Shared Values and Normal Families of Meromorphic Functions¹

Huaihui Chen

metadata, citation and similar papers at core.ac.uk

E-mail: hhchen@pine.njnu.edu.cn

and

Mingliang Fang

Department of Mathematics, Nanjing Normal University, Nanjing 210097 E-mail: mlfang@pine.njnu.edu.cn

Submitted by Joel H. Shapiro

Received February 3, 2000

In this paper, we study the normality of a family of meromorphic functions concerning shared values and prove the following theorem: Let \mathscr{F} be a family of meromorphic functions in a domain D, let $k \ge 2$ be a positive integer, and let a, b, c be complex numbers such that $a \ne b$. If, for each $f \in \mathscr{F}$, f and $f^{(k)}$ share a and b in D, and the zeros of f(z) - c are of multiplicity $\ge k + 1$, then \mathscr{F} is normal in D. © 2001 Academic Press

Key Words: meromorphic function; normality; shared value.

1. INTRODUCTION

Let D be a domain in \mathbb{C} , f a meromorphic function, and $a \in \mathbb{C}$. Set

$$\overline{E}(a,f) = \{z : z \in D, f(z) = a\}.$$

Two meromorphic functions f and g are said to share the value a in D if $\overline{E}(a, f) = \overline{E}(a, g)$. If two meromorphic functions f and g share the value a in \mathbb{C} , then we say that f and g share a.

¹ Supported by National Natural Science Foundation of China (Grant 10071038).

Mues and Steinmetz [10] proved

THEOREM A. Let f be a non-constant meromorphic function and let a_1 , a_2 , and a_3 be distinct complex numbers. If f and f' share a_1 , a_2 , a_3 , then $f \equiv f'$.

Schwick [16] discovered a connection between normality criteria and shared values. He proved

THEOREM B. Let \mathscr{F} be a family of meromorphic functions in a domain D and let a_1 , a_2 , and a_3 be distinct complex numbers. If f and f' share a_1 , a_2 , and a_3 in D for each $f \in \mathscr{F}$, then \mathscr{F} is normal in D.

This result has undergone various extensions [12, 19, 20], culminating in the following result of Pang and Zalcman [13].

THEOREM C. Let \mathscr{F} be a family of meromorphic functions in a domain D and let a, b be two non-zero distinct complex numbers. If f and f' share a and b in D for each $f \in \mathscr{F}$, then \mathscr{F} is normal in D.

Frank and Schwick [6] generalized Theorem A as follows

THEOREM D. Let *f* be a non-constant meromorphic function, *k* a positive integer, and let a_1 , a_2 , and a_3 be distinct complex numbers. If *f* and $f^{(k)}$ share a_1 , a_2 , a_3 , then $f \equiv f^{(k)}$.

Naturally, we ask what can be stated if f' is replaced by $f^{(k)}$ for $k \ge 2$ in Theorems B–C. Frank and Schwick [7] observed that Theorem B does not admit the obvious extension obtained by replacing f' by $f^{(k)}$. In this paper, we prove

THEOREM 1. Let \mathscr{F} be a family of meromorphic functions in a domain D, let $k \ge 2$ be a positive integer, and let a, b, c be complex numbers such that $a \ne b$. If, for each $f \in \mathscr{F}$, f and $f^{(k)}$ share a and b in D, and the zeros of f(z) - c are of multiplicity $\ge k + 1$, then \mathscr{F} is normal in D.

For a family of holomorphic functions we have

THEOREM 2. Let \mathscr{F} be a family of holomorphic functions in a domain D, let $k \ge 2$ be a positive integer, and let a, b, c be complex numbers such that $a \ne b$. If, for each $f \in \mathscr{F}$, f and $f^{(k)}$ share a and b in D, and the zeros of f(z) - c are of multiplicity $\ge k$, then \mathscr{F} is normal in D.

Remark 1. The following example shows that some assumption on the zeros of f(z) - c is required for Theorems 1 and 2 to hold.

Let $\mathscr{F} = \{f_n(z): f_n(z) = n(e^z - e^{\lambda z}), n = 1, 2, 3, ...\}$, where $\lambda^k = 1, \lambda \neq 1, k \geq 2, D = \{z: |z| < 1\}$. Then \mathscr{F} is a family of holomorphic functions in a domain *D*. Obviously, for each $f \in \mathscr{F}, f \equiv f^{(k)}, f$ and $f^{(k)}$ share any number *b* in *D*. But \mathscr{F} is not normal in *D*.

2. SOME LEMMAS

For the proof of our results, we need the following lemmas.

LEMMA 1 [2, 3, 9, 15, 20]. Let \mathscr{F} possess the property that every function $f \in \mathscr{F}$ has only zeros of multiplicity at least k. If \mathscr{F} is not normal at a point 0, then for $0 \le \alpha < k$, there exist

- (a) *a number* r, 0 < r < 1;
- (b) a sequence of complex numbers $z_n \rightarrow 0$, $|z_n| < r < 1$;
- (c) a sequence of functions $f_n \in \mathscr{F}$; and
- (d) a sequence of positive numbers $\rho_n \to 0$

such that $g_n(\xi) = \rho_n^{-\alpha} f_n(z_n + \rho_n \xi)$ converges locally uniformly with respect to the spherical metric to a non-constant meromorphic function $g(\xi)$ on \mathbb{C} , and moreover, g is of order at most two.

Remark 2. In Lemma 1, if \mathscr{F} is a family of holomorphic functions, then $g(\xi)$ is of order at most one (see [3]). If \mathscr{F} satisfies the additional assumption that there exists M > 0 such that $|f^{(k)}(z)| \le M$ whenever f(z) = 0 for any $f \in \mathscr{F}$, then we can take $\alpha = k$ (see [12]).

LEMMA 2 [17, p. 22]. Let R(z) be a non-constant rational function, let k be a positive integer, and let b be a non-zero complex number. If the zeros of R(z) are of multiplicity at least k + 1, and $R^{(k)}(z) \neq b$, then $R(z) = (\gamma z + \delta)^{k+1}/(\alpha z + \beta)$, where α , β , γ , δ are constants such that $\alpha \gamma \neq 0$, $|\beta| + |\delta| \neq 0$.

LEMMA 3 [1, p. 360; 17, p. 21; 18, p. 34]. Let f(z) be a transcendental meromorphic function of finite order, k a positive integer. If the zeros of f(z) are of multiplicity at least k + 1, then $f^{(k)} - b$ has infinitely many zeros for any non-zero complex number b.

LEMMA 4. Let f(z) be a meromorphic function of finite order, let b be a non-zero complex number, and let k be a positive integer. If the zeros of f(z) are of multiplicity at least k, $\overline{E}(0, f) = \overline{E}(0, f^{(k)})$ and $f^{(k)}(z) \neq b$, then f(z) is a constant.

Proof. Obviously, the zeros of f(z) are of multiplicity at least k + 1 by the assumption, and f cannot be a polynomial of degree k + 1. If f(z) is a transcendental meromorphic function with finite order, then by Lemma 3, $f^{(k)} = b$ has infinitely many solutions, a contradiction. Hence f(z) is a rational function. Suppose that f(z) is a non-constant rational function. Then it follows from Lemma 2 that $f(z) = (\gamma z + \delta)^{k+1}/(\alpha z + \beta)$, where $\alpha, \beta, \gamma, \delta$ are constants such that $\alpha \gamma \neq 0, |\beta| + |\delta| \neq 0$. Hence $f^{(k)}(z) = b + A/(\alpha z + \beta)^{k+1}$, where A is a non-zero constant, $\overline{E}(0, f^{(k)}) = \{z : b + A/(\alpha z + \beta)^{k+1}, \beta = 0\}$.

 $+A/(\alpha z + \beta)^{k+1} = 0$, and $\overline{E}(0, f) = \{-\delta/\gamma\}, \overline{E}(0, f) \neq \overline{E}(0, f^{(k)})$. We arrive at a contradiction. This completes the proof of the lemma.

LEMMA 5 [8, p. 14; 9, p. 60]. Let f(z) be a meromorphic function, let a be a non-zero complex number, and let k be a positive integer. If $f(z) \neq 0$, $f^{(k)}(z) \neq a$, then f(z) is a constant.

LEMMA 6 [21, p. 38]. Let f(z) be a transcendental meromorphic function, and let $a_1(z)$, $a_2(z)$ be distinct meromorphic functions satisfying $T(r, a_i) = S(r, f)$, i = 1, 2. Then

$$T(r,f) \le \overline{N}(r,f) + \overline{N}\left(r,\frac{1}{f-a_1}\right) + \overline{N}\left(r,\frac{1}{f-a_2}\right) + S(r,f)$$

3. PROOFS OF THEOREMS 1 AND 2

Proof of Theorem 1. We may assume that $D = \{|z| < 1\}$. Suppose that \mathscr{F} is not normal in D; without loss of generality, we assume that \mathscr{F} is not normal at $z_0 = 0$. Then by Lemma 1, there exist

- (a) a number r, 0 < r < 1;
- (b) a sequence of complex numbers $z_n \rightarrow 0$, $|z_n| < r < 1$;
- (c) a sequence of functions $f_n \in \mathscr{F}$; and
- (d) a sequence of positive numbers $\rho_n \to 0$

such that $g_n(\xi) = \rho_n^{-k}(f_n(z_n + \rho_n \xi) - c)$ converges locally uniformly with respect to the spherical metric to a non-constant meromorphic function $g(\xi)$. Moreover, $g(\xi)$ is of order at most two.

By Hurwitz's theorem, the zeros of $g(\xi)$ are of multiplicity $\ge k + 1$. Now, we distinguish three cases.

Case 1. $c = a = 0, b \neq 0$. Then we know that the zeros of f(z) are of multiplicity $\geq k + 1$, and f and $f^{(k)}$ share 0 and b, for each $f \in \mathscr{F}$. Since the zeros of $g(\xi)$ are of multiplicity $\geq k + 1$, we have $\overline{E}(0, g) \subset \overline{E}(0, g^{(k)})$.

Obviously, $g^{(k)} \neq 0$. Suppose that $g^{(k)}(\xi_0) = 0$. Then there exist ξ_n , $\xi_n \to \xi_0$, such that

$$g_n^{(k)}(\xi_n) = f_n^{(k)}(z_n + \rho_n \xi_n) = 0, \qquad n = 1, 2, \dots$$

Hence $f_n(z_n + \rho_n \xi_n) = 0$ and $g_n(\xi_n) = 0$ for n = 1, 2, ..., since f_n and $f_n^{(k)}$ share 0. Thus we get $g(\xi_0) = \lim_{n \to \infty} g_n(\xi_n) = 0$. This shows that $\overline{E}(0, g^{(k)}) \subset \overline{E}(0, g)$. Hence we have proved that $\overline{E}(0, g) = \overline{E}(0, g^{(k)})$. It is clearly that $g^{(k)} \neq b$.

Next, suppose that there exists ξ_0 satisfying $g^{(k)}(\xi_0) = b$. Then, by Hurwitz's theorem, there exists a sequence ξ_n such that $\xi_n \to \xi_0$ and $g_n^{(k)}(\xi_n) = f_n^{(k)}(z_n + \rho_n \xi_n) = b$ for n = 1, 2, Since f_n and $f_n^{(k)}$ share b, we have $f_n(z_n + \rho_n \xi_n) = b$ and $g_n(\xi_n) = \rho_n^{-k} f_n(z_n + \rho_n \xi_n) = \rho_n^{-k} b \to \infty$. This contradicts that $\lim_{n\to\infty} g_n(\xi_n) = g(\xi_0) \neq \infty$. So, $g^{(k)}(\xi) \neq b$. Now by Lemma 4 we conclude that $g(\xi)$ is a constant, a contradiction.

Case 2. $c = a \neq 0$. Then we have

$$\overline{E}(0,g) = \overline{E}(a,g^{(k)}). \tag{3.1}$$

Indeed, suppose that $g(\xi_0) = 0$. Then by Hurwitz's theorem there exist ξ_n , $\xi_n \to \xi_0$ and

$$g_n(\xi_n) = \rho_n^{-k} (f_n(z_n + \rho_n \xi_n) - c) = 0.$$

Thus $f_n(z_n + \rho_n \xi_n) = c = a$. Since f_n and $f_n^{(k)}$ share a, we have

$$g_n^{(k)}(\xi_n) = f_n^{(k)}(z_n + \rho_n \xi_n) = a$$

Hence $g^{(k)}(\xi_0) = \lim_{n \to \infty} g_n^{(k)}(\xi_n) = a$, and we have $\overline{E}(0, g) \subset \overline{E}(a, g^{(k)})$. Obviously, $g^{(k)} \neq a$. If $g^{(k)}(\xi_0) = a$, then by Hurwitz's theorem, there

Obviously, $g^{(\kappa)} \neq a$. If $g^{(\kappa)}(\xi_0) = a$, then by Hurwitz's theorem, there exist $\xi_n, \xi_n \to \xi_0$ and

$$g_n^{(k)}(\xi_n) = f_n^{(k)}(z_n + \rho_n \xi_n) = a.$$

Since f_n and $f_n^{(k)}$ share a, we have $f_n(z_n + \rho_n \xi_n) = a$. Thus $g(\xi_0) = \lim_{n \to \infty} g_n(\xi_n) = \lim_{n \to \infty} (f_n(z_n + \rho_n \xi_n) - c) = 0$, and we have $\overline{E}(a, g^{(k)}) \subset \overline{E}(0, g)$. Hence (3.1) is proved. Since the zeros of $g(\xi)$ are of multiplicity $\geq k + 1$, we get by (3.1) that $g \neq 0$ and $g^{(k)} \neq a$. By Lemma 5, $g(\xi)$ is a constant, a contradiction.

Case 3. $c \neq a, c \neq b$. Then using the same argument as we do in Case 1, we deduce that $g^{(k)}(\xi) \neq a, b$. Since $g(\xi)$ is of order at most two, we have

$$\frac{g^{(k)}(\xi)-a}{g^{(k)}(\xi)-b}=e^{a_1\xi^2+a_2\xi+a_3},$$

where a_1 , a_2 , and a_3 are constants. Thus we have

$$g^{(k)}(\xi) = \frac{a - be^{a_1\xi^2 + a_2\xi + a_3}}{1 - e^{a_1\xi^2 + a_2\xi + a_3}}.$$
(3.2)

Assume that $|a_1| + |a_2| \neq 0$. Then $g^{(k)}(\xi)$ has infinitely many poles of multiplicity 1 or 2. However, a pole of $g^{(k)}(\xi)$ has multiplicity $\geq k + 1$.

We arrive at a contradiction, since $k \ge 2$. This shows that $g^{(k)}(\xi)$ is a constant and $g(\xi)$ is a polynomial of degree $\le k$, which contradicts the assumption that the zeros of $g(\xi)$ are of multiplicity $\ge k + 1$ and $g(\xi)$ is a non-constant function.

If $c \neq a$, c = b, then as in Cases 1–2, we get a contradiction. Thus we have proved that \mathscr{F} is normal in D. The theorem is proved.

Proof of Theorem 2. We may assume that $D = \{|z| < 1\}$. Suppose that \mathscr{F} is not normal in D; without loss of generality we assume that \mathscr{F} is not normal at $z_0 = 0$.

In the following, we consider two cases:

Case 1. c = a. Then, by Lemma 1 (Remark 2), there exist

(a) a number r, 0 < r < 1;

- (b) a sequence of complex numbers $z_n \rightarrow 0$, $|z_n| < r < 1$;
- (c) a sequence of functions $f_n \in \mathscr{F}$; and
- (d) a sequence of positive numbers $\rho_n \to 0$

such that $g_n(\xi) = \rho_n^{-k}(f_n(z_n + \rho_n \xi) - c)$ converges locally uniformly to a non-constant entire function $g(\xi)$. Moreover, $g(\xi)$ is of order at most one.

Now, we distinguish two subcases.

Case 1.1. $c = a = 0, b \neq 0$. In this case, we get a contradiction as in the proof of Theorem 1.

Case 1.2. $c = a \neq 0$. Then the zeros of $g(\xi)$ are of multiplicity $\geq k$, $g^{(k)}(\xi) \neq b$, and

$$\overline{E}(0,g) = \overline{E}(a,g^{(k)}).$$
(3.3)

Suppose that $g(\xi)$ is a polynomial; then $g(\xi)$ is of degree $\leq k$, since $g^{(k)}(\xi) \neq b$. Hence $\overline{E}(a, g^{(k)}) = \phi$ or \mathbb{C} . However, $\overline{E}(0, g)$ contains only finitely many points, a contradiction.

Now we assume that $g(\xi)$ is a transcendental entire function. Then

$$g^{(k)}(\xi) = b + e^{a_1\xi + a_2},$$

$$g(\xi) = p(\xi) + \frac{1}{a_1^k} e^{a_1\xi + a_2},$$

where a_1, a_2 are constants such that $a_1 \neq 0, p(\xi)$ is a polynomial.

If $p(\xi) \neq 0$, it follows by Lemma 6 that

$$T(r,g) \leq \overline{N}\left(r,\frac{1}{g}\right) + \overline{N}\left(r,\frac{1}{g-p}\right) + S(r,g)$$
$$\leq \frac{1}{2}N\left(r,\frac{1}{g}\right) + S(r,g)$$
$$\leq \frac{1}{2}T(r,g) + S(r,g).$$

Thus we get T(r, g) = S(r, g), a contradiction.

If $p(\xi) \equiv 0$, then we have

$$g(\xi) = \frac{1}{a_1^k} e^{a_1 \xi + a_2}.$$

It follows that $\overline{E}(0,g) = \phi$, $\overline{E}(a,g^{(k)}) \neq \phi$. Thus $\overline{E}(0,g) \neq \overline{E}(a,g^{(k)})$, which contradicts (3.3).

We have proved that \mathcal{F} is normal in D.

Case 2. $c \neq a, c \neq b$. Then by Lemma 1, there exist

- (a) a number r, 0 < r < 1;
- (b) a sequence of complex numbers $z_n \rightarrow 0$, $|z_n| < r < 1$;
- (c) a sequence of functions $f_n \in \mathscr{F}$; and
- (d) a sequence of positive numbers $\rho_n \to 0$

such that $g_n(\xi) = f_n(z_n + \rho_n \xi) - c$ converges locally uniformly with respect to the spherical metric to a non-constant entire function $g(\xi)$. By Hurwitz's theorem we know that the zeros of $g(\xi)$ are of multiplicity $\ge k \ge 2$.

We claim that $\overline{E}(a - c, g) \subset \overline{E}(0, g^{(k)})$.

Suppose that $g(\xi_0) = a - c$. Then there exist $\xi_n, \xi_n \to \xi_0$, such that (for *n* sufficiently large)

$$a-c=g_n(\xi_n)=f_n(z_n+\rho_n\xi_n)-c.$$

Thus we get $f_n(z_n + \rho_n \xi_n) = a$. Since f_n and $f_n^{(k)}$ share a, we have

$$f_n^{(k)}(z_n+\rho_n\,\xi_n)=a.$$

Hence we get

$$g_n^{(k)}(\xi_n) = \rho_n^k f_n^{(k)}(z_n + \rho_n \xi_n) = a \rho_n^k$$

Thus we get $g^{(k)}(\xi_0) = \lim_{n \to \infty} g_n^{(k)}(\xi_n) = 0$, that is, $\overline{E}(a - c, g) \subset \overline{E}(0, g^{(k)})$.

Likewise, we get $\overline{E}(b - c, g) \subset \overline{E}(0, g^{(k)})$. Hence we deduce that

$$\overline{N}\left(r,\frac{1}{g-(a-c)}\right) + \overline{N}\left(r,\frac{1}{g-(b-c)}\right) \le N\left(r,\frac{1}{g^{(k)}}\right).$$

Since the zeros of g(z) are of multiplicity $\ge k \ge 2$, it follows from the first and second fundamental theorems of Nevanlinna that

$$\begin{aligned} 2T(r,g) &\leq \overline{N}\left(r,\frac{1}{g}\right) + \overline{N}\left(r,\frac{1}{g-(a-c)}\right) \\ &\quad + \overline{N}\left(r,\frac{1}{g-(b-c)}\right) + S(r,g) \\ &\leq \frac{1}{2}N\left(r,\frac{1}{g}\right) + N\left(r,\frac{1}{g^{(k)}}\right) + S(r,g) \\ &\leq \frac{1}{2}T\left(r,\frac{1}{g}\right) + T\left(r,\frac{1}{g^{(k)}}\right) + S(r,g) \\ &\leq \frac{1}{2}T(r,g) + T\left(r,g^{(k)}\right) + S(r,g) \\ &\leq \frac{3}{2}T(r,g) + S(r,g). \end{aligned}$$

Thus we get that T(r, g) = S(r, g). Hence we conclude that $g^{(k)}(\xi) \equiv 0$. Since the zeros of $g(\xi)$ are of multiplicity $\geq k$, $g(\xi)$ must be a constant, a contradiction. We have proved that \mathscr{F} is normal in D. The proof of the theorem is complete.

ACKNOWLEDGMENT

The authors thank the referee for his helpful suggestions.

REFERENCES

1. W. Bergweiler and A. Eremenko, On the singularities of the inverse to a meromorphic function of finite order, *Rev. Mat. Iberoamericana* **11** (1995), 355–373.

- H. H. Chen and Y. X. Gu, Improvement of Marty's criterion and its application, *Sci. China Ser. A* 36, No. 6 (1993), 674–681.
- H. H. Chen, Yoshida functions and Picard values of integral functions and their derivatives, *Bull. Austral. Math. Soc.* 54 (1996), 373–381.
- 4. H. H. Chen and X. H. Hua, Normal families concerning shared values, *Israel J. Math.* **115**, No. 2 (2000), 355–362.
- 5. M. L. Fang, A note on sharing values and normality, J. Math. Study 29, No. 4 (1996), 29-32.
- G. Frank and W. Schwick, Meromorphic Funktionen, die mit einer Abteilung drei Werte teilen, *Results Math.* 22 (1992), 679–684.
- 7. G. Frank and W. Schwick, A counterexample to the generalized Bloch principle, *New Zealand J. Math.* 23 (1994), 121–123.
- W. Hayman, Picard values of meromorphic functions and their derivatives, Ann. Math. 70 (1959), 9–42.
- 9. W. Hayman, "Meromorphic Functions," Clarendon, Oxford, 1964.
- E. Mues and N. Steinmetz, Meromorphe Funktionen, die mit ihrer Ableitung Werte teilen, Manuscripta Math. 29 (1979), 195–206.
- 11. X. C. Pang, Bloch's principle and normal criterion, Sci. China 32, No. 7 (1989), 782-791.
- 12. X. C. Pang, Shared values and normal families, Analysis, in press.
- 13. X. C. Pang and L. Zalcman, Normality and shared values, *Ark. Mat.* 38, No. 1 (2000), 171–182.
- X. C. Pang and L. Zalcman, Normal families and shared values, *Bull. London Math. Soc.* 32 (2000), 325–331.
- 15. J. Schiff, "Normal Families," Springer-Verlag, New York/Berlin, 1993.
- 16. W. Schwick, Sharing values and normality, Arch. Math. 59 (1992), 50-54.
- 17. Y. F. Wang and M. L. Fang, Picard values and normal families of meromorphic functions with multiple zeros, *Acta Math. Sinica* (*N.S.*) 14, No. 1 (1998), 17–26.
- 18. Y. F. Wang, On Mues conjecture and Picard values, Sci. China 36, No. 1 (1993), 28-35.
- Y. Xu, Sharing values and normality criteria, J. Nanjing Univ. Math. Biquart. 15, No. 2 (1998), 180–185.
- 20. Y. Xu, Normality criteria concerning sharing values, *Indian J. Pure Appl. Math.* **30**, No. 3 (1999), 287–293.
- 21. L. Yang, "Value Distribution Theory," Springer-Verlag & Science Press, Berlin, 1993.
- L. Zalcman, A heuristic principle in complex function theory, *Amer. Math. Monthly* 82 (1975), 813–817.