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In this paper, we study the normality of a family of meromorphic functions
concerning shared values and prove the following theorem: Let FF be a family of
meromorphic functions in a domain D, let k � 2 be a positive integer, and let a, b,
c be complex numbers such that a � b. If, for each f � FF, f and f Žk . share a and

Ž .b in D, and the zeros of f z � c are of multiplicity � k � 1, then FF is normal in
D. � 2001 Academic Press
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1. INTRODUCTION

Let D be a domain in �, f a meromorphic function, and a � �. Set

E a, f � z : z � D , f z � a .� 4Ž . Ž .

Two meromorphic functions f and g are said to share the value a in D if
Ž . Ž .E a, f � E a, g . If two meromorphic functions f and g share the value

a in �, then we say that f and g share a.

1 Ž .Supported by National Natural Science Foundation of China Grant 10071038 .
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� 	Mues and Steinmetz 10 proved

THEOREM A. Let f be a non-constant meromorphic function and let a ,1
a , and a be distinct complex numbers. If f and f � share a , a , a , then2 3 1 2 3
f � f �.

� 	Schwick 16 discovered a connection between normality criteria and
shared values. He proved

THEOREM B. Let FF be a family of meromorphic functions in a domain D
and let a , a , and a be distinct complex numbers. If f and f � share a , a ,1 2 3 1 2
and a in D for each f � FF, then FF is normal in D.3

� 	This result has undergone various extensions 12, 19, 20 , culminating in
� 	the following result of Pang and Zalcman 13 .

THEOREM C. Let FF be a family of meromorphic functions in a domain D
and let a, b be two non-zero distinct complex numbers. If f and f � share a and
b in D for each f � FF, then FF is normal in D.

� 	Frank and Schwick 6 generalized Theorem A as follows

THEOREM D. Let f be a non-constant meromorphic function, k a positi�e
integer, and let a , a , and a be distinct complex numbers. If f and f Žk . share1 2 3
a , a , a , then f � f Žk ..1 2 3

Naturally, we ask what can be stated if f � is replaced by f Žk . for k � 2
� 	in Theorems B�C. Frank and Schwick 7 observed that Theorem B does

not admit the obvious extension obtained by replacing f � by f Žk .. In this
paper, we prove

THEOREM 1. Let FF be a family of meromorphic functions in a domain D,
let k � 2 be a positi�e integer, and let a, b, c be complex numbers such that
a � b. If , for each f � FF, f and f Žk . share a and b in D, and the zeros of
Ž .f z � c are of multiplicity � k � 1, then FF is normal in D.

For a family of holomorphic functions we have

THEOREM 2. Let FF be a family of holomorphic functions in a domain D,
let k � 2 be a positi�e integer, and let a, b, c be complex numbers such that
a � b. If , for each f � FF, f and f Žk . share a and b in D, and the zeros of
Ž .f z � c are of multiplicity � k, then FF is normal in D.

Remark 1. The following example shows that some assumption on the
Ž .zeros of f z � c is required for Theorems 1 and 2 to hold.
� Ž . Ž . Ž z � z. 4 kLet FF � f z : f z � n e � e , n � 1, 2, 3, . . . , where � � 1, � �n n

� � � 41, k � 2, D � z : z � 1 . Then FF is a family of holomorphic functions in
a domain D. Obviously, for each f � FF, f � f Žk ., f and f Žk . share any
number b in D. But FF is not normal in D.
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2. SOME LEMMAS

For the proof of our results, we need the following lemmas.

� 	LEMMA 1 2, 3, 9, 15, 20 . Let FF possess the property that e�ery function
f � FF has only zeros of multiplicity at least k. If FF is not normal at a point 0,
then for 0 
 � � k, there exist

Ž .a a number r, 0 � r � 1;
Ž . � �b a sequence of complex numbers z � 0, z � r � 1;n n

Ž .c a sequence of functions f � FF; andn

Ž .d a sequence of positi�e numbers � � 0n

Ž . �� Ž .such that g � � � f z � � � con�erges locally uniformly with respectn n n n n
Ž .to the spherical metric to a non-constant meromorphic function g � on �,

and moreo�er, g is of order at most two.

Remark 2. In Lemma 1, if FF is a family of holomorphic functions, then
Ž . Ž � 	.g � is of order at most one see 3 . If FF satisfies the additional

� Žk .Ž . �assumption that there exists M � 0 such that f z 
 M whenever
Ž . Ž � 	.f z � 0 for any f � FF, then we can take � � k see 12 .

� 	 Ž .LEMMA 2 17, p. 22 . Let R z be a non-constant rational function, let k
be a positi�e integer, and let b be a non-zero complex number. If the zeros of
Ž . Žk .Ž . Ž . ŽR z are of multiplicity at least k � 1, and R z � b, then R z � � z �
.k�1 Ž . � �� � � z � 	 , where � , 	 , � , � are constants such that �� � 0, 	 �

� �� � 0.

� 	 Ž .LEMMA 3 1, p. 360; 17, p. 21; 18, p. 34 . Let f z be a transcendental
Ž .meromorphic function of finite order, k a positi�e integer. If the zeros of f z

are of multiplicity at least k � 1, then f Žk . � b has infinitely many zeros for
any non-zero complex number b.

Ž .LEMMA 4. Let f z be a meromorphic function of finite order, let b be a
Ž .non-zero complex number, and let k be a positi�e integer. If the zeros of f z

Žk . Žk .Ž . Ž . Ž . Ž .are of multiplicity at least k, E 0, f � E 0, f and f z � b, then f z
is a constant.

Ž .Proof. Obviously, the zeros of f z are of multiplicity at least k � 1 by
Ž .the assumption, and f cannot be a polynomial of degree k � 1. If f z is a

transcendental meromorphic function with finite order, then by Lemma 3,
Žk . Ž .f � b has infinitely many solutions, a contradiction. Hence f z is a

Ž .rational function. Suppose that f z is a non-constant rational function.
Ž . Ž .k�1 Ž .Then it follows from Lemma 2 that f z � � z � � � � z � 	 , where

� � � � Žk .Ž .� , 	 , � , � are constants such that �� � 0, 	 � � � 0. Hence f z �
k�1 Žk .Ž . Ž . �b � A� � z � 	 , where A is a non-zero constant, E 0, f � z : b
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k�1 Žk .Ž . 4 Ž . � 4 Ž . Ž .� A� � z � 	 � 0 , and E 0, f � ���� , E 0, f � E 0, f . We
arrive at a contradiction. This completes the proof of the lemma.

� 	 Ž .LEMMA 5 8, p. 14; 9, p. 60 . Let f z be a meromorphic function, let a be
Ž .a non-zero complex number, and let k be a positi�e integer. If f z � 0,

Žk .Ž . Ž .f z � a, then f z is a constant.

� 	 Ž .LEMMA 6 21, p. 38 . Let f z be a transcendental meromorphic function,
Ž . Ž . Ž .and let a z , a z be distinct meromorphic functions satisfying T r, a �1 2 i

Ž .S r, f , i � 1, 2. Then

1 1
T r , f 
 N r , f � N r , � N r , � S r , f .Ž . Ž . Ž .ž / ž /f � a f � a1 2

3. PROOFS OF THEOREMS 1 AND 2

� � � 4Proof of Theorem 1. We may assume that D � z � 1 . Suppose that
FF is not normal in D; without loss of generality, we assume that FF is not
normal at z � 0. Then by Lemma 1, there exist0

Ž .a a number r, 0 � r � 1;
Ž . � �b a sequence of complex numbers z � 0, z � r � 1;n n

Ž .c a sequence of functions f � FF; andn

Ž .d a sequence of positive numbers � � 0n

Ž . �k Ž Ž . .such that g � � � f z � � � � c converges locally uniformly withn n n n n
respect to the spherical metric to a non-constant meromorphic function
Ž . Ž .g � . Moreover, g � is of order at most two.

Ž .By Hurwitz’s theorem, the zeros of g � are of multiplicity � k � 1.
Now, we distinguish three cases.

Ž .Case 1. c � a � 0, b � 0. Then we know that the zeros of f z are of
multiplicity � k � 1, and f and f Žk . share 0 and b, for each f � FF. Since

Žk .Ž . Ž . Ž .the zeros of g � are of multiplicity � k � 1, we have E 0, g � E 0, g .
Žk . Žk .Ž .Obviously, g � 0. Suppose that g � � 0. Then there exist � ,0 n

� � � , such thatn 0

g Žk . � � f Žk . z � � � � 0, n � 1, 2, . . . .Ž . Ž .n n n n n n

Ž . Ž .Hence f z � � � � 0 and g � � 0 for n � 1, 2, . . . , since f andn n n n n n n
Žk . Ž . Ž .f share 0. Thus we get g � � lim g � � 0. This shows thatn 0 n�
 n n

Žk . Žk .Ž . Ž . Ž . Ž .E 0, g � E 0, g . Hence we have proved that E 0, g � E 0, g . It is
clearly that g Žk . � b.
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Žk .Ž .Next, suppose that there exists � satisfying g � � b. Then, by0 0
Hurwitz’s theorem, there exists a sequence � such that � � � andn n 0
Žk .Ž . Žk .Ž . Žk .g � � f z � � � � b for n � 1, 2, . . . . Since f and f share b,n n n n n n n n

Ž . Ž . �k Ž . �kwe have f z � � � � b and g � � � f z � � � � � b � 
.n n n n n n n n n n n n
Ž . Ž . Žk .Ž .This contradicts that lim g � � g � � 
. So, g � � b. Now byn�
 n n 0

Ž .Lemma 4 we conclude that g � is a constant, a contradiction.

Case 2. c � a � 0. Then we have

Žk .E 0, g � E a, g . 3.1Ž . Ž .Ž .
Ž .Indeed, suppose that g � � 0. Then by Hurwitz’s theorem there exist � ,0 n

� � � andn 0

g � � ��k f z � � � � c � 0.Ž . Ž .Ž .n n n n n n n

Ž . Žk .Thus f z � � � � c � a. Since f and f share a, we haven n n n n n

g Žk . � � f Žk . z � � � � a.Ž . Ž .n n n n n n

Žk . Žk . Žk .Ž . Ž . Ž . Ž .Hence g � � lim g � � a, and we have E 0, g � E a, g .0 n�
 n n
Žk . Žk .Ž .Obviously, g � a. If g � � a, then by Hurwitz’s theorem, there0

exist � , � � � andn n 0

g Žk . � � f Žk . z � � � � a.Ž . Ž .n n n n n n

Žk . Ž . Ž .Since f and f share a, we have f z � � � � a. Thus g � �n n n n n n 0
Žk .Ž . Ž Ž . . Ž .lim g � � lim f z � � � � c � 0, and we have E a, gn�
 n n n�
 n n n n

Ž . Ž . Ž .� E 0, g . Hence 3.1 is proved. Since the zeros of g � are of multiplic-
Ž . Žk . Ž .ity � k � 1, we get by 3.1 that g � 0 and g � a. By Lemma 5, g � is

a constant, a contradiction.

Case 3. c � a, c � b. Then using the same argument as we do in Case
Žk .Ž . Ž .1, we deduce that g � � a, b. Since g � is of order at most two, we

have

g Žk . � � aŽ . 2a � �a ��a1 2 3� e ,Žk .g � � bŽ .

where a , a , and a are constants. Thus we have1 2 3

a � bea1 � 2�a 2 ��a3
Žk .g � � . 3.2Ž . Ž .2a � �a ��a1 2 31 � e

� � � � Žk .Ž .Assume that a � a � 0. Then g � has infinitely many poles of1 2
Žk .Ž .multiplicity 1 or 2. However, a pole of g � has multiplicity � k � 1.
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Žk .Ž .We arrive at a contradiction, since k � 2. This shows that g � is a
Ž .constant and g � is a polynomial of degree 
 k, which contradicts the

Ž . Ž .assumption that the zeros of g � are of multiplicity � k � 1 and g � is
a non-constant function.

If c � a, c � b, then as in Cases 1�2, we get a contradiction. Thus we
have proved that FF is normal in D. The theorem is proved.

� � � 4Proof of Theorem 2. We may assume that D � z � 1 . Suppose that
FF is not normal in D; without loss of generality we assume that FF is not
normal at z � 0.0

In the following, we consider two cases:

Ž .Case 1. c � a. Then, by Lemma 1 Remark 2 , there exist

Ž .a a number r, 0 � r � 1;
Ž . � �b a sequence of complex numbers z � 0, z � r � 1;n n

Ž .c a sequence of functions f � FF; andn

Ž .d a sequence of positive numbers � � 0n

Ž . �k Ž Ž . .such that g � � � f z � � � � c converges locally uniformly to an n n n n
Ž . Ž .non-constant entire function g � . Moreover, g � is of order at most

one.
Now, we distinguish two subcases.

Case 1.1. c � a � 0, b � 0. In this case, we get a contradiction as in
the proof of Theorem 1.

Ž .Case 1.2. c � a � 0. Then the zeros of g � are of multiplicity � k,
Žk .Ž .g � � b, and

Žk .E 0, g � E a, g . 3.3Ž . Ž .Ž .

Ž . Ž .Suppose that g � is a polynomial; then g � is of degree 
 k, since
Žk . Žk .Ž . Ž . Ž .g � � b. Hence E a, g � � or �. However, E 0, g contains only

finitely many points, a contradiction.
Ž .Now we assume that g � is a transcendental entire function. Then

g Žk . � � b � ea1 ��a2 ,Ž .
1

a ��a1 2g � � p � � e ,Ž . Ž . ka1

Ž .where a , a are constants such that a � 0, p � is a polynomial.1 2 1
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Ž .If p � � 0, it follows by Lemma 6 that

1 1
T r , g 
 N r , � N r , � S r , gŽ . Ž .ž / ž /g g � p

1 1

 N r , � S r , gŽ .ž /2 g

1

 T r , g � S r , g .Ž . Ž .

2

Ž . Ž .Thus we get T r, g � S r, g , a contradiction.
Ž .If p � � 0, then we have

1
a ��a1 2g � � e .Ž . ka1

Žk . Žk .Ž . Ž . Ž . Ž .It follows that E 0, g � �, E a, g � �. Thus E 0, g � E a, g ,
Ž .which contradicts 3.3 .

We have proved that FF is normal in D.

Case 2. c � a, c � b. Then by Lemma 1, there exist

Ž .a a number r, 0 � r � 1;
Ž . � �b a sequence of complex numbers z � 0, z � r � 1;n n

Ž .c a sequence of functions f � FF; andn

Ž .d a sequence of positive numbers � � 0n

Ž . Ž .such that g � � f z � � � � c converges locally uniformly with re-n n n n
Ž .spect to the spherical metric to a non-constant entire function g � . By

Ž .Hurwitz’s theorem we know that the zeros of g � are of multiplicity
� k � 2.

Žk .Ž . Ž .We claim that E a � c, g � E 0, g .
Ž .Suppose that g � � a � c. Then there exist � , � � � , such that0 n n 0

Ž .for n sufficiently large

a � c � g � � f z � � � � c.Ž . Ž .n n n n n n

Ž . Žk .Thus we get f z � � � � a. Since f and f share a, we haven n n n n n

f Žk . z � � � � a.Ž .n n n n

Hence we get

g Žk . � � � k f Žk . z � � � � a� kŽ . Ž .n n n n n n n n
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Žk . Žk .Ž . Ž . Ž .Thus we get g � � lim g � � 0, that is, E a � c, g �0 n�
 n n
Žk .Ž .E 0, g .

Žk .Ž . Ž .Likewise, we get E b � c, g � E 0, g .
Hence we deduce that

1 1 1
N r , � N r , 
 N r , .Žk .ž /ž / ž /g � a � c g � b � c gŽ . Ž .

Ž .Since the zeros of g z are of multiplicity � k � 2, it follows from the
first and second fundamental theorems of Nevanlinna that

1 1
2T r , g 
 N r , � N r ,Ž . ž / ž /g g � a � cŽ .

1
� N r , � S r , gŽ .ž /g � b � cŽ .
1 1 1


 N r , � N r , � S r , gŽ .Žk .ž / ž /2 g g

1 1 1

 T r , � T r , � S r , gŽ .Žk .ž / ž /2 g g

1
Žk .
 T r , g � T r , g � S r , gŽ . Ž .Ž .

2

3

 T r , g � S r , g .Ž . Ž .

2

Ž . Ž . Žk .Ž .Thus we get that T r, g � S r, g . Hence we conclude that g � � 0.
Ž . Ž .Since the zeros of g � are of multiplicity � k, g � must be a constant,

a contradiction. We have proved that FF is normal in D. The proof of the
theorem is complete.
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