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Abstract

The problem of the first canonical correlation between two random vectors subject to some
natural constraints is treated in the paper. The problem is usually referred to as restricted
canonical correlation. A new approach to solving the problem is given by translating it into a
generalized eigenvalue problem with ann × n real symmetric matrixA and a positive definite
matrixB of the same size. © 2000 Elsevier Science Inc. All rights reserved.

1. Introduction

The problem of restricted canonical correlation was introduced in [1]. The prob-
lem of finding the first canonical correlation between two random vectors is extended
to the case, where some (or all) of the canonical variate coefficients are subject to
some constraints. The most natural possible restriction might be to have these coeffi-
cients non-negative. The reader is referred to [1] for a set of motivating examples as
well as a discussion how some other possible restrictions may be reduced to the case
of non-negativity. Das and Sen [1] are solving the problem using the Kuhn–Tucker
Lagrangian theory. We propose here a somewhat different approach. Namely, a use-
ful approach to the solution of the standard canonical correlation problem translates
the problem to a generalized eigenvalue problem with ann × n real symmetric ma-
trix A and a positive definite matrixB of the same size. We show that this approach
can be extended to the case of restricted canonical correlations as well.
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Our approach to the problem is based on the fact given in Proposition 3.1 that
the restricted canonical correlation equals the maximal eigenvalue of the generalized
eigenproblem for matricesAK andBK obtained, respectively, from the starting ma-
tricesA andB by crossing out all rows and columns with indices not inK, whereK
is the set of indices such that the canonical weights for the variables indexed by this
set are strictly positive. This fact reduces the problem to finding the setK of variable
indices so that the eigenvector corresponding to the maximal generalized eigenvalue
for matricesAK andBK has positive entries.

The problem therefore becomes a search problem over 2m − 1 sets of indices,
wherem is the total number of variables on which the non-negativity restriction
is imposed. In the search process for any of the 2m − 1 sets of indicesK the cor-
responding generalized eigenproblem for the symmetric matrixAK and the posi-
tive definite matrixBK is solved and the solution corresponding to the maximal
eigenvalue is tried out to see whether

(a) the corresponding eigenvector has positive entries onK, and

(b) it is a local maximum.

At the end of the process, the global solution is given by the one of the local solu-
tions satisfying both (a) and (b) that has the maximal generalized eigenvalue. In this
respect our main results are Propositions 3.1 and 3.2 (where a necessary condition
for (b) is given) for the case that restriction is imposed on all variables, and Theorem
3.3, where these results are given for the general case. Namely, if restrictions are
not imposed for alln variables in a data set, we denote byL the set of indices of
variables on which no non-negativity restrictions are imposed, and byL′ the set of
indices of variables on which they are imposed. In this case the search process goes
only through the subsetsK of the setL′.

The paper is organized as follows: the problem of restricted canonical correla-
tion is presented in Section 2 together with a reduction of this problem to an op-
timization problem. Our main results are given in Section 3 as described above.
Section 4 gives examples pointing out to some problems in applications of these
methods.

2. Applications to statistics

Denote the joint variance–covariance matrix of two random vectorsY1 andY2 of
respective sizesl andm, by

R =
[
R11 R12
R21 R22

]
.

Let a andb be two columns of constants of respective sizesl andm, and let the
random variablesX1 and X2 be defined as the respective linear combinations of
the random variables from these two sets with these constants as coefficients, i.e.,
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X1 = aTY1 andX2 = bTY2. Then, the covariance of these two variables is given as
cov(X1,X2) = aTR12b, while their correlation coefficient is

ρ (X1,X2) = aTR12b√
aTR11a

√
bTR22b

.

The classical method of canonical correlations searches for the maximal among these
correlations when columnsa andb run over all possible choices, while the method
of restricted canonical correlations(as introduced in [1]) searches for the maximal
among the correlations when columnsa andb run over all possible non-negative
choices. Of course, only for some of the coefficients the non-negativity restrictions
may be imposed.

Let us now extend the standard techniques to translate this problem into an op-
timization problem to be considered in Section 3. LetL be a subset of the set
{1, 2, . . . , l}, and letM be a subset of the set{1, 2, . . . ,m}. Denote byL′ the com-
plement of the setL in {1, 2, . . . , l} and byM ′ the complement of the setM in
{1, 2, . . . ,m}. Moreover, we introduce regionsR andS in thel- andm-dimensional,
real vector space, respectively, defined by

R = {
c = (ci)

l
i=1; ci > 0 for i ∈ L′}

and

S = {
d = (di)

m
i=1; di > 0 for i ∈ M ′}.

We want to find a pair of vectorsa ∈ R andb ∈ S satisfying the condition

aTR12b√
aTR11a

√
bTR22b

= max
c∈R, d∈S

cTR12d√
cTR11c

√
dTR22d

. (1)

It is not difficult to see that solutions of this equation exist. Namely, observe that
quotient (1) does not change if we multiply eithera or b by a positive constant. So
let us restrict ourselves with no loss of generality to vectorsa andb satisfying an
additional condition

√
aTR11a =

√
bTR22b = 1. Since the set of vectors satisfying

all these conditions is compact, and since a continuous function always attains its
supremum on a compact set, the conclusion follows.

Definen = l + m and introduce a real symmetricn × n matrix A and a positive
definiten × n matrixB by

A =
[

0 R12
R21 0

]
and B =

[
R11 0
0 R22

]
.

Take arbitrary columnsa andb and define

x =
[
a
b

]
.

Furthermore, denote byT the set of allx, with the property that with respect to this
block partition vectora belongs toR and vectorb belongs toS. Then, we have:
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Lemma 2.1. A columnx ∈ T is a solution of

xTAx
xTBx

= max
y∈T

yTAy
yTBy

. (2)

if and only if the columnsa andb are the solutions of(1).

Proof. Let us first rewrite (2) into

aTR12b + bTR21a

aTR11a + bTR22b
= max

c∈R, d∈S

cTR12d + dTR21c

cTR11c + dTR22d
, (2′)

using the above definitions. Denote byλ the solution of problem (1) and byµ the
solution of problem (2) which is also equal to the solution of problem(2′). Let a pair
of vectorsa ∈ R andb ∈ S satisfy (1) and observe that by multiplying either of the
two vectors by a positive constant, the quotient on the left-hand side of (1) does not
change. So we may assume with no loss of generality that

√
aTR11a =

√
bTR22b.

Denote this constant byα to get

aTR12b + bTR21a

aTR11a + bTR22b
= 2aTR12b

2α2 = aTR12b√
aTR11a

√
bTR22b

.

Soλ is no greater thanµ. Now, letx be a solution of problem (2) and let the vectors
a andb be its parts with respect to the above block partition. If we introducec = sa
andd = tb for some positive constantss andt , we get

cTR12d + dTR21c

cTR11c + dTR22d
= st

[
aTR12b + bTR21a

]
s2

[
aTR11a

] + t2
[
bTR22b

] .

The quotient on the right-hand side is a function ofs andt . A standard computation
reveals that it has its maximum at

s

t
=

√
bTR22b√
aTR11a

,

so that

µ = aTR12b√
aTR11a

√
bTR22b

is no greater thanλ, and consequently, they are equal.�

3. Solving the optimization problem

For anyn × n real symmetric matrixA = (aij ) and any subsetK of the set
{1, 2, . . . , n}, let AK be the principal submatrix of matrixA made of components
aij with both indicesi andj in K. Similarly, for anyn-tuplex = (xi) denote byxK

the subvector made of componentsxi such thati belongs toK.
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Fix now a real symmetricn × n matrix A and a positive definite matrixB. We
would like to find a vectorx > 0 satisfying the condition

xTAx
xTBx

= max
y>0

yTAy
yTBy

. (3)

We can see that this equation has a solutionx such thatx > 0. In the proof of
this fact we may restrict ourselves with no loss of generality to vectorsx satisfying
an additional conditionxTBx = 1. Since the set of vectors satisfying bothx > 0 and
xTBx = 1 is compact, and since a continuous function always attains its supremum
on a compact set, the conclusion follows. In the following proposition, letx > 0 be
a solution of (3) and letK be a subset of{1, 2, . . . , n} made of indicesi such that
xi > 0. It is clear that in this casexK solves the problem

xT
KAKxK

xT
KBKxK

= max
yK>0

yT
KAKyK

yT
KBKyK

with xK > 0.

Proposition 3.1. Under the above assumptionsλ = (xTAx)/(xTBx) is the maxi-
mal generalized eigenvalue of the generalized eigenvalue problemAKxK = λBKxK

with xK equal to a corresponding eigenvector.

Proof. Introduce the spectral decomposition of the symmetric matrix

B
−1/2
K AKB

−1/2
K = RrλrPr ,

whereλr are its eigenvalues andPr are the corresponding (necessarily symmetric)
spectral idempotents, whose total sum equals the identity matrixI . This implies that

λ = xT
KAKxK

xT
KBKxK

=
∑

r

λr

xT
KB

1/2
K PrB

1/2
K xK

xT
KBKxK

is a convex combination of the eigenvalues ofB
−1/2
K AKB

−1/2
K . It follows thatλ is

no greater than the maximal of these eigenvalues. Assume that the eigenvalues are
indexed in decreasing order so thatλ0 is the maximal one. LetyK be an eigenvector
corresponding to this eigenvalue and assume with no loss of generalityyT

KyK = 1.
Denoteγ = xT

KBKxK and introduce

zK = xK cosϕ + B
−1/2
K yK sin ϕ.

Observe thatzK is as close toxK as we want, ifϕ is close enough to 0. It is also
clear thatzK has strictly positive entries onK for ϕ close enough to 0, becausexK

satisfies this condition. So

zT
KBKzK = γ cos2 ϕ + 2xT

KB
1/2
K yK cosϕ sinϕ + sin2 ϕ,

and
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zT
KAKzK =λγ cos2 ϕ

+ 2xT
KB

1/2
K B

−1/2
K AKB

−1/2
K yK cosϕ sin ϕ

+ yT
KB

−1/2
K AKB

−1/2
K yK sin2 ϕ

=λγ cos2 ϕ

+ 2λ0xT
KB

1/2
K yK cosϕ sin ϕ

+ λ0 sin2 ϕ.

Now, if λ0 were strictly greater thanλ, it is clear from these expressions thatϕ can
be chosen on one hand small enough to make the entries ofzK onK strictly positive
and on the other hand such that the quotient

zT
KAKzK

zT
KBKzK

is strictly greater thanλ contradicting its (local) maximality. This proves thatλ0 is
no greater thanλ; so they are equal. Finally, it is easy to see that the eigenvalues of
the symmetric matrixB−1/2

K AKB
−1/2
K are the same as the generalized eigenvalues of

the generalized eigenvalue problemAKxK = λBKxK , where the corresponding ei-
genvectorxK is in the relationxK = B

−1/2
K yK with the eigenvectoryK of the matrix

B
−1/2
K AKB

−1/2
K . �

Proposition 3.2. Under the assumptions of Proposition3.1 it holds that
(A − λB)x 6 0 and the set of indices where this vector is strictly negative is disjoint
with K.

Proof. In the proof of necessity, it suffices to consider the case whenK contains all
but one index. So letK = {1, 2, . . . , n − 1} and writeA,B, andx in a block form
with respect to this setK:

A =
[
AK b
bT γ

]
, B =

[
BK c
cT δ

]
, and x =

[
xK

0

]
.

By Proposition 3.1 we have

(A − λB)x =
[

0
(b − λc)T xK

]
,

so that the set of indices where the vector(A − λB)x is non-zero is disjoint withK.
It remains to show that(b − λc)TxK is non-positive. To this end assume with no loss
of generality thatxTBx = 1 and define for anyϕ ∈ [0,p/2] the vector

y =
[
xK cosϕ

sin ϕ

]
.

It is clear thaty > 0. Also we have that
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yTBy = cos2 ϕ + 2cTxK cosϕ sin ϕ + δ sin2 ϕ,

and that

yTAy = λ cos2 ϕ + 2bTxK cosϕ sin ϕ + γ sin2 ϕ.

An elementary computation reveals that the first derivative of the quotient(yTAy)/
(yTBy) as a function ofϕ atϕ = 0 equals 2(b − λc)TxK . Now, if (b − λc)TxK were
strictly positive, the quotient(yTAy)/(yTBy), which equalsλ at ϕ = 0, would be
strictly increasing as a function ofϕ, contradicting the maximality ofλ. �

We may also consider a slightly more general optimization problem. LetA =
(aij ) be ann × n real symmetric matrix and letL be a subset of the set{1, 2, . . . , n}.
Denote byL′ the complement of the setL in {1, 2, . . . , n}. Introduce a regionR in
then-dimensional real vector space, defined by

R = {
x = (xi)

n
i=1; xi > 0 for i ∈ L′} .

We would like to find a vectorx ∈ R satisfying the condition

xTAx
xTBx

= max
y∈R

yTAy
yTBy

. (4)

It is not difficult to see that this equation has a solutionx ∈ R. This can be done
similarly as above with optimization problem (3). Using similar ideas we can prove
even more, namely:

Theorem 3.3. Let x ∈ R be any solution of(4), let K be a subset ofL′ made of
indicesi with xi > 0, and letλ = (xTAx)/(xTBx). Then, the following are true:

1. The valueλ equals the maximal eigenvalue of the generalized eigenvalue problem
for matricesAK∪L andBK∪L, whilexK∪L equals a corresponding eigenvector.

2. The set of indices where the vector(A − λB)x 6 0 is strictly negative is disjoint
with K ∪ L.

Proof. The proof of this theorem follows exactly the same steps as the proof of
Propositions 3.1 and 3.2. The key observation is the following. It is clear thatxK∪L

solves the problem

xT
K∪L AK∪L xK∪L

xT
K∪L BK∪L xK∪L

= max
yK∪L>0

yT
K∪L AK∪L yK∪L

yT
K∪L BK∪L yK∪L

.

To get assertion 1, use the spectral decomposition of the symmetric matrixB
−1/2
K∪L

AK∪LB
−1/2
K∪L similarly as in the proof of Proposition 3.1. This observation also suf-

fices to get assertion 2. Namely, by assertion 1 the vector(A − λB)x has all the
components with indicesi belonging to the setK ∪ L equal to 0. In the proof of the
fact that the rest of the components are non-positive we use similar arguments as in
the proof of Proposition 3.2.�
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4. Counterexamples

The results of Section 3 suggest a simple algorithm for solving the statistical
problem of restricted canonical correlations via the proposed optimization problem.
Namely, for any choice of subsetK of indicesL′ one could simply compute the
maximal generalized eigenvalueλ and corresponding eigenvector of the general-
ized eigenproblem for matricesAK∪L andBK∪L. We take under consideration the
solutionsx such that

(A) xK has strictly positive entries, and

(B) (A − λB)x 6 0.

Choosing the maximal among the so obtained eigenvaluesλ brings us to the global
solution of the optimization problem, and consequently, with the solution of the re-
stricted canonical correlation problem. If the sumn of the cardinalities of two sets for
which the canonical correlation is to be computed is not too big, the method should
give a result in real time.

It is plausible that a more sophisticated algorithm exists. However, let us point
out some of the problems that occur when searching for a better algorithm. One
of the questions is: if for a choice ofK the eigenvectorxK∪L of the generalized
eigenproblem for matricesAK∪L andBK∪L does not satisfy conditions (A) and (B),
could we dismiss all sets greater thanK from further investigation? The answer to
this question is negative as the following example shows.

Define the matrices

A =

 6 6 −1

6 6 6
−1 6 6




andB = 14I and consider the problem for the setL being empty. Then, the partial
solutions of the generalized eigenvalue problem for singleton setsK are all equal
to λ = 3/7. If we take the sets{1}, {2}, and{3}, respectively, for the setK, we get
corresponding eigenvector equal to(1, 0, 0), (0, 1, 0), and(0, 0, 1), respectively, sat-
isfying condition (A), but not conditon (B). For the setK equal to{1, 3} the maximal
eigenvalue is 1/2 with(1, 0,−1) as the eigenvector, so that condition (A) cannot
be satisfied. For the choices{1, 2} and{2, 3} for K we do get an eigenvector with
positive entries corresponding to the eigenvalue 6/7, namely,(1, 1, 0) and(0, 1, 1),
respectively. Observe that condition (A) is satisfied in these two cases, while condi-
tion (B) is not satisfied. Notice now that the “greatest” set{1, 2, 3} yields the global
maximum 1 with the eigenvector(2, 3, 2). Observe that in this example the point of
global maximum is the only one satisfying both conditions (A) and (B).

So a natural question is whether the two conditions are also sufficient. A possible
positive answer to this question would help us improve our method substantially.
However, let us give an example showing that this question has a negative answer as
well. Consider the matrices
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A =

 3 −1 −1

−1 2 2
−1 2 2




andB = 5I , and assume again that the setL is empty. Then, the best among the par-
tial solutions of the generalized eigenvalue problem for singleton sets equalsλ = 3/5
on {1}. This point clearly satisfies the two conditions. The maximal eigenvalue cor-
responding to the sets{1, 2} and{1, 3} has eigenvector whose entries cannot be all
made strictly positive, while the set{2, 3} has eigenvalue 4/5 with corresponding
eigenvector(0, 1, 1). This point also satisfies the two conditions. The greatest set
{1, 2, 3} yields eigenvalue 1 with the eigenvector(1,−1,−1). So the global maxi-
mum is attained at(0, 1, 1) with eigenvalue 4/5. Notice that the set{2, 3}, where we
have found the global maximum, is disjoint with the set{1}, where a local maximum
has been found.

Question 1. Is there an easily verifyable set of conditions, necessary and sufficient
for a global maximum or at least a local maximum of problem (3) to occur?

Question 2. Is it possible to reduce the complexity of the proposed search pro-
cess using one of the standard techniques of optimization, such as active constraint
strategy [2]?
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