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Abstract

The problem of the first canonical correlation between two random vectors subject to some
natural constraints is treated in the paper. The problem is usually referred to as restricted
canonical correlation. A new approach to solving the problem is given by translating it into a
generalized eigenvalue problem withax n real symmetric matriXd and a positive definite
matrix B of the same size. © 2000 Elsevier Science Inc. All rights reserved.

1. Introduction

The problem of restricted canonical correlation was introduced in [1]. The prob-
lem of finding the first canonical correlation between two random vectors is extended
to the case, where some (or all) of the canonical variate coefficients are subject to
some constraints. The most natural possible restriction might be to have these coeffi-
cients non-negative. The reader is referred to [1] for a set of motivating examples as
well as a discussion how some other possible restrictions may be reduced to the case
of non-negativity. Das and Sen [1] are solving the problem using the Kuhn—Tucker
Lagrangian theory. We propose here a somewhat different approach. Namely, a use-
ful approach to the solution of the standard canonical correlation problem translates
the problem to a generalized eigenvalue problem with ann real symmetric ma-
trix A and a positive definite matrig of the same size. We show that this approach
can be extended to the case of restricted canonical correlations as well.
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Our approach to the problem is based on the fact given in Proposition 3.1 that
the restricted canonical correlation equals the maximal eigenvalue of the generalized
eigenproblem for matriced x and Bx obtained, respectively, from the starting ma-
tricesA and B by crossing out all rows and columns with indices noKinwherek
is the set of indices such that the canonical weights for the variables indexed by this
set are strictly positive. This fact reduces the problem to finding th& sétvariable
indices so that the eigenvector corresponding to the maximal generalized eigenvalue
for matricesA g and B has positive entries.

The problem therefore becomes a search problem d¥er 2 sets of indices,
wherem is the total number of variables on which the non-negativity restriction
is imposed. In the search process for any of tfie-21 sets of indiceX the cor-
responding generalized eigenproblem for the symmetric matgixand the posi-
tive definite matrix B is solved and the solution corresponding to the maximal
eigenvalue is tried out to see whether

(a) the corresponding eigenvector has positive entrie cand
(b) itis a local maximum.

At the end of the process, the global solution is given by the one of the local solu-
tions satisfying both (a) and (b) that has the maximal generalized eigenvalue. In this
respect our main results are Propositions 3.1 and 3.2 (where a necessary condition
for (b) is given) for the case that restriction is imposed on all variables, and Theorem
3.3, where these results are given for the general case. Namely, if restrictions are
not imposed for alk variables in a data set, we denote bythe set of indices of
variables on which no non-negativity restrictions are imposed, ant liye set of
indices of variables on which they are imposed. In this case the search process goes
only through the subsefs§ of the setl’.

The paper is organized as follows: the problem of restricted canonical correla-
tion is presented in Section 2 together with a reduction of this problem to an op-
timization problem. Our main results are given in Section 3 as described above.
Section 4 gives examples pointing out to some problems in applications of these
methods.

2. Applications to statistics

Denote the joint variance—covariance matrix of two random vedtbendY? of
respective sizesandm, by

5 211 212
221 222
Let a andb be two columns of constants of respective sizesmdm, and let the

random variables{1 and X, be defined as the respective linear combinations of
the random variables from these two sets with these constants as coefficients, i.e.,
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X1 =a Yl andX> = b"Y2. Then, the covariance of these two variables is given as
cov(X1, X2) = a' Z12b, while their correlation coefficient is

aTZ]_zb

valXiay bTZZZb.

The classical method of canonical correlations searches for the maximal among these
correlations when columrsandb run over all possible choices, while the method

of restricted canonical correlationgs introduced in [1]) searches for the maximal
among the correlations when columasndb run over all possible non-negative
choices. Of course, only for some of the coefficients the non-negativity restrictions
may be imposed.

Let us now extend the standard techniques to translate this problem into an op-
timization problem to be considered in Section 3. lLetbe a subset of the set
{1,2,...,1}, and letM be a subset of the sét, 2, ..., m}. Denote byL’ the com-
plement of the seL in {1,2,...,[} and by M’ the complement of the séif in
{1,2,...,m}. Moreover, we introduce regiomsands in the/- andm-dimensional,
real vector space, respectively, defined by

R={c=(c))l_y; ci >0forieL’}

p (X1, X2) =

and
S={d= )" ; di >0fori e M'}.
We want to find a pair of vectose R andb € S satisfying the condition
a'X1ob c'>1od

= max .
NEWXEEY. bTZQZb ceR, deS | /cT X110y dT222d

It is not difficult to see that solutions of this equation exist. Namely, observe that
quotient (1) does not change if we multiply eitheeor b by a positive constant. So
let us restrict ourselves with no loss of generality to vectoendb satisfying an
additional condition/aTzlla = \/szzzb = 1. Since the set of vectors satisfying
all these conditions is compact, and since a continuous function always attains its
supremum on a compact set, the conclusion follows.

Definen = [ + m and introduce a real symmetricx n matrix A and a positive
definiten x n matrix B by

| 0 212 212 O
A_[Zzl 0} and B_[O 222]

Take arbitrary columna andb and define

-

Furthermore, denote b the set of allx, with the property that with respect to this
block partition vectoa belongs toR and vectoib belongs taS. Then, we have:

1)
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Lemma 2.1. A columnx € T is a solution of

xT AX yT Ay
X max LY (2)
X'BX  yer Yy'By
if and only if the columna andb are the solutions ofl).
Proof. Let us first rewrite (2) into
a'zob+b'2za . c'X12d +d" 21 @)

aTX1ja+b'Zab  ceR.des cTXyqc+d' Xpd’
using the above definitions. Denote hythe solution of problem (1) and by the
solution of problem (2) which is also equal to the solution of prob{gn Let a pair
of vectorsa € R andb € S satisfy (1) and observe that by multiplying either of the
two vectors by a positive constant, the quotient on the left-hand side of (1) does not
change. So we may assume with no loss of generality\yfaaé'tzlla = \/bTZZZb.
Denote this constant hy to get

aTZ]_zb + bT221a 2aT212b aTZ]_zb

a'rpa+b'Tpb 202 /aTyia/b Sab
Sox is no greater thap. Now, letx be a solution of problem (2) and let the vectors
a andb be its parts with respect to the above block partition. If we introdueesa
andd = tb for some positive constanisands, we get

CTZ]_zd + dT221C L [aTzlzb + bT221a]

c'Xiic+ dTZZZd T2 [aTZna] + 12 [bTZZZb] '
The quotient on the right-hand side is a function @ndz. A standard computation
reveals that it has its maximum at

K ¥ bT222b

t v/ aT211a7

so that

ax 12b

JvalZiiay/ bTZQZb

is no greater thain, and consequently, they are equall

3. Solving the optimization problem

For anyn x n real symmetric matrixA = (4;;) and any subsek of the set
{1,2,...,n}, let Ax be the principal submatrix of matrix made of components
a;;j with both indices and; in K. Similarly, for anyn-tuplex = (x;) denote byxx
the subvector made of componentsuch that belongs tok .



M. Omladt, V. Omlade’/ Linear Algebra and its Applications 321 (2000) 285-293 289

Fix now a real symmetria x n matrix A and a positive definite matri®. We
would like to find a vectok > 0 satisfying the condition

xTAX . y' Ay
X"Bx  y>0 Y'By’

®3)

We can see that this equation has a solukasuch thatx > 0. In the proof of
this fact we may restrict ourselves with no loss of generality to vecteegisfying
an additional condition” Bx = 1. Since the set of vectors satisfying batk: 0 and
x" Bx = 1 is compact, and since a continuous function always attains its supremum
on a compact set, the conclusion follows. In the following propositior et0 be
a solution of (3) and lekK be a subset ofl, 2, ..., n} made of indices such that
x; > 0. Itis clear that in this casex solves the problem

X-[I-(AKXK . YI(AKVK

S = Mmax &——

XpBgkXk  ¥k20 Yp BgYg
with xg > 0.
Proposition 3.1. Under the above assumptions= (x" Ax)/(x' Bx) is the maxi-
mal generalized eigenvalue of the generalized eigenvalue prabjexg = ABx Xk
with Xx equal to a corresponding eigenvector.
Proof. Introduce the spectral decomposition of the symmetric matrix

B PAxB P = 2, P,

wherej, are its eigenvalues ang- are the corresponding (necessarily symmetric)
spectral idempotents, whose total sum equals the identity miatfikis implies that

1/2 1/2
L Xk Ak XK _ZA X};BK/ PrBK/ Xk
X-II;BKXK p " X};BKXK

is a convex combination of the eigenvaluesB;jl/zAK 3;1/2. It follows that is

no greater than the maximal of these eigenvalues. Assume that the eigenvalues are
indexed in decreasing order so thatis the maximal one. Let, be an eigenvector
corresponding to this eigenvalue and assume with no loss of gengq%y}y: 1.
Denotey = xj Bx Xk and introduce

Zx = Xg COS¢ + B,}l/ZyK sin ¢.

Observe thatg is as close txg as we want, ifp is close enough to 0. It is also
clear thatzg has strictly positive entries ok for ¢ close enough to 0, becausg
satisfies this condition. So

7k Bxzx =y c0$ ¢ + 2Xg By °yx Cosgsing + sirf g,

and
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Z-II—(AKZK =1y cos ©

+2x BB 2 Ax B Py cosg sin g

—-1/2 —-1/2 .
+yk By PAk B Py sinf @

=1y cos ©
T pl/2 .
+ 2hoXg By “Yg COSg@ Sin ¢
+ Ao sin2 Q.

Now, if Ao were strictly greater thah, it is clear from these expressions tigatan
be chosen on one hand small enough to make the entrigsai K strictly positive
and on the other hand such that the quotient
Z-II;AKZK
Z-II; Brzx
is strictly greater thanr contradicting its (local) maximality. This proves that is
no greater than; so they are equal. Finally, it is easy to see that the eigenvalues of
the symmetric matri>B,}l/2AK B,}l/z are the same as the generalized eigenvalues of
the generalized eigenvalue probletg xx = ABgXg, where the corresponding ei-
genvectoxy is in the relatiorkx = Bgl/zyk with the eigenvectoyy of the matrix
-1/2 ~1/2
By TAg BT . O
Proposition 3.2. Under the assumptions of PropositioB.1 it holds that
(A — AB)x < Oand the set of indices where this vector is strictly negative is disjoint
with K.

Proof. Inthe proof of necessity, it suffices to consider the case wheontains all
but one index. So leK = {1, 2,...,n — 1} and writeA, B, andx in a block form
with respect to this set’:

_ Ax b _|Bx ¢ | Xk
_[bT y], B_[CT 8]’ and x_[o].

By Proposition 3.1 we have
0
(A= AB)X = [(b _0T XK:| ,

so that the set of indices where the veatdr— 1 B)x is hon-zero is disjoint wittk .
It remains to show thab — Ac) Txx is non-positive. To this end assume with no loss
of generality thak" Bx = 1 and define for any < [0, n/2] the vector

_ [xk cosg
| sing |-

Itis clear thaty > 0. Also we have that
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y'By = cog ¢ + 2c"xg cosg sing + 68 sir? ¢,

and that

yTAy = 1 cog ¢ + 2b"xx cosg sing + y sir? ¢.

An elementary computation reveals that the first derivative of the quaiiénty)/
(y" By) as a function ofy atg = 0 equals 2b — 1c)Txg. Now, if (b — Ac)Txx were
strictly positive, the quotienty” Ay)/(y" By), which equalsk at ¢ = 0, would be
strictly increasing as a function @f contradicting the maximality of. [

We may also consider a slightly more general optimization problem ALet
(a;j) be am x n real symmetric matrix and Idt be a subset of the sgt, 2, .. ., n}.
Denote byL’ the complement of the sétin {1, 2, ..., n}. Introduce a regiomR in
then-dimensional real vector space, defined by

R={x=@x)}_q: xi >0forieL'}.

We would like to find a vectox € R satisfying the condition
xTAX yT Ay @
XTBX ~ yeR Y'BYy’

It is not difficult to see that this equation has a solutioa R. This can be done

similarly as above with optimization problem (3). Using similar ideas we can prove
even more, namely:

Theorem 3.3. Letx € R be any solution of4), let K be a subset of.” made of

indicesi with x; > 0, and letA = (xTAx)/(xTBx). Then the following are true

1. The value. equals the maximal eigenvalue of the generalized eigenvalue problem
for matricesA gz, and Bxyr, While Xgyz, equals a corresponding eigenvector.

2. The set of indices where the vectar — AB)x < 0 is strictly negative is disjoint
with K U L.

Proof. The proof of this theorem follows exactly the same steps as the proof of
Propositions 3.1 and 3.2. The key observation is the following. It is cleaxihat
solves the problem

T T
Xgurp AKUL XKuL max  JKUL AguL Yxur

T - ) ’
Xgur Brur Xgur  Ykur=0 Y Brur Yxur

To get assertion 1, use the spectral decomposition of the symmetric m@%@

AKULBE&J/LZ similarly as in the proof of Proposition 3.1. This observation also suf-
fices to get assertion 2. Namely, by assertion 1 the vegetor AB)x has all the
components with indicesbelonging to the sek U L equal to 0. In the proof of the

fact that the rest of the components are non-positive we use similar arguments as in
the proof of Proposition 3.2.0
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4. Counterexamples

The results of Section 3 suggest a simple algorithm for solving the statistical
problem of restricted canonical correlations via the proposed optimization problem.
Namely, for any choice of subsét of indicesL’ one could simply compute the
maximal generalized eigenvalueand corresponding eigenvector of the general-
ized eigenproblem for matrice$x;, and Bgur. We take under consideration the
solutionsx such that

(A) xx has strictly positive entries, and
(B) (A —1B)x <0.

Choosing the maximal among the so obtained eigenvallegs us to the global
solution of the optimization problem, and consequently, with the solution of the re-
stricted canonical correlation problem. If the surof the cardinalities of two sets for
which the canonical correlation is to be computed is not too big, the method should
give a result in real time.

It is plausible that a more sophisticated algorithm exists. However, let us point
out some of the problems that occur when searching for a better algorithm. One
of the questions is: if for a choice df the eigenvectokk; of the generalized
eigenproblem for matrices xu;, and Bxu; does not satisfy conditions (A) and (B),
could we dismiss all sets greater th&nfrom further investigation? The answer to
this question is negative as the following example shows.

Define the matrices

6 6 -1
A= 6 6 6
-1 6 6

and B = 141 and consider the problem for the gdebeing empty. Then, the partial
solutions of the generalized eigenvalue problem for singletonSedse all equal

to A = 3/7. If we take the set§l}, {2}, and{3}, respectively, for the set’, we get
corresponding eigenvector equalio 0, 0), (0, 1, 0), and(0, 0, 1), respectively, sat-
isfying condition (A), but not conditon (B). For the sEtequal to{1, 3} the maximal
eigenvalue is 1/2 with(1, 0, —1) as the eigenvector, so that condition (A) cannot
be satisfied. For the choic¢$, 2} and{2, 3} for K we do get an eigenvector with
positive entries corresponding to the eigenvalue 6/7, nantikly, 0) and (0, 1, 1),
respectively. Observe that condition (A) is satisfied in these two cases, while condi-
tion (B) is not satisfied. Notice now that the “greatest” &et2, 3} yields the global
maximum 1 with the eigenvectd?, 3, 2). Observe that in this example the point of
global maximum is the only one satisfying both conditions (A) and (B).

So a natural question is whether the two conditions are also sufficient. A possible
positive answer to this question would help us improve our method substantially.
However, let us give an example showing that this question has a negative answer as
well. Consider the matrices
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3 -1 -1
A=]-1 2 2
-1 2 2

andB = 5/, and assume again that the g5 empty. Then, the best among the par-
tial solutions of the generalized eigenvalue problem for singleton sets equaBy5

on {1}. This point clearly satisfies the two conditions. The maximal eigenvalue cor-
responding to the setd, 2} and{1, 3} has eigenvector whose entries cannot be all
made strictly positive, while the s¢®, 3} has eigenvalue 4/5 with corresponding
eigenvecton(0, 1, 1). This point also satisfies the two conditions. The greatest set
{1, 2, 3} yields eigenvalue 1 with the eigenvectdr —1, —1). So the global maxi-
mum is attained a0, 1, 1) with eigenvalue 4/5. Notice that the 4@t 3}, where we
have found the global maximum, is disjoint with the §8t where a local maximum
has been found.

Question 1. Is there an easily verifyable set of conditions, necessary and sufficient
for a global maximum or at least a local maximum of problem (3) to occur?

Question 2. Is it possible to reduce the complexity of the proposed search pro-
cess using one of the standard techniques of optimization, such as active constraint
strategy [2]?
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