } } & |Wn |=<.

The canonical local and global heights for diagonalizable morphisms are
expressible in terms of the standard heights via

Proposition 4.7. Let _ : Pn � Pn be the morphism defined by

_[x0 , x1 , ..., xn]=[a0 xd
0 , a1xd

1 , ..., anxd
n],

where a0 , a1 , ..., an # K� *. Let b0 , b1 , ..., bn # K� be such that bd&1
i =ai .

(a) For j=0, 1, ..., n, if P � |Hj |, then

*� Hj, _(P, v)= max
0�i�n {v \bjxj (P)

bixi (P)+= .

(b) For all P=[x0 , x1 , ..., xn] # Pn,

h� _(P)=h([b0x0 , b1 x1 , ..., bn xn]),

where h is the standard height on Pn defined in Section 1.
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Proof. A straightforward computation shows that the right side of the
equation in (a) has the characterizing properties of *� Hj , _ . (b) may be
deduced directly from (a) or, as in (a), by observing that the map on the
right side of the equation in (b) has the defining properties of h� _ . K

5. POLYNOMIAL MAPS ON P1

We now take a closer look at a morphism , : P1 � P1 which has a hyper-
plane eigendivisor. As in Section 3 we identify P1(K) with K _ [�] by
identifying each point P=[x, y] with its affine coordinate z= y�x. We
choose coordinates so that the point z=� is an eigendivisor for ,. Then
the map , : K � K is given by a polynomial of degree d=deg(,)�2:

,(z)=a0+a1z+a2z2+ } } } +ad zd, ai # K, ad {0.

We will use the notation zk=,k(z) for k�0 and write *� (z, v)=*� �, ,(z, v)
and *(z, v)=*0(z, v)=max[&v(z), 0].

To compute *� (z, v) for non-archimedean v, we will use the following
lemma.

Lemma 5.1. Suppose v is non-archimedean. Let :v be the minimum of the
d+1 numbers

1
d&i

v \ai

ad+ , 0�i<d, and
1

d&1
v \ 1

ad+ .

Then the region v(z)<:v is stable under ,, and in that region the function
F(z) :=&v(z)&(v(ad)�(d&1)) satisfies F(,(z))=dF(z).

Proof. If v(z)<:v then v(ai zi)>v(adzd) for 0�i�d&1, so v(,(z))=
v(adzd), and hence F(,(z))=dF(z). Moreover,

v(,(z))=v(ad)+dv(z)<v(ad)+d:v�:v ,

because (d&1) :v� &v(ad). K

Theorem 5.2. Suppose v is non-archimedean and :v is defined as in
Lemma 5.1. If v(zk) is bounded below as k � �, then *� (z, v)=0. Otherwise,
if m is such that v(zm)<:v , then

*� (z, v)=d &m \&v(zm)&
v(ad)
d&1+>0.
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Proof. If the sequence v(zk), k�0, is bounded below, then *(zk , v) is
bounded, and hence by Theorem 4.2,

*� (z, v)= lim
k � �

[d &k*(zk , v)]=0.

In the region v(z)<:v the difference between *(z, v) and F(z) is bounded.
Hence

*� (z, v)= lim
k � �

[d &k*(zk , v)]= lim
k � �

[d &kF(zk)]=F(z),

because the lemma shows that F(zk)=d kF(z). From this the theorem
follows, using *� (z, v)=d &m*� (zm , v). K

Corollary 5.3. Suppose v is non-archimedean and :v is defined as in
Lemma 5.1.

(a) The following are equivalent for z # K:

(i) |zk | v is bounded as k � �; i.e., the orbit of z is v-adically
bounded.

(ii) v(zk)�:v for all k�0.

(iii) *� (z, v)=0.

(b) If z is pre-periodic, then v(z)�:v .

Proof. (a) is immediate from the theorem, and (b) follows from (a) by
Corollary 4.3 (or via (i) implies (ii)). K

Let ri , 1�i�d, be the roots of ,(z) in K� v . Let R=[z # K� v | v(z){v(ri)
for 1�i�d]. For z # R, v(,(z)) depends only on v(z):

v(,(z))=v(ad)+ :
d

i=1

v(z&ri)=v(ad)+ :
d

i=1

min[v(z), v(ri)].

Hence we can use Theorem 5.2 to give an explicit expression for *� (z, v) in
terms of v(z) for all z # R such that v(,(z))<:v .

Recall that the Newton polygon of the polynomial , is defined to be the
highest convex polygonal line joining (0, v(a0)) and (d, v(ad)) which passes
on or below all of the points (i, v(ai)) for 0�i�d. It is a well-known result
(Cf. Koblitz [6], Lemma 4, p. 90) that all of the roots ri have the same
valuation, say v(ri)=;v for all i, if and only if the Newton polygon of , is
a straight line with slope &;v . Suppose that, in addition, the Newton
polygon line intersects the line x=1 below the x-axis; i.e., v(a0)<;v . Then
;v=:v and we obtain the following explicit expression for *� (z, v).
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Theorem 5.4. In the situation of Lemma 5.1, suppose that the Newton
polygon of ,(z) is a straight line which intersects the line x=1 below the
x-axis; i.e., suppose

v(ai)�
i
d

v(ad)+
d&i

d
v(a0) for 0<i<d

and

v(a0)<&
v(ad)
d&1

.

Then the number :v defined in Lemma 5.1 is the negative of the slope of the
Newton polygon line; i.e.,

:v=
v(a0)&v(ad)

d
,

and

*� (z, v)=&min[v(z), :v]&
v(ad)
d&1

if v(z){:v .

As a corollary we have

Corollary 5.5. Under the hypotheses of Theorem 5.4,

*� (z, v)={&
1

d m min[v(zm), :v]&
v(ad)
d&1

,

0,

if v(zm){:v ;

if v(zk)=:v for all k�0
.

The proof of Theorem 5.4 is a straightforward calculation using
Theorem 5.2 and is left to the reader. The point is that for v(z)>:v ,
v(,(z))=v(a0)<:v .

By a change of coordinates of the form z=aw+b, a{0, one can change
the polynomial , representing the map from P1 to P1. The equation
z1=,(z) becomes

aw1+b=,(aw+b)=,(b)+,$(b) aw+ } } } +adadwd.

Hence

w1=a&1(,(b)&b)+,$(b) w+ } } } +adad&1wd=/(w).
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In the case d=2 we can take a=a&1
d and b the root of the linear polyno-

mial ,$(z), i.e., b=&a1 �2a2 , to achieve /(w)=w2+c. Then / is a polyno-
mial to which Corollary 5.5 applies if v(c)<0, and / has good reduction at
v if v(c)�0. The result is

Corollary 5.6. If d=2, there is a unique choice of affine coordinate z
such that the polynomial ,(z) is of the form ,c(z) :=z2+c. In that case

(a) If v(c)�0, then

*� (z, v)=*(z, v)=&min[v(z), 0].

(b) If v(c)<0, then

*� (z, v)={
&

1
2m min {v(zm),

1
2

v(c)= ,

0,

if v(zm){
1
2

v(c);

if v(zk)=
1
2

v(c) for all k�0.

Since *� (z0 , v)=0 if z0 is pre-periodic, we have

Corollary 5.7. Suppose ,c(z)=z2+c has a pre-periodic point z0 .

(a) If v(c)�0, then v(z0)�0.

(b) If v(c)<0, then v(z0)= 1
2v(c).

6. v-ADIC FILLED JULIA SETS AND PRE-PERIODIC POINTS

We continue with the notational conventions of the preceding section
and suppose , : K � K is a polynomial map of degree d�2. Extending
Corollary 5.3(a) to the archimedean case, we will show in this section that
for all v # M the canonical local height *� (z, v)=0 if and only if the orbit of
z under , is ``v-adically bounded.'' This leads us to define the notion of
v-adic filled Julia sets and to show that a point z # K is pre-periodic for ,
if and only if for all v # M, z lies in the v-adic filled Julia set of ,. By com-
bining these observations with the computations in Section 5 and some
archimedean estimates, we will bound the number of rational pre-periodic
points of a quadratic Q-polynomial map in terms of the number of primes
dividing the denominators of its coefficients.

Since , has coefficients in K, given any v # M, we may extend the defini-
tion of , to a map from K� v to K� v . Given z # K� v we set zm=,m(z) for m�0.
As noted in Section 3, if v # M is fixed, any local height associated to v is
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defined for all points in P1(K� v) except those lying on the support of its
divisor.

Definition. Let v # M. If z # K� v , we say that the orbit of z under , is
bounded with respect to v if there exists a constant C>0 such that

|zm | v<C for all m�0.

The v-adic filled Julia set of , is the set of all z # K� v such that the orbit of
z under , is bounded with respect to v.

Fix an embedding K/�C and let v� be the standard archimedean
absolute value on C. Then the v�-adic filled Julia set of , defined above
is just the filled Julia set commonly studied in complex dynamical systems
(Cf. [4], Section 3.8).

In Theorem 5.2, we showed that for non-archimedean v,

*� (z, v)=&v(z)&
v(ad)
d&1

for |z| v sufficiently large.

For archimedean v we can at least prove the following.

Theorem 6.1. Suppose v # M is archimedean. Then for all z # C

*� (z, v)=log |z| v+
log |ad | v

d&1
+o(1) as |z| v � �. (19)

Proof. Put

g(z)=log |z| v+
log |ad | v

d&1
.

Then

g(,(z))&dg(z)=log \} ,(z)
adzd } v+� 0 as |z| v � �.

Also, since d�2, |,(z)| v �|z| v � � as |z| v � �. Therefore, the regions of
the form |z|v>R are stable under , for large R, and for every =>0 there
is such an R= , which can be given explicitly in terms of the |ai | v 's and =,
for which | g(,(z))&dg(z)| v<= for |z| v>R= . Hence for |z| v>R= we have

}g(zm)
d m &

g(zm&1)
d m&1 } v<

=
d m ,
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and summing we find

}g(zm)
d m & g(z)} v<

=
d

+
=

d 2+ } } } +
=

d m<
=�d

1&1�d
=

=
d&1

.

Since we may assume (wlog) that R=�1, for |z| v>R= we have

*� (z, v)= lim
m � � {log |zm | v

d m == lim
m � � {g(zm)

d m =,

and hence |*� (z, v)& g(z)| v<=�(d&1). Since = was arbitrary, this proves
(19). K

The canonical local height *� ( } , v) associated to v determines the v-adic
filled Julia set of , in a natural way.

Theorem 6.2. Let v # M. If z # K� v , then *� (z, v)=0 if and only if z is in
the v-adic filled Julia set of ,.

Proof. If v is non-archimedean, this result follows directly from
Corollary 5.3(a). So assume v is archimedean.

Suppose there is a constant C>0 such that |zm | v�C for all m�0.
Then *(zm , v)=max[log |zm | v , 0] is bounded, and hence *� (z, v)=
limm � � d &m*(zm , v)=0.

On the other hand, if the sequence |zm | v is unbounded, then it follows
immediately from Theorem 6.1 that *� (z, v)=(1�d m) *� (zm , v)>0. K

Combining the preceding result with Corollary 4.3, we see that an
algebraic number z # K� has a finite orbit under , if and only if its orbit is
bounded with respect to v for all v # M. This remark yields the following
corollary.

Corollary 6.3. Suppose z # K� . Then z is a pre-periodic point of , if and
only if z is in the v-adic filled Julia set of , for all v # M.

We will conclude by proving an upper bound on the number of rational
pre-periodic points of a quadratic Q-polynomial map on P1. As in
Corollary 5.6 we let ,c : P1 � P1 denote the K-polynomial map

,c(z)=z2+c, where c # K.

As we observed in Section 5, every quadratic K-polynomial map on P1 is
conjugate over K to some ,c with c # K. Since every K-conjugate of a
morphism has the same number of K-rational pre-periodic points (P is pre-
periodic for , if and only if �P is pre-periodic for �,�&1), we can restrict
our focus to the quadratic maps ,c . Corollaries 5.6 and 5.7 provide some
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information about the v-adic filled Julia set of ,c when v is non-
archimedean. To learn about the v�-adic filled Julia set of ,c , we begin
with the following standard lemma on complex dynamical systems (Cf.
[4], p. 270).

Lemma 6.4. For any c # K, if |z|>max[ |c|, 2] then |,k(z)| � � as
k � �.

Proof. Since |z|>|c|, we see that |,c(z)|�|z| 2&|c|>|z| 2&|z|=
|z|( |z|&1). We also know that |z|>2, and so |z|&1=1+l for some
positive l. We now have that |,c(z)|>(1+l ) |z|, and because |,c(z)|>|z|,
we can repeat this argument to obtain

|,k
c(z)|>(1+l )k |z|.

Thus |,k
c(z)| � � as k � �. K

Corollary 6.5. Suppose c # K with |c|�2. If z is in the v�-adic filled
Julia set of ,c , then |z|�2.

For the cases in which |c|>2, the bound on pre-periodic points z # K
yielded by Lemma 6.4, that |z|�|c|, is not quite as satisfying. With a little
work, we can get a considerably better bound for these cases.

Proposition 6.6. Suppose c # K with |c|>2. Let

#=|c|, ;1=
1+- 1+4#

2
, and ;2=- #&;1.

If z is in the v�-adic filled Julia set of ,c , then ;2�|z|�;1 . Furthermore,
;1&;2<2.

Proof. Note that since #>2, ;1 satisfies 2<;1<#.
Define a sequence [bk] by b0=# and bk=- #+bk&1 for k>0. It is not

difficult to show that this is a decreasing sequence, and that its limit is ;1 .
We claim that for z # C, if |z|>bk for any k, then its orbit tends to infinity.
Lemma 6.4 implies that this is true for k=0. For any k>0, if |z|>bk , then

|,c(z)|=|z2+c|�|z| 2&#>b2
k&#=bk&1,

and thus by mathematical induction, we have established our claim. There-
fore, if |z|>;1 , then it is greater than bk for some k>0, and thus its orbit
is not bounded.

Now suppose that |z|<;2 . Since ;2<- #, |z| 2<#. We compute that

|,c(z)|=|z2+c|�#&|z2|>#&(;2)2=;1 ,
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and by the above, the orbit of z escapes to infinity. Therefore, for any z # C,
if |z|>;1 or |z|<;2 , then z is not in the v�-adic filled Julia set of ,c .

Finally, to check that ;1&;2<2, note that by the definition of ;1 ,
#=(;1)2&;1 . Since ;1>2, it follows that

;2=- #&;1=- (;1)2&2;1>;1&2.

Hence, ;1&;2<;1&(;1&2)=2. K

From Corollary 5.7, we deduce that if c # Q than any rational pre-peri-
odic point of ,c must have a special form. Using p-adic techniques, this
result was obtained independently by Russo and Walde [16].

Proposition 6.7. Suppose c # Q and write c=a�b where a and b are
relatively prime integers with b>0. If ,c has a pre-periodic point z # Q, then

(i) b=e2 for some positive integer e, and
(ii) z=w�e for some integer w such that gcd(w, e)=1.

In particular, if c # Z, then z # Z.

Now, using Corollary 6.5 and Propositions 6.6 and 6.7, we can bound
the number of rational pre-periodic points of ,c in terms of the number of
primes dividing the denominator of c. Our argument begins with a lemma
from elementary number theory.

Lemma 6.8. Let e and u be integers such that e>1 and gcd(e, u)=1. Let
s be the number of distinct odd prime factors of e and define = by

0, if 4 |% e;

=={1, if 4 | e, 8 |% e;

2, if 8 | e.

If the congruence

X2#u (mod e) (20)

has a solution, then it has exactly 2s+= distinct solutions modulo e.

Proof. Let p be a prime and r a positive integer such that pr | e and
pr+1 |% e. Suppose (20) has a solution. Then X2#u must have a solution
modulo pr. If t and v are any two such solutions, then t2#v2#u (mod pr)
which implies pr | (t+v) } (t&v). But gcd(e, u)=1, so p does not divide t or
v. Note that if pi | (t+v) and pi | (t&v), then pi | 2t which implies p=2 and
i=1. Therefore, if p is odd, then t#\v (mod pr); and if p=2, then t#\v
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(mod 2r&1). Hence, our desired result follows by applying the Chinese
Remainder Theorem. K

Theorem 6.9. Let c=a�e2 where a and e are relatively prime integers
with e>0. Define s and = as in Lemma 6.8. If c{&2, then the number of
rational pre-periodic points of ,c is less than or equal to

2s+2+=+1.

The quadratic map ,&2 has exactly 6 rational pre-periodic points.

Proof. Since � is a fixed point of every map ,c , it suffices to bound the
number of rational pre-periodic points of ,c in Q and add one.

Let z # Q be a pre-periodic point of ,c . Suppose first that c is not an
integer, so e>1. Since ,c(z) is also a rational pre-periodic point of ,c , by
Proposition 6.7, there are integers w and w1 such that

z=
w
e

and ,c(z)=z2+
a
e2=

w1

e
,

with gcd(w, e)=gcd(w1 , e)=1. Hence, ew1=w2+a, so we conclude that

w2# &a (mod e). (21)

By Lemma 6.8, there are exactly 2s+= distinct w's modulo e which satisfy
(21). Hence, if |c|>2, our result follows from Proposition 6.6, since
;1&;2<2. If |c|�2, then our result follows from Corollary 6.5.

Now suppose c is an integer. Then, by Proposition 6.7, every rational
pre-periodic point of ,c is integral. Thus if |c|>2, our result again follows
from Proposition 6.6. It remains only to check the five integer values of c
between &2 and 2. Using Lemma 6.4, a few simple calculations show that
,1(z)=z2+1 and ,2(z)=z2+2 have no pre-periodic points in Q,
,0(z)=z2 and ,&1(z)=z2&1 each have three pre-periodic points in Q
(namely, 0, \1), and ,&2(z)=z2&2 has exactly five pre-periodic points
(0, \1, \2) in Q. This completes the proof. K

We remark that Narkiewicz [11] has shown that if c is an integer, then
,c can only have periodic points of orders 1 or 2. It follows from
Theorem 2 in Russo and Walde [16] that ,c cannot have both fixed points
and periodic points of order 2 if c # Z. Therefore, if c # Z, ,c can have at
most two periodic points. Recently, Morton and Silverman [10] greatly
reduced the bound Narkiewicz [11] had obtained on the maximum period
of a K-rational periodic point of a K-polynomial map on P1. However, for
K=Q and c � Z, the bound on the number of rational periodic points of
,c provided by Theorem 6.9 represents a significant improvement over the
bounds that can be deduced from the results of [10] and [11].
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