TCT-513
ABSORB III PK: Pharmacokinetics of Everolimus Eluted from the Absorb Bioresorbable Vascular Scaffold (BVS)

David Rizik,1 Louis A. Cannon,2 Stephen Ellis,3 Gregg W. Stone,4 Maureen Kennedy,5 Karine Piard-Ruster,6 Peter Staehr,7 Dean J. Kereiakes5
1Scottsdale Healthcare Hospital, Scottsdale, United States; 2McLaren Northern Michigan, Petoskey, United States; 3Cleveland Clinic, Cleveland, United States; 4Columbia University Medical Center and the Cardiovascular Research Foundation, New York, NY; 5Abbott Vascular, Mountain View, CA; 6Abbott Vascular, Santa Clara, CA; 7The Christ Hospital Heart & Vascular Center, Cincinnati, United States

BACKGROUND The ABSORB III Pharmacokinetic (PK) study is a prospective, open-label, non-randomized sub-study of the ABSORB III randomized trial designed to determine the PK of everolimus delivered by the Absorb bioresorbable vascular scaffold (BVS) in subjects who only receive Absorb BVS with a minimum treatment of two de novo coronary artery lesions. The pharmacokinetic profile of Absorb BVS has not previously been described.

METHODS Twelve subjects were enrolled at two sites in the United States. Subjects received one (n=8) or two (n=4) Absorb BVS with diameters of 2.5, 3.0 or 3.5 mm and lengths of 8, 12, 18 or 28 mm. The total everolimus dose received ranged from 181 to 445 μg. Blood samples (arterial or venous) were collected from the subjects pre-procedure and at fifteen time points post-procedure (10 and 30 minutes, 1, 2, 4, 6, 12, 24, 48, 72, 96, 120 (day 3), 168 (day 7), 336 (day 14), and 168 hours after the last scaffold implantation). The concentration of everolimus in the blood was determined by Liquid Chromatography-Mass Spectrometry/Mass Spectrometry assay. The lower limit of quantification was 0.1 ng/mL. The blood concentration-time data were subjected to non-compartmental methods to determine pharmacokinetic parameters (Cmax, tmax, AUC, t1/2).

RESULTS Everolimus blood concentrations increased rapidly after Absorb BVS deployment, reaching maximum concentration between 0.17 and 2.37 hours (tmax), declining thereafter with a terminal half-life ranging between 45.9 and 115 hours. By 4 hours, everolimus blood concentrations were below 3 ng/ml (the chronic therapeutic level necessary to prevent organ rejection in transplant patients) in all subjects. Everolimus blood concentrations were low but measurable for up to 168 hours (7 days) after last scaffold deployment. The maximum observed everolimus concentration (Cmax) increased with dose and ranged from 1.085 to 4.460 ng/ml across the dose range tested (1.1 mg/day to 4.460 mg/day). The mean eccentricity index was 0.85 ± 0.05 with Absorb and 0.80 ± 0.05 with DESolve, p < 0.01. A lower frequency of distal edge ISA (Absorb vs DESolve: 5 [8.2%] vs 16 [32.0%]; p < 0.01) and smaller prolapsed area (Absorb vs DESolve: 7.1 ± 2.2 mm2 vs 7.2 ± 1.9 mm2; p < 0.01) was found with Absorb.

CONCLUSIONS The two scaffolds showed similar MLA while there was a trend toward a lower RAS and a larger maximum and minimum scaffold diameter with DESolve. DESolve scaffold was more eccentric as compared to Absorb. These results might be related to the DESolve peculiar expansion properties.

CATEGORIES CORONARY: Bioresorbable Vascular Scaffolds
KEYWORDS Bioabsorbable, Bioabsorbable scaffolds

TCT-515
Multi-Center, Post-marketing Evaluation of the Elixir DESolve® Novolimus Eluting Bioresorbable Coronary Stent System: 6-month Results from the DESolve PMCF Study

Holger Nef,1 Karl-Eugen Hauptmann,2 Azeem Latib,3 Ricardo A. Costa,3 Lynn Morrison,3 Sara Toyloj,4 Lynn Vandertie,5 Antonio Colombo3
1Justus-Liebig University of Giessen, Giessen, Germany; 2Krankenhaus der Barmherzigen Brüder Trier, Trier, Germany; 3Ospedale San Raffaele, Milan, Italy; 4Instituto Dante Pazzanese de Cardiologia, Sao Paulo, Brazil; 5Elixir Medical Corporation, Sunnyvale, CA; 6Medical Device Consultancies, Christ Church, New Zealand; 7EMO GVM Centro Cuore Columbus/San Raffaele Hospital, Milan, Italy

BACKGROUND A post marketing clinical follow-up study was conducted evaluating the continued safety and effectiveness of the CE-mark approved DESolve® Novolimus Eluting Bioresorbable Coronary Scaffold System (NEBCSS) (Elixir Medical, Sunnyvale, CA), a drug-eluting bioresorbable scaffold combining a PLLA-based scaffold coated with a biodegradable polylactide-based polymer and Novolimus, a macrocyclic lactone mTOR inhibitor. The drug dose is 5 μg per mm of scaffold length and the device is available in multiple diameters (2.5, 3.0, 3.25 and 3.5) and lengths (14, 18 and 28 mm).

METHODS A total of 100 patients were treated with the DESolve NEBCSS in de novo coronary artery lesions with a reference vessel diameter between 2.25 and 3.5 mm and treatable with a single scaffold between 14 and 28 mm in length. Patient data for the clinical endpoints of major adverse cardiac events (MACE) defined as: cardiac death, target vessel MI, clinically-indicated target lesion revascularization (TLR); target vessel revascularization and stent thrombosis are to be analyzed at 1, 6, 12 months and annually through 5 years. The study was approved by the local Ethics Committees and all patients provided informed consent.

RESULTS Patients were enrolled over a one year period at 10 sites in Germany, and Italy. After the index procedure, patients were contacted telephonically or via office visit or telephone consultation. Patient demographic, lesion characteristics and clinical results though 6 months will be presented.

CATEGORIES CORONARY: Bioresorbable Vascular Scaffolds
KEYWORDS Bioabsorbable scaffolds, Drug-eluting stent, bio-absorbable, Novolimus