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Let B be the unit ball in C
n with respect to an arbitrary norm ‖ · ‖ and let f (z, t) be a g-

Loewner chain such that z = 0 is a zero of order k + 1 of e−t f (z, t) − z for each t � 0. In
this paper, the authors obtain coefficient bounds of mappings in S0

g,k+1(B). These results
generalize the related works of Hamada, Honda and Kohr.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Let Cn denote the space of n complex variables z = (z1, . . . , zn) with respect to an arbitrary norm ‖ · ‖. Let B =
{z ∈ Cn: ‖z‖ < 1}. Let Bn be the Euclidean unit ball in Cn , D be the unit disc in C. Let L(Cn,Cm) be the space of all
continuous linear operators from Cn into Cm . For each z ∈ Cn \ {0}, we define T (z) = {lz ∈ L(Cn,C): ‖lz‖ = 1, lz(z) = ‖z‖}.
According to the Hahn–Banach theorem, T (z) is nonempty. Let H(B) be the set of all holomorphic mappings from B into Cn .
Notice that for fixed z ∈ Cn , ∀α(�= 0) ∈ C, when lz is chosen and fixed, then ‖ |α|

α lz‖ = ‖lz‖ � 1, and |α|
α lz(αz) = |α|

α αlz(z) =
|α|‖z‖ = ‖αz‖, so we can assume lαz = |α|

α lz . A holomorphic mapping f : B → Cn is said to be biholomorphic if the inverse
f −1 exists and is holomorphic on the open set f (B). A mapping f ∈ H(B) is said to be locally biholomorphic if the Fréchet
derivative D f (z) has a bounded inverse for each z ∈ B . We say that f is normalized if f (0) = 0 and D f (0) = I , where I
represents the identity in L(Cn,Cn). Let S(B) be the set of all normalized biholomorphic mappings.

If f , g ∈ H(B), we say that f is subordinate to g ( f ≺ g) if there exists a Schwarz mapping v (i.e. v ∈ H(B) and
‖v(z)‖ � ‖z‖, z ∈ B) such that f = g ◦ v . A mapping F : B ×[0,∞] → Cn is called a Loewner chain if F (·, t) is biholomorphic
on B , F (0, t) is biholomorphic on B , F (0, t) = 0, D F (0, t) = et I for t � 0 and

F (z, s) ≺ F (z, t), z ∈ B, 0 � s � t < ∞.

The following set play a key role in our discussion:

M = {
h ∈ H(B): h(0) = 0, Dh(0) = I, �e

[
lz

(
h(z)

)]
� 0, z ∈ B, lz ∈ T (z)

}
.

In [7] (see also [2,6]), the following result is proved:
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Lemma 1. Let f (z, t) be a Loewner chain and v = v(z, s, t) be the transition mapping of f (z, t). Then f (z, ·) is locally Lipschitz
continuous on [0,∞), locally uniformly with respect to z ∈ B, and there exists a mapping h = h(z, t) such that h(·, t) ∈ M, t � 0,
h(z, ·) is measurable on [0,∞), and

∂ f

∂t
(z, t) = D f (z, t)h(z, t), a.e. t � 0

and for all z ∈ B. Also v(z, s, t) satisfies the initial value problem

∂v

∂t
= −h(v, t), a.e. t � s, v(z, s, s) = z,

and for all z ∈ B and s � 0. Moreover, if {e−t f (z, t)}t�0 is a normal family on B, then for every s � 0,

lim
t→∞ et v(z, s, t) = f (z, s)

and the above limit holds locally uniformly on B.

Definition 2. (See [2].) Let f : B → Cn be a normalized holomorphic mapping. We say that f has parametric representation
if there exists a mapping h = h(z, t) which satisfies the condition in Lemma 1 such that f (z) = limt→∞ et v(z, t) locally
uniformly on B , where v = v(z, t) is the unique solution of the initial value problem

∂v

∂t
= −h(v, t), a.e. t � 0, v(z,0) = z,

for all z ∈ B .

Let S0(B) be the set of all mappings which have parametric representation on B . Then S0(B) ⊂ S(B) [2]. It is well known
that in the case of one variable S0(D) = S(D); however, in Cn , n � 2, S0(B) � S(B) [14].

Definition 3. Let g ∈ H(D) be a biholomorphic function such that g(0) = 1, g(ξ̄ ) = g(ξ), for ξ ∈ D , �e g(ξ) > 0 on ξ ∈ D ,
and assume g satisfies the following conditions for r ∈ (0,1):⎧⎪⎨

⎪⎩
min|ξ |=r

�e g(ξ) = min
{

g(r), g(−r)
}
,

max|ξ |=r
�e g(ξ) = max

{
g(r), g(−r)

}
.

We define M g to be the class of mappings given by

M g =
{

p ∈ H(B): p(0) = 0, Dp(0) = I,
1

‖z‖ lz
(

p(z)
) ∈ g(D), z ∈ B\{0}, lz ∈ T (z)

}
.

The class M g has been introduced by Kohr [13] on Bn and by Graham, Hamada and Kohr [2] on the unit ball with
respect to an arbitrary norm in Cn .

Definition 4. (See [6].) Let g : D → C be a biholomorphic function satisfying the assumptions of Definition 1. Also let
f ∈ H(B). We say that f ∈ S0

g(B) if there exists a mapping h : B × [0,∞] → Cn which satisfies the conditions

(i) for each t � 0, h(·, t) ∈ M g ;
(ii) for each z ∈ B , h(z, t) is a measurable function of t ∈ [0,∞];

(iii) limt→∞ et v(z, t) = f (z) locally uniformly on B , where v = v(z, t) is the solution of the initial value problem
∂v

∂t
= −h(v, t), a.e. t � 0, v(z,0) = z,

for all z ∈ B .

The class S0
g(B) is called the class of mappings which have g-parametric representation on B . We say that a mapping

f : B × [0,∞] → Cn is a g-Loewner chain if and only if f (z, t) is a Loewner chain such that {e−t f (z, t)}t�0 is a normal
family on B and the mapping h(z, t) which occurs in the Loewner differential equation

∂ f

∂t
(z, t) = D f (z, t)h(z, t), a.e. t � 0,

satisfies h(·, t) ∈ M g for a.e. t � 0 (see [2,3,12]). Obviously, if g(ξ) = (1+ξ)
1−ξ

, ξ ∈ D , then S0
g(B) reduces to the set S0(B).

We denote by S0
k+1 (respectively S0

g,k+1(B)) the subset of S0(B) (respectively S0
g(B)) consisting of mappings f for which

there exists a Loewner chain (respectively a g-Loewner chain) f (z, t) such that {e−t f (z, t)}t�0 is a normal family on B ,
f = f (·,0) and z = 0 is a zero of order k + 1 of e−t f (z, t) − z for each t � 0 (see [4,5,7,8,10,11,13]).

The aim of this paper is to give coefficient bounds in S0 (B). These results generalize the corresponding results of [10].
g,k+1
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2. Preliminaries

In order to prove the desired results, we first give some lemmas.

Lemma 5. (See [1].) If f (z) = a0 + ∑∞
n=1 anzn ∈ H(D), and f (D) ⊂ D, then

|an| � 1 − |a0|2, n = 1,2, . . . .

The following formula is that of Faà di Bruno to deal with the higher derivatives of compound functions.

Lemma 6. (See [15].) Let G, Ω be domains in C, f ∈ H(G), g ∈ H(Ω). If f (G) ⊂ Ω , then

(g ◦ f )(n)(z) =
∑ n!

l1! · · · ln! g(l)( f (z)
)( f ′(z)

1!
)l1

· · ·
(

f (n)(z)

n!
)ln

, z ∈ G,

where l = l1 + · · · + ln and the sum is over all l1, . . . , ln for which l1 + 2l2 + · · · + nln = n.

Lemma 7. If f ∈ H(D), g is a biholomorphic function on D, f (0) = g(0), f ′(0) = · · · = f (k−1)(0) = 0, and f ≺ g, then

| f (n)(0)|
n! �

∣∣g′(0)
∣∣, n = k, . . . ,2k − 1.

Proof. Since f ≺ g , there exists a function ϕ ∈ H(D, D), ϕ(0) = 0 such that ϕ = g−1 ◦ f . By Lemma 6, we have

ϕ(n)(0) = (
g−1 ◦ f

)(n)
(0) =

∑ n!
l1! · · · ln!

[
g−1](l)( f (0)

)( f ′(0)

1!
)l1

· · ·
(

f (n)(0)

n!
)ln

,

where l = l1 + · · · + ln and the sum is over all l1, . . . , ln for which l1 + 2l2 + · · · + nln = n. In view of the assumption of
Lemma 7 and the above equality, we easily deduce that

ϕ(n)(0) = f (n)(0)

g′(0)
, n = k, . . . ,2k − 1.

Therefore, according to Lemma 5, we obtain

| f (n)(0)|
n! �

∣∣g′(0)
∣∣, n = k, . . . ,2k − 1.

This completes the proof. �
3. Main results

Theorem 8. Let g satisfy the assumptions of Definition 3 and f ∈ S0
g,k+1(B). Then

|lz(Dm f (0)(zm))|
m! � 1

m − 1

∣∣g′(0)
∣∣‖z‖m, z ∈ B, lz ∈ T (z), m = k + 1, . . . ,2k.

Proof. Since f ∈ S0
g,k+1(B), there is a g-Loewner chain f (z, t) such that f (z) = f (z,0), z ∈ B . Also there exist a mapping

ht(z) = h(z, t) ∈ M g for each t � 0, measurable in t for each z ∈ B , such that for almost all t � 0,

∂ f

∂t
(z, t) = D f (z, t)h(z, t), ∀z ∈ B. (1)

Fix z ∈ B \ {0}, lz ∈ T (z), t0 � 0 and denote z0 = z
‖z‖ . Let pt0 : D → C be given by

pt0 (ξ) =
{ 1

ξ
lz(ht0 (ξ z0)), ξ �= 0,

1, ξ = 0.
(2)

Then pt0 ∈ H(D), pt0 (0) = g(0) = 1, and since ht0(z) ∈ M g , we deduce that

pt0 (ξ) = 1

ξ
lz

(
ht0(ξ z0)

) = 1

ξ
lz0

(
ht0 (ξ z0)

) = 1

‖ξ z0‖ lξ z0

(
ht0(ξ z0)

) ∈ g(D), ξ ∈ D \ {0}.

Therefore pt0 ≺ g . Using the fact that z = 0 is a zero of order k + 1 of e−t f (z, t) − z, we have
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f (ξ z, t) = et zξ +
∞∑

m=k+1

Dm f (0, t)(zm)

m! ξm

and

∂ f

∂t
(zξ, t) = et zξ +

∞∑
m=k+1

∂

∂t

[
Dm f (0, t)(zm)

m!
]
ξm.

After simple computations, in view of (1), we obtain for almost all t � 0 that

h(ξ z, t) = zξ +
∞∑

m=k+1

Dmh(0, t)(zm)

m! ξm (3)

and

∂

∂t

[
Dm f (0, t)(zm)

m!
]

= Dm f (0, t)(zm)

(m − 1)! + et Dmh(0, t)(zm)

m! , m = k + 1, . . . ,2k, (4)

where z ∈ B , and ξ ∈ D . Taking into account (2) and (3), for z = z0, and t = t0 � 0 such that (1) holds, we have

pt0 (ξ) = 1 +
∞∑

m=k+1

lz(Dmh(0, t0)(zm
0 ))

m! ξm−1. (5)

It is clear that pt0 (ξ) satisfies the hypothesis of Lemma 7, thus we have

|p(n)
t0

(0)|
n! �

∣∣g′(0)
∣∣, n = k, . . . ,2k − 1. (6)

Combining the relations (5) and (6), we obtain

|lz(Dmht0 (0)(zm))|
m! �

∣∣g′(0)
∣∣‖z‖m, z ∈ B \ 0, lz ∈ T (z), m = k + 1, . . . ,2k. (7)

Let

qm,z(T ) = e−mT Dm f (0, T )
(
zm) − Dm f (0,0)

(
zm) −

T∫
0

e−(m−1)t Dmh(0, t)
(
zm)

dt, m = k + 1, . . . ,2k,

for fixed z ∈ B and T � 0. Since q′
z(T ) = 0 for almost all T � 0 by (4), we have qz(T ) = qz(0) = 0. From this we have the

equality

e−mT lz
(

Dm f (0, T )
(
zm)) − lz

(
Dm f (0,0)

(
zm)) =

T∫
0

lz
(
e−(m−1)t Dmh(0, t)

(
zm))

dt, m = k + 1, . . . ,2k. (8)

Next, in view of Corollary 11 in [10], we have

∥∥ f (z, T )
∥∥ � eT ‖z‖exp

‖z‖∫
0

[
1

min{g(xk), g(−xk)} − 1

]
dx

x
, z ∈ B. (9)

Using the Cauchy formula

1

m! Dm f (0, T )
(
um) = 1

2π i

∫
|ζ |=r

f (ζu, T )

ζm+1
dζ, r < 1,

for u ∈ Cn , ‖u‖ = 1, and taking into account (9), we easily obtain that

lim
T →+∞ e−mT Dm f (0, T )

(
zm) = 0, m � k + 1.

Letting T → +∞ in (8) and using the above equality and (6), we deduce that

|lz(Dm f (0)(zm))|
m! � 1

m − 1

∣∣g′(0)
∣∣‖z‖m, z ∈ B, lz ∈ T (z), m = k + 1, . . . ,2k.

This completes the proof. �



130 Q.-H. Xu, T.-S. Liu / J. Math. Anal. Appl. 355 (2009) 126–130
Remark 9. Theorem 8 generalizes the corresponding result of [10], when m = k + 1, Theorem 8 was obtained by Hamada,
Honda and Kohr [10]. Moreover, Theorem 1 improves some results of Hamada and Honda [9] by omitting the convexity
assumption on g(z).

Using Theorem 8, we obtain the following corollary by an argument similar to that in the proof of [10, Corollary 25].

Corollary 10. Let g satisfy the assumptions of Definition 3 and f ∈ S0
g,k+1(B). Then

∥∥∥∥ 1

m! Dm f (0)
(

wm)∥∥∥∥ � bm−1
∣∣g′(0)

∣∣, m = k + 1, . . . ,2k, ‖w‖ = 1,

where bm−1 = m
m

m−1

m−1 .

For g(ζ ) = 1+ζ
1−ζ

, ζ ∈ D , we obtain the following corollary.

Corollary 11. If f ∈ S0
k+1(B), then

|lw(Dm f (0)(wm))|
m! � 2

m − 1
, m = k + 1, . . . ,2k, ‖w‖ = 1, lw ∈ T (w).

Moreover, for ‖w‖ = 1, we have∥∥∥∥ 1

m! Dm f (0)
(

wm)∥∥∥∥ � 2bm−1, m = k + 1, . . . ,2k, ‖w‖ = 1,

where bm−1 = m
m

m−1

m−1 .

Remark 12. Corollaries 10, 11 generalize the corresponding results of [10], when m = k + 1, Corollaries 10, 11 were obtained
by Hamada, Honda and Kohr [10].

At present, we do not know whether the following conjecture is true for the class f ∈ S0
k+1(B). This is a version of the

Bieberbach conjecture in several complex variables.

Conjecture 13. If f ∈ S0
k+1(B), then

|lw(Dm f (0)(wm))|
m! � 2

m − 1
, m � k + 1, ‖w‖ = 1, lw ∈ T (w).

Acknowledgment

The authors thank the referee for helpful comments and suggestions.

References

[1] J.B. Conway, Functions of One Complex Variable, second ed., Springer-Verlag, New York/Heidelberg/Berlin, 1978.
[2] I. Graham, H. Hamada, G. Kohr, Parametric representation of univalent mappings in several complex variables, Canad. J. Math. 54 (2) (2002) 324–351.
[3] I. Graham, H. Hamada, G. Kohr, T.J. Suffridge, Extension operators for locally univalent mappings, Michigan Math. J. 50 (2002) 37–55.
[4] I. Graham, G. Kohr, Univalent mappings associated with the Roper–Suffridge extension operator, J. Anal. Math. 81 (2000) 331–342.
[5] I. Graham, G. Kohr, An extension theorem and subclasses of univalent mappings in several complex variables, Complex Var. Elliptic Equ. 47 (2002)

59–72.
[6] I. Graham, G. Kohr, Geometric Function Theory in One and Higher Dimensions, Marcel Dekker, New York, 2003.
[7] I. Graham, G. Kohr, M. Kohr, Loewner chains and parametric representation in several complex variables, J. Math. Anal. Appl. 281 (2003) 425–438.
[8] I. Graham, G. Kohr, M. Kohr, Loewner chains and the Roper–Suffridge extension operator, J. Math. Anal. Appl. 247 (2000) 448–465.
[9] H. Hamada, T. Honda, Sharp growth theorems and coefficient bounds for starlike mappings in several complex variables, Chin. Ann. Math. Ser. B 29 (4)

(2008) 353–368.
[10] H. Hamada, T. Honda, G. Kohr, Growth theorems and coefficient bounds for univalent holomorphic mappings which have parametric representation,

J. Math. Anal. Appl. 317 (2006) 302–319.
[11] H. Hamada, T. Honda, G. Kohr, Parabolic starlike mappings in several complex variables, Manuscripta Math. 123 (2007) 301–324.
[12] H. Hamada, G. Kohr, Subordination chains and the growth theorem of spirallike mappings, Math. (Cluj) 42 (65) (2000) 153–161.
[13] G. Kohr, On some best bounds for coefficients of several subclasses of biholomorphic mappings in C

n , Complex Var. 36 (1998) 261–284.
[14] G. Kohr, Using the method of Loewner chains to introduce some subclasses of biholomorphic mappings in C

n , Rev. Roumaine Math. Pures Appl. 46
(2001) 743–760.

[15] S. Roman, The formula of Faà di Bruno, Amer. Math. Monthly 87 (1980) 805–809.


	Coefficient bounds for biholomorphic mappings which have a parametric representation
	Introduction
	Preliminaries
	Main results
	Acknowledgment
	References


