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Introduction

Interest in the study of the homology of general linear groups has arose mostly because of their
close connection with the K -theory of rings. For any ring R and any positive integer n, there are
natural homomorphisms

Kn(R)

h′
n

hn
Hn(GL(R),Z)

Hn(E(R),Z)

where E(R) is the elementary subgroup of the stable general linear group GL(R) and hn and h′
n (n � 2

for h′
n) are the Hurewicz maps coming from algebraic topology [10, Chap. 2].

It is known that K1(R)
h1� H1(GL(R),Z), K2(R)

h′
2� H2(E(R),Z) [10, Chap. 2]. The homomorphism

h′
3 : K3(R) → H3(E(R),Z) is surjective with 2-torsion kernel [12, Corollary 5.2], [9, Proposition 2.5].
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Homological stability type theorems, are very powerful tools for the study of K -theory of rings.
Suslin has proved that for an infinite field F , we have the homological stability

Hn
(
GLn(F ),Z

) ∼−→ Hn
(
GLn+1(F ),Z

) ∼−→ Hn
(
GLn+2(F ),Z

) ∼−→ · · · ,
and used this to prove many interesting results [11]. For example he showed that we have an exact
sequence

Hn
(
GLn−1(F ),Z

) Hn(inc)−−−−→ Hn
(
GLn(F ),Z

) −→ K M
n (F ) −→ 0.

Suslin has conjectured that the kernel of

Hn
(
GLn−1(F ),Z

) −→ Hn
(
GLn(F ),Z

)

is a torsion group [9, Problem 4.13]. These results can be generalized over rings with many units [4],
e.g. semilocal rings with infinite residue fields. Also Suslin’s conjecture can be asked in this more
general setting [7]. A positive answer to this conjecture is known only for n � 4 [3,8,7].

It was known that when F is an infinite field, the kernel of the homomorphism H3(GL2(F ),Z) →
H3(GL3(F ),Z) is a 2-power torsion group [8]. In this article we generalize this to all commutative
rings with many units. In fact we do more. Here we describe the kernel of

H3(inc) : H3
(
GL2(R),Z

) −→ H3
(
GL3(R),Z

)
,

where R is a commutative ring with many units. Our main theorem claims that the elements of
ker(H3(inc)) are of the form

∑
c
(
diag(a,1),diag(1,b),diag

(
c, c−1))

provided that

∑
a ⊗ {b, c} + b ⊗ {a, c} = 0 ∈ R∗ ⊗Z K M

2 (R).

Moreover by an easy argument we will show that ker(H3(inc)) is a 2-torsion group. It is highly
expected that this kernel should be trivial, at least when R is a field [5, Section 5].

It is known that, the map H3(inc) is closely related to the indecomposable part of K3(R), i.e.
K3(R)ind := K3(R)/K M

3 (R) [8,5]. As an application of our main theorem we show that

K3(R)ind ⊗Z Z[1/2] � H0
(

R∗, H3
(
SL2(R),Z[1/2])).

If R∗ = R∗ 2, then we get the isomorphism

K3(R)ind � H3
(
SL2(R),Z

)
.

Previously these results were known only for infinite fields [8].

Notation

In this article by Hi(G) we mean the homology of group G with integral coefficients, namely
Hi(G,Z). By GLn (resp. SLn) we mean the general (resp. special) linear group GLn(R) (resp. SLn(R)),
where R is a commutative ring with 1. If A → A′ is a homomorphism of abelian groups, by A′/A
we mean coker(A → A′) and we take other liberties of this kind. For a group A, by AZ[1/2] we mean
A ⊗Z Z[1/2].
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1. Third homology of product of two abelian groups

In this section we will study the homology group H3(A × B), where A and B are abelian groups.
First we assume A = B = Z/n. By applying the Künneth formula [13, Proposition 6.1.13] to

H3(Z/n × Z/n) and using the calculation of the homology of finite cyclic groups [13, Theorem 6.2.2,
Example 6.2.3], we obtain the exact sequence

0 −→ H3(Z/n) ⊕ H3(Z/n) −→ H3(Z/n × Z/n) −→ TorZ

1 (Z/n,Z/n) −→ 0.

If pi : Z/n × Z/n → Z/n, i = 1,2, is projection on the i-th factor, then

(p1∗, p2∗) : H3(Z/n × Z/n) −→ H3(Z/n) ⊕ H3(Z/n)

splits the above exact sequence. Thus we obtain a canonical splitting map

θn,n : TorZ

1 (Z/n,Z/n) −→ H3(Z/n × Z/n).

If 〈1̄,n, 1̄〉 is the image of 1̄ ∈ Z/n under the isomorphism

Z/n �−→ TorZ

1 (Z/n,Z/n),

then one can show that θn,n(〈1̄,n, 1̄〉) = χn,n , where

χn,n :=
n∑

i=1

([
(1̄,0)|(0, 1̄)|(0, ī)

] − [
(0, 1̄)|(1̄,0)|(0, ī)

] + [
(0, 1̄)|(0, ī)|(1̄,0)

] + [
(1̄,0)|(ī,0)|(0, 1̄)

]

− [
(1̄,0)|(0, 1̄)|(ī,0)

] + [
(0, 1̄)|(1̄,0)|(ī,0)

])

[6, Chap. V, Proposition 10.6], [8, Proposition 4.1]. If A = Z/m and B = Z/n, then the same approach
shows that the exact sequence

0 −→ H3(Z/m) ⊕ H3(Z/n) −→ H3(Z/m × Z/n) −→ TorZ

1 (Z/m,Z/n) −→ 0

splits canonically. The splitting map

θm,n : TorZ

1 (Z/m,Z/n) −→ H3(Z/m × Z/n)

can be computed similar to θn,n . In fact if 〈m/d,d,n/d〉 is the image of 1̄ ∈ Z/(m,n) under the iso-
morphism Z/(m,n) � TorZ

1 (Z/m,Z/n), then θm,n(〈m/d,d,n/d〉) = χm,n , where

χn,m :=
n∑

i=1

([(
m

d
,0

)∣∣∣∣
(

0,
n

d

)∣∣∣∣
(

0,
in

d

)]
−

[(
0,

n

d

)∣∣∣∣
(

m

d
,0

)∣∣∣∣
(

0,
in

d

)]

+
[(

0,
n

d

)∣∣∣∣
(

0,
in

d

)∣∣∣∣
(

m

d
,0

)]
+

[(
m

d
,0

)∣∣∣∣
(

im

d
,0

)∣∣∣∣
(

0,
n

d

)]

−
[(

m

d
,0

)∣∣∣∣
(

0,
n

d

)∣∣∣∣
(

im

d
,0

)]
+

[(
0,

n

d

)∣∣∣∣
(

m

d
,0

)∣∣∣∣
(

im

d
,0

)])
.

In the next proposition we extend these results to all abelian groups.
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Proposition 1.1. Let A and B be abelian groups. Then we have the canonical decomposition

H3(A × B) =
⊕

i+ j=3

Hi(A) ⊗ H j(B) ⊕ TorZ

1 (A, B).

Proof. By the Künneth formula we have the exact sequence

0 −→
⊕

i+ j=3

Hi(A) ⊗ H j(B) −→ H3(A × B) −→ TorZ

1 (A, B) −→ 0.

We will construct a canonical splitting map

TorZ

1 (A, B) −→ H3(A × B).

It is known that direct limit with directed set index, is an exact functor and it commutes with the
homology group [2, Chap. V, Section 5, Exercise 3] and the functor Tor [13, Corollary 2.6.17]. Since
any abelian group can be written as direct limit of its finitely generated subgroups, we may assume
that A and B are finitely generated abelian groups. On the other hand,

TorZ

1 (A, B) � TorZ

1 (Ator, Btor),

where Ator and Btor are the torsion subgroups of A and B respectively. So we may even assume that
A and B are finite abelian groups. Let

A = Z/m1 × · · · × Z/mr, B = Z/n1 × · · · × Z/ns.

Now consider the commutative diagram

0 H3(Z/mi) ⊕ H3(Z/n j) H3(Z/mi × Z/n j)

incmi ,n j

TorZ

1 (Z/mi,Z/n j)

inc

0

0
⊕

i+ j=3 Hi(A) ⊗ H j(B) H3(A × B) TorZ

1 (A, B) 0

We have seen that the first row of this diagram splits by the canonical map θmi ,n j . Thus the compo-
sition

TorZ

1 (Z/mi,Z/n j)
incmi ,n j ◦θmi ,n j−−−−−−−−→ H3(A × B) −→ TorZ

1 (A, B)

is the natural inclusion map. Since

TorZ

1 (A, B) =
⊕

1� j�s
1�i�r

TorZ

1 (Z/mi,Z/n j),

we obtain a map θA,B : TorZ

1 (A, B) → H3(A × B) that decomposes our exact sequence canonically. In
fact θA,B = ∑

i, j incmi ,n j ◦ θmi ,n j . �
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2. The third homology of GL2

A commutative ring R with 1 is called a ring with many units if for any n � 2 and for any finite
number of surjective linear forms f i : Rn → R , there exists a v ∈ Rn such that, for all i, f i(v) ∈ R∗ .
Important examples of rings with many units are semilocal rings with infinite residue fields. In par-
ticular for an infinite field F , any commutative finite dimensional F -algebra is a semilocal ring and so
is a ring with many units. In this article we always assume that R is a commutative ring with many
units.

Let

R∗3 × GL0
inc
↪→ R∗2 × GL1

inc
↪→ R∗ × GL2

inc
↪→ GL3

be the natural diagonal inclusions. Here by R∗n we mean R∗ × · · · × R∗ (n-times). Let

σ 1
2 := inc : R∗ × GL2 −→ GL3,

σ 1
1 : R∗2 × GL1 −→ R∗ × GL2, (a,b, c) 
→ (b,a, c),

σ 2
1 = inc : R∗2 × GL1 −→ R∗ × GL2, (a,b, c) 
→ (a,b, c),

σ 1
0 : R∗3 × GL0 −→ R∗2 × GL1, (a,b, c) 
→ (b, c,a),

σ 2
0 : R∗3 × GL0 −→ R∗2 × GL1, (a,b, c) 
→ (a, c,b),

σ 3
0 = inc : R∗3 × GL0 −→ R∗2 × GL1, (a,b, c) 
→ (a,b, c).

It is easy to see that the chain of maps

H3
(

R∗3 × GL0
) σ 1

0∗−σ 2
0∗+σ 3

0∗−−−−−−−−→ H3
(

R∗2 × GL1
)

σ 1
1∗−σ 2

1∗−−−−−→ H3
(

R∗ × GL2
) σ 1

2∗−−→ H3(GL3) −→ 0

is a chain complex. The following result has been proved in [8, Corollary 3.5].

Theorem 2.1. The sequence

H3
(

R∗2 × GL1
) σ 1

1∗−σ 2
1∗−−−−−→ H3

(
R∗ × GL2

) σ 1
2∗−−→ H3(GL3) −→ 0

is exact.

Using the Künneth formula [13, Proposition 6.1.13], we have the decomposition H3(R∗ × GL2) =⊕4
i=0 Si , where

S0 = H3(GL2),

Si = Hi
(

R∗) ⊗ H3−i(GL2), 1 � i � 3,

S4 = TorZ

1

(
R∗, H1(GL2)

) � TorZ

1

(
μ(R),μ(R)

)
.

Note that by the homological stability, R∗ � H1(GL1) � H1(GL2) [4, Theorem 1]. This decomposition
is canonical. The splitting map

S4 � TorZ

1

(
μ(R),μ(R)

) −→ H3
(

R∗ × GL2
)
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is given by the composition

S4 � TorZ

1

(
μ(R),μ(R)

) θR,R−−→ H3
(

R∗ × R∗) q∗−→ H3
(

R∗ × GL2
)
,

where

q : R∗ × R∗ −→ R∗ × GL2, (a,b) 
→ (a,b,1),

and θR,R is obtained from Proposition 1.1. Using the decomposition

H2(GL2) = H2(GL1) ⊕ K M
2 (R)

[4, Theorem 2], we have S1 = S ′
1 ⊕ S ′′

1, where

S ′
1 = R∗ ⊗ H2(GL1), S ′′

1 = R∗ ⊗ K M
2 (R).

We should remark that the inclusion K M
2 (R) → H2(GL2), in the decomposition of H2(GL2), is given

by the formula

{a,b} 
→ c
(
diag(a,1),diag

(
b,b−1))

[3, Proposition A.11]. For the definition of Milnor’s K -groups, K M
n (R), over commutative rings and

their study over rings with many units, we refer the interested readers to Subsection 3.2 of [4].
Let us introduce the notation c(−,−) in a more general setting and state some of its main proper-

ties. These will be used frequently in this article. Let G be a group and set

c(g1, g2, . . . , gn) :=
∑

σ∈Σn

sign(σ )[gσ (1)|gσ (2)| . . . |gσ (n)] ∈ Hn(G),

where g1, . . . , gn ∈ G pairwise commute and Σn is the symmetric group of degree n. Here we use the
bar resolution of G [2, Chapter I, Section 5] to define the homology of G .

Lemma 2.2. Let G and G ′ be two groups.

(i) If h1 ∈ G commutes with all the elements g1, . . . , gn ∈ G, then

c(g1h1, g2, . . . , gn) = c(g1, g2, . . . , gn) + c(h1, g2, . . . , gn).

(ii) For every σ ∈ Σn, c(gσ(1), . . . , gσ(n)) = sign(σ )c(g1, . . . , gn).
(iii) The cup product of c(g1, . . . , gp) ∈ H p(G) and c(g′

1, . . . , g′
q) ∈ Hq(G ′) is c((g1,1), . . . , (gp,1), (1, g′

1),

. . . , (1, g′
q)) ∈ H p+q(G × G ′).

Proof. The proofs follow from direct computations, so we leave it to the interested readers. �
Again using the Künneth formula and Proposition 1.1, we obtain the canonical decomposition

H3(R∗ 2 × GL1) = ⊕8
i=0 Ti , where
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T0 = H3(GL1),

T1 =
3⊕

i=1

T1,i =
3⊕

i=1

Hi
(

R∗
1

) ⊗ H3−i(GL1),

T2 =
3⊕

i=1

T2,i =
3⊕

i=1

Hi
(

R∗
2

) ⊗ H3−i(GL1),

T3 = R∗
1 ⊗ R∗

2 ⊗ H1(GL1),

T4 = TorZ

1

(
R∗

1, R∗
2

) � TorZ

1

(
μ(R),μ(R)

)
,

T5 = TorZ

1

(
R∗

1, H1(GL1)
) � TorZ

1

(
μ(R),μ(R)

)
,

T6 = TorZ

1

(
R∗

2, H1(GL1)
) � TorZ

1

(
μ(R),μ(R)

)
,

T7 = R∗
1 ⊗ H2

(
R∗

2

)
,

T8 = H2
(

R∗
1

) ⊗ R∗
2.

Here by R∗
i we mean the i-th component of R∗ × · · · × R∗ . Now we give an explicit description of

restriction of the map α := σ 1
1 ∗ − σ 2

1 ∗ on all Ti ’s. By direct computations one sees that

α|T0 : T0 −→ S0, x 
→ 0,

α|T1,i : T1,i −→ S0 ⊕ Si, xi ⊗ x′
i 
→ (

xi ∪ x′
i,−xi ⊗ x′

i

)
, 1 � i � 3,

α|T2,i : T2,i −→ S0 ⊕ Si, yi ⊗ y′
i 
→ (−yi ∪ y′

i, yi ⊗ y′
i

)
, 1 � i � 3,

α|T3 : T3 −→ S1, a ⊗ b ⊗ c 
→ −b ⊗ (a ∪ c) − a ⊗ (b ∪ c),

α|T4 : T4 −→ S4, z 
→ 0,

α|T5 : T5 −→ S0 ⊕ S4, u 
→ (
σ 1

1 ∗(u),−u
)
,

α|T6 : T6 −→ S0 ⊕ S4, v 
→ (−σ 2
1 ∗(v), v

)
,

α|T7 : T7 −→ S1 ⊕ S2, d ⊗ u′ 
→ (−d ⊗ u′, u′ ⊗ d
)
,

α|T8 : T8 −→ S1 ⊕ S2, v ′ ⊗ e 
→ (
e ⊗ v ′,−v ′ ⊗ e

)
,

where x ∪ y is the cup product of x and y.

3. The kernel of H3(GL2) → H3(GL3)

Our goal in this article is to study the kernel of the map inc∗ : H3(GL2) → H3(GL3). So let x ∈
ker(inc∗). Then

(x,0,0,0,0) ∈ ker
(
σ 1

2 ∗
) ⊆

4⊕
i=0

Si = H3
(

R∗ × GL2
)
.

By Theorem 2.1 and by the explicit description of α = σ 1
1 ∗ − σ 2

1 ∗ given in the previous section,
there exists an element

l =
(

0,
(
xi ⊗ x′

i

)
1�i�3,

(
yi ⊗ y′

i

)
1�i�3,

∑
a ⊗ b ⊗ c,0, u, v,d ⊗ u′, v ′ ⊗ e

)

in H3(R∗ 2 × GL1) such that α(l) = (x,0,0,0,0).
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Set β := σ 1
0∗ − σ 2

0∗ + σ 3
0∗ , and consider the following summands of H3(R∗ 3 × GL0),

T ′
1 := R∗

1 ⊗ H2
(

R∗
2

)
, T ′

2 := H2
(

R∗
1

) ⊗ R∗
2.

By easy computations one sees that

β|T ′
1
: T ′

1 −→ T1,1 ⊕ T1,2 ⊕ T7, f ⊗ w 
→ (− f ⊗ w, w ⊗ f , f ⊗ w),

β|T ′
2
: T ′

2 −→ T1,1 ⊕ T1,2 ⊕ T8, w ′ ⊗ f ′ 
→ (
f ′ ⊗ w ′,−w ′ ⊗ f ′, w ′ ⊗ f ′).

So we may assume d ⊗ u′ = 0, v ′ ⊗ e = 0. Therefore we have

3∑
i=1

xi ∪ x′
i −

3∑
i=1

yi ∪ y′
i + σ 1

1 ∗(u) − σ 2
1 ∗(v) = x,

−x1 ⊗ x′
1 + y1 ⊗ y′

1 −
∑[

b ⊗ (a ∪ c) + a ⊗ (b ∪ c)
] = 0,

−x2 ⊗ x′
2 + y2 ⊗ y′

2 = 0,

−x3 ⊗ x′
3 + y3 ⊗ y′

3 = 0,

−u + v = 0.

Therefore we obtain the following relations

x = x1 ∪ x′
1 − y1 ∪ y′

1 ∈ S0 = H3(GL2),

x1 ⊗ x′
1 − y1 ⊗ y′

1 = −
∑

b ⊗ (a ∪ c) + a ⊗ (b ∪ c) ∈ S1.

Under the decomposition H2(GL2) = H2(GL1) ⊕ K M
2 (R), we have

a ∪ b = c
(
diag(a,1),diag(1,b)

) = (
c(a,b), {a,b}).

Thus under the decomposition S1 = S ′
1 ⊕ S ′′

1, we have

(
x1 ⊗ x′

1 − y1 ⊗ y′
1 +

∑
b ⊗ c(a, c) + a ⊗ c(b, c),

∑
b ⊗ {a, c} + a ⊗ {b, c}

)
= 0,

and hence

x1 ⊗ x′
1 − y1 ⊗ y′

1 = −
∑

b ⊗ c(a, c) + a ⊗ c(b, c),
∑

b ⊗ {a, c} + a ⊗ {b, c} = 0.

Therefore

x = −
∑

c
(
diag(a,1),diag(1,b),diag(1, c)

) + c
(
diag(b,1),diag(1,a),diag(1, c)

)

=
∑

c
(
diag(a,1),diag(1,b),diag

(
c, c−1)),
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such that
∑

a ⊗ {b, c} + b ⊗ {a, c} = 0. From now on, we will use the following notation:

la,b,c = c
(
diag(a,1),diag(1,b),diag

(
c, c−1)).

Hence we have proved most parts of the following theorem.

Theorem 3.1. Let R be a commutative ring with many units. Then the kernel of inc∗ : H3(GL2) → H3(GL3)

consists of elements of the form
∑

c(diag(a,1),diag(1,b),diag(c, c−1)) provided that

∑
a ⊗ {b, c} + b ⊗ {a, c} = 0 ∈ R∗ ⊗ K M

2 (R).

In particular ker(inc∗) ⊆ R∗ ∪ H2(GL1) ⊆ H3(GL2), where the cup product is induced by the diagonal inclu-
sion inc : R∗ × GL1 → GL2 . Moreover ker(inc∗) is a 2-torsion group.

Proof. The only part that remains to be proved is that ker(inc∗) is a 2-torsion group. Let x ∈
ker(inc∗). For simplicity we may assume that x = la,b,c = c(diag(a,1),diag(1,b),diag(c, c−1)), such
that a ⊗ {b, c} + b ⊗ {a, c} = 0. Let Φ be the following composition

R∗ ⊗ K M
2 (R)

idR∗⊗ι−−−−→ R∗ ⊗ H2(GL2)
∪−→ H3

(
R∗ × GL2

) α∗−→ H3(GL2),

where ι : K M
2 (R) → H2(GL2) is described in the previous section, ∪ is the cup product and α : R∗ ×

GL2 → GL2 is given by (a, A) 
→ aA. It is easy to see that

Φ
(
a ⊗ {b, c}) = c

(
diag(a,a),diag(b,1),diag

(
c, c−1)).

Now with easy computations, one sees that

0 = Φ(0)

= Φ
(
a ⊗ {b, c} + b ⊗ {a, c})

= c
(
diag(a,a),diag(b,1),diag

(
c, c−1)) + c

(
diag(b,b),diag(a,1),diag

(
c, c−1))

= −2la,b,c.

This completes the proof of the theorem. �
Remark 3.2. One can show directly that if a ⊗ {b, c} + b ⊗ {a, c} = 0, then la,b,c ∈ ker(inc∗ : H3(GL2) →
H3(GL3)). To see this, let Ψ be the following composition

R∗ ⊗ K M
2 (R)

idR∗⊗ι−−−−→ R∗ ⊗ H2(GL2)
∪−→ H3

(
R∗ × GL2

) −→ H3(GL3).

Then it is easy to see that

Ψ
(
a ⊗ {b, c}) = c

(
diag(a,1,1),diag(1,b,1),diag

(
1, c, c−1)).

Now we have
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inc∗(la,b,c) = +c
(
diag(1,a,1),diag(1,1,b),diag

(
1, c, c−1))

= +c
(
diag(a,1,1),diag(1,b,1),diag

(
c, c−1,1

))
= −c

(
diag(a,1,1),diag(1,b,1),diag(1, c,1)

)
− c

(
diag(b,1,1),diag(1,a,1),diag(1, c,1)

)
= −c

(
diag(a,1,1),diag(1,b,1),diag(1,1, c, )

)
− c

(
diag(a,1,1),diag(1,b,1),diag

(
1, c, c−1))

− c
(
diag(b,1,1),diag(1,a,1),diag(1,1, c)

)
− c

(
diag(b,1,1),diag(1,a,1),diag

(
1, c, c−1))

= −Ψ
(
a ⊗ {b, c} + b ⊗ {a, c})

= 0.

Corollary 3.3. Let R be a ring with many units.

(i) The natural map inc∗ : H3(GL2,Z[1/2]) → H3(GL3,Z[1/2]) is injective.
(ii) If R∗ = R∗ 2 = {a2 | a ∈ R∗}, then inc∗ : H3(GL2) → H3(GL3) is injective.

Proof. The part (i) immediately follows from Theorem 3.1. Let R∗ = R∗ 2. By Theorem 3.1, we may
assume that x ∈ ker(inc∗) is of the form la,b,c ∈ H3(GL2) such that a ⊗{b, c}+b ⊗{a, c} = 0. Let c = c′ 2

for some c′ ∈ R∗ . Then la,b,c = 2la,b,c′ and 2(a ⊗ {b, c′} + b ⊗ {a, c′}) = 0. Since K M
2 (R) is uniquely

2-divisible [1, Proposition 1.2], R∗ ⊗ K M
2 (R) is uniquely 2-divisible too. Hence a⊗{b, c′}+b⊗{a, c′} = 0.

Now from Theorem 3.1, it follows that 2la,b,c′ = 0. Therefore la,b,c = 0 and hence inc∗ : H3(GL2) →
H3(GL3) is injective. �
Example 3.4. Let R = R. It is well know that K M

2 (R) � 〈{−1,−1}〉 ⊕ V , where V is uniquely divisible
and is generated by elements {a,b} with a,b > 0. Let la,b,c ∈ H3(GL2(R)) be such that a ⊗ {b, c} +
b ⊗ {a, c} = 0. If a > 0, then a ⊗ {b, c} = a ⊗ {−b, c} = a ⊗ {b,−c} = a ⊗ {−b,−c}, so we may assume
that b, c > 0. Now with an argument as in the proof of the previous corollary, one sees that la,b,c = 0.
A similar argument works if b > 0 or if c > 0. If a,b, c < 0, then one can easily reduce the problem to
the case that a = b = c = −1, and it is trivial to see that l−1,−1,−1 = 0. Therefore inc∗ : H3(GL2(R)) →
H3(GL3(R)) is injective.

Remark 3.5. Consider the following chain of maps

R∗⊗3 ⊗ K M
0 (R)

δ
(3)
0−−→ R∗⊗2 ⊗ K M

1 (R)
δ
(3)
1−−→ R∗ ⊗ K M

2 (R)
δ
(3)
2−−→ K M

3 (R) −→ 0,

where

δ
(3)
2 : a ⊗ {b, c} 
→ {a,b, c},

δ
(3)
1 : a ⊗ b ⊗ {c} 
→ a ⊗ {b, c} + b ⊗ {a, c},

δ
(3)
0 : a ⊗ b ⊗ c 
→ b ⊗ c ⊗ {a} + a ⊗ c ⊗ {b} + a ⊗ b ⊗ {c}.
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It is easy to see that this is, in fact, a chain complex. It is not difficult to see that ker(δ(3)
2 ) = im(δ

(3)
1 )

(see the proof of Theorem 3.2 in [5]). Under the composition

R∗⊗3 −→ R∗ ⊗ H2
(

R∗) −→ H3(GL2),

defined by

a ⊗ b ⊗ c 
→ a ⊗ c(b, c) 
→ c
(
diag(a,1),diag(1,b),diag(1, c)

)
,

one can see that im(δ
(3)
0 ) maps to zero. Thus we obtain a surjective map

ker
(
δ
(3)
1

)
/im

(
δ
(3)
0

) −→ ker
(

H3(GL2) → H3(GL3)
)
,

∑
a ⊗ b ⊗ c + im

(
δ
(3)
0

) 
→
∑

la,b,c.

Lemma 3.6. Let R be a ring with many units.

(i) We have the exact sequence

0 −→ H3
(
SL2,Z[1/2])R∗ −→ H3

(
SL,Z[1/2]) −→ K M

3 (R)Z[1/2] −→ 0.

(ii) If R∗ = R∗ 2 = {a2 | a ∈ R∗}, then we have the exact sequence

0 −→ H3(SL2) −→ H3(SL) −→ K M
3 (R) −→ 0.

Proof. The proof is similar to the proof of Theorem 6.1 and Corollary 6.2 in [8]. �
Theorem 3.7. Let R be a ring with many units.

(i) We have the isomorphism

K3(R)ind ⊗ Z[1/2] � H3
(
SL2,Z[1/2])R∗ .

(ii) If R∗ = R∗ 2 = {a2 | a ∈ R∗}, then

K3(R)ind � H3(SL2).

Proof. The proof is similar to the proof of Theorem 6.4 in [8]. �
Remark 3.8. Previously Lemma 3.6 and Theorem 3.7 were known only for infinite fields [8, Corol-
lary 6.2, Proposition 6.4].
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