Orthogonal graphs of odd characteristic and their automorphisms

Zhenhua Gu*, Zhe-Xian Wan 1

Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100080, PR China

Received 24 August 2006; revised 30 November 2006
Available online 19 January 2007
Communicated by Dieter Jungnickel

Abstract

The (isotropic) orthogonal graph $O(2v + \delta, q)$ over \mathbb{F}_q of odd characteristic, where $v \geq 1$ and $\delta = 0, 1$ or 2 is introduced. When $v = 1$, $O(2 \cdot 1 + \delta, q)$ is a complete graph. When $v \geq 2$, $O(2v + \delta, q)$ is strongly regular and its parameters are computed, as well as its chromatic number. The automorphism groups of orthogonal graphs are also determined.

© 2006 Elsevier Inc. All rights reserved.

Keywords: Orthogonal graphs; Chromatic numbers; Graph automorphisms

1. Introduction

Let \mathbb{F}_q be a finite field with q elements where q is a power of an odd prime p and $n \geq 2$ be an integer. Let $\mathbb{F}_q^n = \{(a_1, \ldots, a_n): a_i \in \mathbb{F}_q, \ i = 1, \ldots, n\}$ be the n-dimensional row vector space over \mathbb{F}_q. Denote by e_i ($1 \leq i \leq n$) the row vector in \mathbb{F}_q^n whose ith component is 1 and all others are 0’s. For any $\alpha_1, \ldots, \alpha_k \in \mathbb{F}_q^n$, denote the subspace of \mathbb{F}_q^n generated by $\alpha_1, \ldots, \alpha_k$ by $[\alpha_1, \ldots, \alpha_k]$. Thus, for a nonzero vector $\alpha = (a_1, \ldots, a_n) \in \mathbb{F}_q^n$, $[\alpha]$ is a one-dimensional subspace of \mathbb{F}_q^n and $[\alpha] = [k\alpha]$ for any $k \in \mathbb{F}_q^n = \mathbb{F}_q \setminus \{0\}$. $[\alpha] = \{(a_1, \ldots, a_n)\}$ is sometimes written as $[a_1, \ldots, a_n]$ for simplicity.

* Corresponding author.
E-mail addresses: guzh@amss.ac.cn (Z. Gu), wan@amss.ac.cn (Z.-X. Wan).

1 Supported by the National Natural Science Foundation of China (6532100) and 973 Project (2004CB318000).

1071-5797/$ – see front matter © 2006 Elsevier Inc. All rights reserved.
Let
\[
S_{2\nu+\delta} = \begin{pmatrix}
0 & I^{(v)} \\
I^{(v)} & 0 \\
\Delta
\end{pmatrix},
\]
where \(\delta = 0, 1\) or 2 and
\[
\Delta = \begin{cases}
\emptyset, & \text{if } \delta = 0, \\
1, & \text{if } \delta = 1, \\
\begin{pmatrix} 1 \ -z \end{pmatrix}, & \text{if } \delta = 2,
\end{cases}
\]
and \(\emptyset\) is always omitted if \(\delta = 0\). Sometimes, we write \(S\) for \(S_{2\nu+\delta}\) for simplicity. For any subspace \(P\) of \(\mathbb{F}_q^n\), let \(P^\perp = \{y \in \mathbb{F}_q^n : yS'x = 0\ \text{for all } x \in P\}\). Clearly, \(P^\perp\) is a subspace of \(\mathbb{F}_q^n\) and is called the dual subspace of \(P\) with respect to \(S\). Let \(P\) be any \(m\)-dimensional subspace of \(\mathbb{F}_q^n\), any \(m \times n\) matrix whose rows form a basis of \(P\) is called a matrix representation of \(P\), which is also denoted by \(P\). Then \(P\) is called a totally isotropic or non-isotropic subspace if and only if \(PS'P = 0\) or \(PS'P\) is nonsingular, respectively. A vector \(v \in \mathbb{F}_q^n\) is called isotropic or non-isotropic if \([v]\) is totally isotropic or non-isotropic, respectively. Clearly \(v \in \mathbb{F}_q^n\) is an isotropic or non-isotropic vector if and only if \(vS'v = 0\) or \(vS'v \neq 0\), respectively.

The (isotropic) orthogonal graph with respect to \(S_{2\nu+\delta}\) over \(\mathbb{F}_q\), denoted by \(O(2\nu + \delta, q)\), is the graph with the set of 1-dimensional totally isotropic subspaces of \(\mathbb{F}_q^{2\nu+\delta}\) as the vertex set \(V(O(2\nu + \delta, q))\) and with the adjacency defined by \([\alpha] \sim [\beta]\) if and only if \(\alpha S'\beta \neq 0\) for any nonzero isotropic vectors \(\alpha, \beta\), where \([\alpha] \sim [\beta]\) reads as: \([\alpha]\) and \([\beta]\) are adjacent. Such graph has been mentioned in [4] (Section 8: 2, 4+, and 4-).

The symplectic graphs were studied previously by Godsil and Royle [1, 2], Tang and Wan [6]. The unitary graphs and the orthogonal graphs of characteristic 2 were studied by Wan and Zhou [8, 9]. In the present paper, we study the (isotropic) orthogonal graphs over finite fields of odd characteristic. In Section 2, we show that \(O(2\nu + \delta, q)\) is complete or strongly regular as \(\nu = 1\) or \(\nu \geq 2\), respectively, and compute its parameters as well as its chromatic number. Sections 3–5 are devoted to discussing the groups of automorphisms \(\text{Aut}(O(2\nu + \delta, q))\) of the graph (cf. Theorems 3.3, 4.1 and 5.1). For notations and terminologies, we refer to [2, 7].

2. Strong regularity and chromatic numbers

Theorem 2.1. When \(\nu = 1\), \(O(2 \cdot 1 + \delta, q)\), where \(\delta = 0, 1\) or 2, is a complete graph with parameters \((q^\delta + 1, q^\delta)\). When \(\nu \geq 2\), \(O(2\nu + \delta, q)\), where \(\delta = 0, 1\) or 2, is a strongly regular graph with parameters \((n, k, a, c)\), where \(n = (q^{\nu-1})(q^{\nu+\delta-1} + 1)(q - 1)^{-1}, k = q^{2\nu+\delta-2}, a = q^{2\nu+\delta-2} - q^{2\nu+\delta-3} - q^{\nu-1} + q^{\nu+\delta-2}, c = q^{2\nu+\delta-2} - q^{2\nu+\delta-3}\) and eigenvalues \(q^{2\nu+\delta-2}, q^{\nu+\delta-2}\) and \(-q^{\nu-1}\).

Proof. We adopt the notations of [7]. By [7, Corollary 6.23], \(n = |V(O(2\nu + \delta, q))| = N(1, 0, 0; 2\nu + \delta, \Delta) = (q^{\nu-1})(q^{\nu+\delta-1} + 1)(q - 1)^{-1}\). For any \([\alpha] \in V(O(2\nu + \delta, q))\), the degree \(k\) of \([\alpha]\) is the number of \([\beta] \in V(O(2\nu + \delta, q))\) such that \(\beta \notin [\alpha]^{\perp}\). Since \([\alpha]\) is a subspace of \(\mathbb{F}_q^{2\nu+\delta}\) of type \((1, 0, 0)\), by [7, Corollary 6.6], \([\alpha]^{\perp}\) is a subspace of \(\mathbb{F}_q^{2\nu+\delta}\) of type \((2\nu + \delta - 1, 2(\nu - 1) + \delta, \nu - 1, \Delta)\). By [7, Theorem 6.33], the number of 1-dimensional isotropic subspaces of \([\alpha]^{\perp}\) is equal to
$N = N(1, 0, 0; 2\nu + \delta - 1, 2(\nu - 1) + \delta, \nu - 1, \Delta; 2\nu + \delta, \Delta)$

$$= q(q^{v-1} - 1)(q^{v+\delta-2} + 1)(q - 1)^{-1} + 1.$$

Thus

$$k = n - N = (q^{v-1} - 1)(q^{v+\delta-1} + 1)(q - 1)^{-1} - (q(q^{v-1} - 1)(q^{v+\delta-2} + 1)(q - 1)^{-1} + 1)
= q^{2v + \delta - 2}.$$

In particular, when $v = 1$, $n = q^\delta + 1$ and $k = q^\delta$. This proves that $O(2 \cdot 1 + \delta, q)$ is a complete graph with parameters $(q^\delta + 1, q^\delta)$.

From now on we assume $v \geq 2$. Let $[\alpha], [\beta]$ be two adjacent vertices in $O(2\nu + \delta, q)$ and $[\gamma]$ be any vertex adjacent with both of them. Then $[\alpha, \beta]$ is a subspace of type $(2, 2 \cdot 1, 1)$. By [7, Corollary 6.6], $[\alpha, \beta] \perp$ is a subspace of type $(2\nu + \delta - 2, 2(\nu - 1) + \delta, \nu - 1, \Delta)$. By [7, Theorem 6.33], the number of 1-dimensional isotropic subspaces of $[\alpha, \beta] \perp$ is equal to

$$N' = N(1, 0, 0; 2\nu + \delta - 2, 2(\nu - 1) + \delta, \nu - 1, \Delta; 2\nu + \delta, \Delta)
= (q^{v-1} - 1)(q^{v+\delta-2} + 1)(q - 1)^{-1}.$$

Note that the value of a is the number of $[\gamma] \in V(O(2\nu + \delta, q))$ such that $[\gamma] \notin [\alpha] \perp \cup [\beta] \perp$. Since $|[\alpha] \perp \cup [\beta] \perp| = |[\alpha] \perp| + |[\beta] \perp| - |[\alpha, \beta] \perp| = 2N - N'$, $a = n - (2N - N') = q^{2v + \delta - 2} - q^{2v + \delta - 3} - q^{v-1} + q^{v+\delta-2}.$

Let $[\alpha], [\beta]$ be two non-adjacent vertices in $O(2\nu + \delta, q)$ and $[\gamma]$ be any vertex adjacent with both of them. Then $[\alpha, \beta]$ is of type $(2, 0, 0)$. By [7, Corollary 6.6], $[\alpha, \beta] \perp$ is of type $(2\nu + \delta - 2, 2(\nu - 2) + \delta, \nu - 2, \Delta)$. By [7, Theorem 6.33], the number of 1-dimensional isotropic subspaces of $[\alpha, \beta] \perp$ is equal to

$$N'' = N(1, 0, 0; 2\nu + \delta - 2, 2(\nu - 2) + \delta, \nu - 2, \Delta; 2\nu + \delta, \Delta)
= q^2(q^{v-2} - 1)(q^{v+\delta-3} + 1)(q - 1)^{-1} + q + 1.$$

Note that the value of c is the number of $[\gamma] \in V(O(2\nu + \delta, q))$ such that $[\gamma] \notin [\alpha] \perp \cup [\beta] \perp$. So $c = n - (2N - N'') = q^{2v + \delta - 2} - q^{2v + \delta - 3}.$

By the same arguments as in [2, Section 10.2], we have that the eigenvalues of $O(2\nu + \delta, q)$ are $q^{2v + \delta - 2}, q^{v+\delta-2}$ and $-q^{v-1}$. □

Now, we come to determine the chromatic number $\chi(O(2\nu + \delta, q))$ of $O(2\nu + \delta, q)$. We start by stating a bound on the size of independent set of vertices in $O(2\nu + \delta, q)$.

Proposition 2.2. (Hoffman [5]) If X is a regular graph on n vertices with valency k and minimum eigenvalue θ_{min}, then the maximum size $\alpha(X)$ of an independent set of vertices satisfies

$$\alpha(X) \leq \frac{n}{1 - \frac{k}{\theta_{\text{min}}}}.$$
The minimum eigenvalue of $O(2v + \delta, q)$ is $-q^{v-1}$. Applying this proposition to $O(2v + \delta, q)$, we get that

$$\alpha(O(2v + \delta, q)) \leq \frac{q^v - 1}{q - 1}$$

and hence

$$\chi(O(2v + \delta, q)) \geq q^{v+\delta-1} + 1.$$

Lemma 2.3. There exist $m = q^{v+\delta-1} + 1$ maximal totally isotropic subspaces V_1, \ldots, V_m of $\mathbb{F}_q^{2v+\delta}$ such that $V_1 \cup V_2 \cup \cdots \cup V_m$ is the set of isotropic vectors of $\mathbb{F}_q^{2v+\delta}$ and $V_i \cap V_j = \{0\}$ for all $i \neq j$.

Proof. We distinguish the cases: $\delta = 0, 1$ or 2.

1. $\delta = 0$. Set $W = [e_{v+1}, \ldots, e_{2v}]$ and

$$W(a_2, \ldots, a_v) = [e_1 - a_2e_{v+2} - \cdots - a_ve_{2v}, e_2 + a_2e_{v+1}, \ldots, e_v + a_ve_{v+1}],$$

where $a_i \in \mathbb{F}_q$, $i = 2, \ldots, v$. It can be checked that $W(a_2, \ldots, a_v)$ and W are maximal totally isotropic. Moreover, each two of them intersect only at $\{0\}$.

2. $\delta = 1$. Similar to the case $\delta = 0$, the $q^v + 1$ maximal totally isotropic subspaces are $[e_{v+1}, \ldots, e_{2v}]$ and

$$[e_1 - 2^{-1}a_{v+1}^2e_{v+1} - a_2e_{v+2} - \cdots - a_{v+1}e_{2v+1}, e_2 + a_2e_{v+1}, \ldots, e_v + a_ve_{v+1}],$$

where $a_i \in \mathbb{F}_q$, $i = 2, \ldots, v + 1$.

3. $\delta = 2$. Similarly, the $q^{v+1} + 1$ maximal totally isotropic subspaces are $[e_{v+1}, \ldots, e_{2v}]$ and

$$[e_1 - 2^{-1}(a_{v+1}^2 - za_{v+2}^2)e_{v+1} - a_2e_{v+2} - \cdots - a_{v+2}e_{2v+2}, e_2 + a_2e_{v+1}, \ldots, e_v + a_ve_{v+1}],$$

where $a_i \in \mathbb{F}_q$, $i = 2, \ldots, v + 2$. q.e.d.

Proposition 2.4. $O(2v + \delta, q)$ is $(q^{v+\delta-1} + 1)$-partite. That is, there exist subsets X_1, \ldots, X_m of $V(O(2v + \delta, q))$, where $m = q^{v+\delta-1} + 1$, such that

$$V(O(2v + \delta, q)) = X_1 \cup \cdots \cup X_m$$

and $X_i \cap X_j = \emptyset$ for all $i \neq j$, and there exists no edge of $O(2v + \delta, q)$ joining two vertices of the same subset.

Proof. By Lemma 2.3, let $V_1 \cup V_2 \cup \cdots \cup V_m$ be the set of isotropic vectors of $\mathbb{F}_q^{2v+\delta}$, where $V_i \cap V_j = \{0\}$ for all $i \neq j$. Set $X_i = \{[\alpha] : \alpha \in V_i, \alpha \neq 0\}$, $i = 1, 2, \ldots, m$. Then

$$V(O(2v + \delta, q)) = X_1 \cup \cdots \cup X_m,$$

where $X_i \cap X_j = \emptyset$ for all $i \neq j$. As V_i is totally isotropic, there is no edge joining any two vertices in X_i. Therefore $O(2v + \delta, q)$ is $(q^{v+\delta-1} + 1)$-partite. q.e.d.
Theorem 2.5. $\chi(O(2v + \delta, q)) = q^{v+\delta-1} + 1$.

Proof. It follows from Proposition 2.4, $\chi(O(2v + \delta, q)) \leq q^{v+\delta-1} + 1$. But we already proved $\chi(O(2v + \delta, q)) \geq q^{v+\delta-1} + 1$. Therefore, $\chi(O(2v + \delta, q)) = q^{v+\delta-1} + 1$. □

3. Automorphism groups (I): The case $\delta = 0$

Recall that a $(2v + \delta) \times (2v + \delta)$ nonsingular matrix T over \mathbb{F}_q, where $v \geq 1$ and $\delta = 0, 1$ or 2, is called an orthogonal matrix of order $2v + \delta$ with respect to $S = S_{2v+\delta}$ over \mathbb{F}_q if $T S' T = S$. The set of orthogonal matrices of order $2v + \delta$ over \mathbb{F}_q forms a group with respect to the matrix multiplication, which is called the orthogonal group of degree $2v + \delta$ with respect to S over \mathbb{F}_q and denoted by $O_{2v+\delta}(\mathbb{F}_q)$. The factor group $O_{2v+\delta}(\mathbb{F}_q)/\{I, -I\}$ is called the projective orthogonal group of degree $2v + \delta$ over \mathbb{F}_q, denoted by $PO_{2v+\delta}(\mathbb{F}_q)$.

When $v = 1$, $O(2 \cdot 1 + \delta, q)$, where $\delta = 0, 1$ or 2, is a complete graph with parameters $(q^\delta + 1, q^\delta)$ and, hence, its automorphism group is the symmetric group on $q^\delta + 1$ elements. In the following, we assume $v \geq 2$.

Proposition 3.1. Let $T \in O_{2v+\delta}(\mathbb{F}_q)$ and

$$\sigma_T : V(O(2v + \delta, q)) \to V(O(2v + \delta, q))$$

$$[\alpha] \mapsto [\alpha T].$$

Then:

(i) $\sigma_T \in \text{Aut}(O(2v + \delta, q))$.

(ii) For any $T_1, T_2 \in O_{2v+\delta}(\mathbb{F}_q)$, $\sigma_{T_1} = \sigma_{T_2}$ if and only if $T_1 = \pm T_2$.

Proof. (i) Since T is nonsingular, σ_T is a bijection. For any $[\alpha], [\beta] \in V(O(2v + \delta, q))$, $\alpha S' \beta = \alpha T S' (\beta T)$, it follows that $[\alpha] \sim [\beta]$ if and only if $\sigma_T([\alpha]) \sim \sigma_T([\beta])$. Hence $\sigma_T \in \text{Aut}(O(2v + \delta, q))$.

(ii) Clearly $T_1 = \pm T_2$ implies $\sigma_{T_1} = \sigma_{T_2}$. Conversely, suppose $\sigma_{T_1} = \sigma_{T_2}$. Let $V = V(O(2v + \delta, q))$, then for any $[\alpha] \in V$, $\alpha T_1 = k \alpha T_2$ for some $k \in \mathbb{F}_q^*$, where k depends on $[\alpha]$.

When $\delta = 0$, taking $[\alpha] = [e_1], \ldots, [e_{2v}] \in V$, we have $T_1 = \text{diag}(k_1, \ldots, k_{2v}) T_2$ for some $k_1, \ldots, k_{2v} \in \mathbb{F}_q^*$. Then taking $[\alpha] = [e_1 + e_2], [e_2 + e_3], \ldots, [e_{2v-1} + e_{2v}] \in V$, we see that $k_1 = k_2 = \cdots = k_{2v}$. Hence $T_1 = k_1 T_2$, $k_1 I = T_1 T_2^{-1} \in O_{2v}(\mathbb{F}_q)$. Thus $k_1 I S'(k_1 I) = S$, which implies $k_1^2 = 1$, so $k_1 = \pm 1$.

When $\delta = 1$, taking $[\alpha] = [e_1], [e_2], \ldots, [e_{2v}], [e_1 - 2^{-1} e_{v+1} + e_{v+1}] \in V$, we get

$$T_1 = \left(\begin{array}{cc} \text{diag}(k_1, \ldots, k_{2v}) \\ \xi \end{array} \right) T_2$$

where $k_1, \ldots, k_{2v+1} \in \mathbb{F}_q^*$ and $\xi = (k_{2v+1} - k_1)e_1 - 2^{-1}(k_{2v+1} - k_{v+1})e_{v+1}$. Then taking $[\alpha] = [e_1 + e_2], [e_2 + e_3], \ldots, [e_{2v-1} + e_{2v}] \in V$, we see that $k_1 = k_2 = \cdots = k_{2v}$. Finally, taking $[\alpha] = [e_1 + e_2 - 2^{-1} e_{v+1} + e_{v+1}] \in V$, we get $k_{2v+1} = k_2$. Hence $k_1 = \cdots = k_{2v+1}$. So $T_1 = k_1 T_2$. As the case $\delta = 0$, we have also $k_1 = \pm 1$.

The case $\delta = 2$ can be treated in the same way as the case $\delta = 1$. □
Corollary 3.2. $O(2v + \delta, q)$ is vertex transitive and edge transitive.

Proof. Vertex transitivity is clear from [7, Lemma 6.8]. For edge transitivity, let $[\alpha_1], [\alpha_2], [\beta_1], [\beta_2] \in V(O(2v + \delta, q))$ such that $[\alpha_1] \sim [\alpha_2]$ and $[\beta_1] \sim [\beta_2]$. We may assume that $\alpha_1 S' \alpha_2 = \beta_1 S' \beta_2$. Then by [7, Lemma 6.8], there exists $T \in O_{2v+\delta}(\mathbb{F}_q)$ such that $\alpha_1 T = \beta_1, \alpha_2 T = \beta_2$. Thus $\sigma_T \in \text{Aut}(O(2v + \delta, q))$ and $\sigma_T([\alpha_1]) = [\beta_1], \sigma_T([\alpha_2]) = [\beta_2]$. Hence $O(2v + \delta, q)$ is edge transitive. \qed

By Proposition 3.1, every orthogonal matrix in $O_{2v+\delta}(\mathbb{F}_q)$ induces an automorphism of $O(2v + \delta, q)$ and two different orthogonal matrices T_1 and T_2 induce the same automorphism of $O(2v + \delta, q)$ if and only if $T_1 = \pm T_2$. Thus $PO_{2v+\delta}(\mathbb{F}_q)$ can be regarded as a subgroup of $\text{Aut}(O(2v + \delta, q))$.

Now we write f_i for e_v+i, $1 \leq i \leq v$. Then $e_i S' f_i = 1$, $e_i S' e_j = 0$, $f_i S' f_j = 0$, $i, j = 1, 2, \ldots, v$, and $e_i S' f_j = 0$, $i \neq j$, $i, j = 1, 2, \ldots, v$.

Let us determine the group of graph automorphisms of $O(2v, q)$ first. We need a concept from group theory (cf. [3] or [10]). Let K, H be abstract groups and ψ be a homomorphism of K into $\text{Aut}(H)$. The semidirect product of H and K corresponding to ψ, denoted by $H \rtimes_{\psi} K$, is the group consisting of ordered pairs (h, k), $h \in H$, $k \in K$, with the operation:

$$(h_2, k_2)(h_1, k_1) = (h_2 \psi(k_2)(h_1), k_2 k_1) \quad \text{for } h_i \in H, \ k_i \in K, \ i = 1, 2.$$

Let φ be the natural action of $\text{Aut}(\mathbb{F}_q)$ on the group $\mathbb{F}_q^* \times \cdots \times \mathbb{F}_q^*$ (v in number) defined by

$$\varphi((\pi(k_1), \ldots, \pi(k_v))) = (\pi(k_1), \ldots, \pi(k_v)), \quad \text{for all } \pi \in \text{Aut}(\mathbb{F}_q) \text{ and } k_1, \ldots, k_v \in \mathbb{F}_q^*,$$

then the semidirect product of $\mathbb{F}_q^* \times \cdots \times \mathbb{F}_q^*$ by $\text{Aut}(\mathbb{F}_q)$ corresponding to φ, denoted by $(\mathbb{F}_q^* \times \cdots \times \mathbb{F}_q^*) \rtimes_{\varphi} \text{Aut}(\mathbb{F}_q)$, is the group consisting of all elements of the form (k_1, \ldots, k_v, π), where $k_1, \ldots, k_v \in \mathbb{F}_q^*$ and $\pi \in \text{Aut}(\mathbb{F}_q)$, with the multiplication defined by

$$(k_1, \ldots, k_v, \pi)(k_1', \ldots, k_v', \pi') = (k_1 \pi(k_1'), \ldots, k_v \pi(k_v'), \pi \pi').$$

The main result about $\text{Aut}(O(2v, q))$ is the following.

Theorem 3.3. Let $v \geq 2$ and E be the subgroup of $\text{Aut}(O(2v, q))$ defined as follows:

$$E = \{ \sigma \in \text{Aut}(O(2v, q)) : \sigma([e_i]) = [e_i], \ \sigma([f_i]) = [f_i], \ i = 1, \ldots, v \}.$$

Then $\text{Aut}(O(2v, q)) = PO_{2v}(\mathbb{F}_q) \cdot E$. Moreover,

(i) If $v = 2$, $E \cong \text{Sym}(\mathbb{F}_q^*) \times \text{Sym}(\mathbb{F}_q^*)$;

(ii) If $v \geq 3$, then

$$E \cong (\mathbb{F}_q^* \times \cdots \times \mathbb{F}_q^*) \rtimes_{\varphi} \text{Aut}(\mathbb{F}_q)$$

and the isomorphism from $(\mathbb{F}_q^* \times \cdots \times \mathbb{F}_q^*) \rtimes_{\varphi} \text{Aut}(\mathbb{F}_q)$ to E is defined as:

$$h : (k_1, \ldots, k_v, \pi) \mapsto \sigma(k_1 \ldots k_v, \pi)$$
where \(\sigma_{(k_1, \ldots, k_v, \pi)} \) is the map that carries the vertex \([a_1, a_2, \ldots, a_{2v}]\) of \(O(2v, q) \) to the vertex

\[
[p(a_1), k_2 p(a_2), \ldots, k_v p(a_v), k_1 p(a_{v+1}), k_1 k_2^{-1} p(a_{v+2}), \ldots, k_1 k_v^{-1} p(a_{2v})].
\]

Proof. Let \(\tau \in \text{Aut}(O(2v, q)) \). Suppose \(\tau([e_i]) = [e'_i], \tau([f_i]) = [f'_i] \), \(i = 1, 2, \ldots, v \). Then \(e'_i S f'_i \neq 0, e'_i S e'_i = 0, f'_i S f'_i = 0, i, j = 1, 2, \ldots, v, \) and \(e'_i S f'_i = 0, i \neq j, i, j = 1, 2, \ldots, v \). We may choose \(e'_i, f'_i \) such that \(e'_i S f'_i = 1, i = 1, \ldots, v \). Let \(A (A'), \) respectively be the \(2v \times 2v \) matrix whose rows are \(e_1, \ldots, e_v, f_1, \ldots, f_v \) \((e'_1, \ldots, e'_v, f'_1, \ldots, f'_v)\), respectively in order. Then \(A S' A = A' S' A' \). By [7, Lemma 6.8], there exists \(T \in O_{2v}(F_q) \) such that \(A = A'T \). Set \(\tau_1 = \sigma_T \tau \), then \(\tau_1([e_i]) = [e_i], \tau_1([f_i]) = [f_i], i = 1, \ldots, v \), and hence \(\tau_1 \in E \). Thus \(\tau = \tau_1^{-1} \tau_1 \in PO_{2v}(F_q) \). It follows that \(\text{Aut}(O(2v, q)) = PO_{2v}(F_q) \cdot E \).

Now let \(\sigma \in E \) and \(\sigma([a_1, \ldots, a_{2v}]) = [b_1, \ldots, b_{2v}] \). Clearly \(a_i \neq 0 \) if and only if \([a_1, \ldots, a_{2v}] \not\sim [f_i] \), and \(a_{v+i} \neq 0 \) if and only if \([a_1, \ldots, a_{2v}] \not\sim [e_i] \). But \(\sigma([e_i]) = [e_i], \sigma([f_i]) = [f_i] \), it follows that \(a_i \neq 0 \) if and only if \(b_i \neq 0, 1 \leq i \leq 2v \). For the vertex \([a_1, a_2, \ldots, a_{2v}] \), if \(a_1 = \cdots = a_{v-1} = 0 \) and \(a_{v} \neq 0 \), then \([a_1, a_2, \ldots, a_{2v}] \) can be uniquely written as \([0, 0, 0, 0, a_1, 0, \ldots, a_{2v}] \), and \(\sigma([a_1, \ldots, a_{2v}]) \) can be uniquely written as \([0, 0, 0, 1, b'_1 + 1, \ldots, b'_{2v}] \). In the following, we denote \([a_1, a_2, a_3, a_4] \) by \(\sum_{i=1}^{v} a_i [e_i] + \sum_{i=1}^{v} a_{v+i} [f_i] \). We will use frequently the fact that for any two vertices \([\alpha], [\beta] \), if \([\alpha] \not\sim [\beta] \), then \(\sigma([\alpha]) \not\sim \sigma([\beta]) \).

(i) \(v = 2 \). Since \(\sigma \in E \) is a bijection from \(V(O(2, q)) \) to itself, we have permutations \(\pi_2 \) and \(\pi_4 \) of \(F_q \) with \(\pi_2(0) = \pi_4(0) = 0 \) such that \(\sigma([1, a, 0, 0]) = [1, \pi_2(a), 0, 0] \) and \(\sigma([1, 0, 0, a]) = [1, 0, \pi_4(a)] \) for \(a \in F_q \).

Clearly \(V(O(2, q)) \) consists of four types of vertices: \([(1, a_1, a_2, a_3), a_2, a_3, a_4 \in F_q, a_3 = a_2 a_4], \) \([0, 1, a_3, 0]: a_3 \in F_q], \) \([0, 0, 1, a_4]: a_4 \in F_q], \) and \([0, 0, 0, 1] \).

Suppose \(\sigma([0, 0, 1, a_4]) = [0, 0, 1, a'_4] \). Assume \(a_4 \neq 0 \). From \([0, 0, 1, a_4] \not\sim [1, -a_4^{-1}, 0, 0] \), we have \([0, 0, 1, a'_4] \not\sim [1, \pi_2(-a_4^{-1}), 0, 0] \), then \(a'_4 = -\pi_2(-a_4^{-1}) \).

Suppose \(\sigma([0, 1, a_3, 0]) = [0, 1, a'_3, 0] \). From \([0, 1, a_3, 0] \not\sim [1, 0, 0, a_3] \), we have \([0, 1, a'_3, 0] \not\sim [1, 0, 0, \pi_4(-a_3)] \), then \(a'_3 = -\pi_4(-a_3) \).

Let \([1, a_2, a_3, a_4] \) \(V(O(2, 2, q)) \), then \(a_3 + a_4 a_4 = 0 \). Suppose \(\sigma([1, a_2, a_3, a_4]) = [1, a'_2, a'_3, a'_4] \), then \(a'_2 + a'_3 a'_4 = 0 \). From \([1, a_2, a_3, a_4] \not\sim [1, a_2, 0, 0] \), we have \([1, a'_2, a'_3, a'_4] \not\sim [1, \pi_2(a_2), 0, 0] \), then \(a'_2 = -\pi_2(a_2) a'_4 \). Similarly, from \([1, a_2, a_3, a_4] \not\sim [0, 0, a_4] \), we have \(a'_2 = -\pi_4(a_4) a'_2 \). Then \(a'_2 a'_4 = \pi_4(a_4) a'_2 = \pi_2(a_2) a'_4 \). Hence \(a'_2 = \pi_2(a_2), a'_2 = \pi_4(a_4) \).

In a word, for any \(\sigma \in E \), there exist permutations \(\pi_2 \) and \(\pi_4 \) of \(F_q \) such that:

\[
\begin{align*}
\sigma([0, 0, 0, 1]) &= [0, 0, 0, 1], \\
\sigma([0, 0, 1, 0]) &= [0, 0, 1, 0], \\
\sigma([0, 0, 1, a_4]) &= [0, 0, 1, -\pi_2(-a_4^{-1}), 0] \quad \text{if} \ a_4 \neq 0; \\
\sigma([0, 1, a_3, 0]) &= [0, 1, -\pi_4(-a_3), 0], \\
\sigma([1, a_2, a_3, a_4]) &= [1, \pi_2(a_2), -\pi_2(a_2) \pi_4(a_4), \pi_4(a_4)], \quad \text{if} \ a_3 = -a_2 a_4.
\end{align*}
\]

Conversely, for any permutations \(\pi_2 \) and \(\pi_4 \) of \(F_q \) with \(\pi_2(0) = \pi_4(0) = 0 \), if we define a map \(\sigma \) from \(V(O(2, 2, q)) \) to itself by \((*)\), then it is easy to see that \(\sigma \in E \). Moreover, it can also be verified that \(E \cong \text{Sym}(F_q^*) \times \text{Sym}(F_q^*) \).

(ii) \(v \geq 3 \). Clearly \(\sigma_{(k_1, \ldots, k_v, \pi)} \) is well defined and \(\sigma_{(k_1, \ldots, k_v, \pi)} \in E \), thus \(h \) is well defined. It is easy to verify that \(h \) is an injective group homomorphism from \((F_q^* \times \cdots \times F_q^*) \times \text{Aut}(F_q) \)
to E. Thus to prove (ii) of the theorem, it remains to show that every element σ of E is of the form $\sigma(k_1, \ldots, k_v, \pi)$.

Let $\sigma \in E$. Since σ is a bijection from $V(O(2v, q))$ to itself, we have permutations $\pi_i, i = 2, \ldots, v, v + 2, \ldots, 2v$, of \mathbb{F}_q with $\pi_i(0) = 0$ such that

$$\sigma([e_1] + a_j[e_j]) = [e_1] + \pi_j(a_j)[e_j], \quad 2 \leq j \leq v,$$

$$\sigma([e_1] + a_{\nu + j}[f_j]) = [e_1] + \pi_{\nu + j}(a_{\nu + j})[f_j], \quad 2 \leq j \leq v.$$

Lemma 3.4. Let $[1, a_2, \ldots, a_{2v}] \in V(O(2v, q))$ and $\sigma([1, a_2, \ldots, a_{2v}]) = [1, a_2', \ldots, a_{2v}']$. Then $a_j' = \pi_j(a_j)$ and $a_{\nu + j}' = \pi_{\nu + j}(a_{\nu + j}), 2 \leq j \leq v$.

Proof. Let $a \in \mathbb{F}_q^*$. Suppose $\sigma([f_1] - a^{-1}[f_j]) = [f_1] + x[f_j]$. Since $[f_1] - a^{-1}[f_j] \not\sim [e_1] + a[e_j], [f_1] + x[f_j] \not\sim [e_1] + \pi_j(a)[e_j]$, which implies $x = -\pi_j(a)^{-1}$. Hence $\sigma([f_1] - a^{-1}[f_j]) = [f_1] - \pi_j(a)^{-1}[f_j]$. Similarly, $\sigma(e_j - a[f_j]) = [e_j] - \pi_{\nu + j}(a)[f_j]$.

Let $2 \leq j \leq v$. If $a_j = 0$, then $a_j' = \pi_j(a_j)$ holds trivially; if $a_j \neq 0$, from $[1, a_2, \ldots, a_{2v}] \not\sim [f_1] - a_j^{-1}[f_j], [1, a_2', \ldots, a_{2v}'] \not\sim [f_1] - \pi_j(a_j)^{-1}[f_j]$, which implies $a_j' = \pi_j(a_j)$. Similarly, from $[1, a_2', \ldots, a_{2v}'] \not\sim [e_j] - a_{\nu + j}[f_1]$, we deduce $a_{\nu + j}' = \pi_{\nu + j}(a_{\nu + j})$. \hfill \Box

Lemma 3.5.

(i) $\pi_i(1)^{-1}\pi_i = \pi_j(1)^{-1}\pi_j = \pi_{\nu + i}(1)^{-1}\pi_{\nu + i} = \pi_{\nu + j}(1)^{-1}\pi_{\nu + j},$ where $2 \leq i, j \leq v$.

(ii) For any $a \in \mathbb{F}_q, \pi_i(a)\pi_{\nu + i}(1) = \pi_{\nu + i}(a)\pi_i(1) = \pi_j(a)\pi_{\nu + j}(1) = \pi_{\nu + j}(a)\pi_j(1),$ where $2 \leq i, j \leq v$. In particular, $\pi_2(1)\pi_2(1) = \pi_3(1)\pi_3(1) = \cdots = \pi_v(1)\pi_v(1)$.

Proof. (i) Let $a \in \mathbb{F}_q$ and $2 \leq i, j \leq v, i \neq j$. From $[e_1] + a[e_i] + a[f_j] \not\sim [e_1] + [e_j] - [f_i]$, we have $[e_1] + \pi_i(a)[e_i] + \pi_{\nu + i}(a)[f_j] \not\sim [e_1] + \pi_i(1)[e_j] + \pi_{\nu + i}(1)(-1)[f_j]$, then $\pi_i(a)\pi_{\nu + i}(-1) + \pi_{\nu + i}(a)\pi_i(1) = 0$. Similarly, from $[e_1] + a[e_i] + a[e_j] \not\sim [e_1] - [f_i] + [f_j]$, we deduce $\pi_i(a)\pi_{\nu + i}(-1) + \pi_j(a)\pi_{\nu + j}(1) = 0$. Thus $\pi_{\nu + j}(a)\pi_j(1) = \pi_j(a)\pi_{\nu + j}(1)$, that is,

$$\pi_j(1)^{-1}\pi_j = \pi_{\nu + j}(1)^{-1}\pi_{\nu + j}, \quad \text{for } 2 \leq j \leq n, \ j \neq i. \quad (3.1)$$

If we interchange the roles of i and j in the above argument, we have

$$\pi_i(1)^{-1}\pi_i = \pi_{\nu + i}(1)^{-1}\pi_{\nu + i}, \quad \text{for } 2 \leq i \leq n, \ i \neq j. \quad (3.2)$$

Suppose $\sigma([e_i] - [e_j]) = [e_i] + x[e_j]$. Since $[e_i] - [e_j] \not\sim [e_1] + [f_i] + [f_j]$, we have $[e_i] + x[e_j] \not\sim [e_1] + \pi_{\nu + i}(1)[f_i] + \pi_{\nu + i}(1)[f_j]$, which implies $x\pi_{\nu + i}(1) + \pi_{\nu + i}(1) = 0$, that is, $x = -\pi_{\nu + i}(1)\pi_{\nu + j}(1)^{-1}$. Hence $\sigma([e_i] - [e_j]) = [e_i] - \pi_{\nu + i}(1)\pi_{\nu + j}(1)^{-1}[e_j]$. Since $[e_1] + a[f_i] + a[f_j] \not\sim [e_i] - [e_j]$, we have $[e_1] + \pi_{\nu + i}(a)[f_i] + \pi_{\nu + j}(a)[f_j] \not\sim [e_i] - \pi_{\nu + i}(1)\pi_{\nu + j}(1)^{-1}[e_j]$, then $\pi_{\nu + i}(a) - \pi_{\nu + j}(a)\pi_{\nu + i}(1)\pi_{\nu + j}(1)^{-1} = 0$. Hence

$$\pi_{\nu + i}(1)^{-1}\pi_{\nu + i} = \pi_{\nu + j}(1)^{-1}\pi_{\nu + j}. \quad (3.3)$$

From Eqs. (3.1)–(3.3), we deduce that:

$$\pi_i(1)^{-1}\pi_i = \pi_{\nu + i}(1)^{-1}\pi_{\nu + i} = \pi_{\nu + j}(1)^{-1}\pi_{\nu + j} = \pi_j(1)^{-1}\pi_j. \quad (3.4)$$
Lemma 3.6. We will show \(\pi_i(a) \pi_{i+1}(1) = \pi_{i+1}(a) \pi_i(1) \) and \(\pi_i(a) \times \pi_{i+1}(1) = \pi_{i+1}(a) \pi_i(1) \), respectively. Since \([e_1] + a[e_j] + a[f_j] \not\sim [e_1] - [e_i] + [f_j], [e_1] + \pi_j(a)[e_j] + \pi_{i+1}(a)[f_j] \not\sim [e_1] + \pi_i(1)[e_j] + \pi_{i+1}(1)[f_j]\). Thus,
\[
\pi_{i+1}(a) \pi_i(1) + \pi_j(a) \pi_{i+j}(1) = 0. \tag{3.5}
\]

It remains to prove that \(\pi_i(-1) = -\pi_i(1) \).

Suppose \(\sigma([f_1] + [f_i] + [f_j]) = [f_1] + x[f_i] + y[f_j] \). Since \([f_1] + [f_i] + [f_j] \not\sim [e_1] - [e_i] \), we have \([f_1] + x[f_i] + y[f_j] \not\sim [e_1] + \pi_i(1)[e_i] \), which implies \(x = -\pi_i(-1) \). Similarly, \(y = -\pi_j(-1) \). Hence \(\sigma([f_1] + [f_i] + [f_j]) = [f_1] - \pi_i(-1)^{-1}[f_i] - \pi_j(-1)^{-1}[f_j] \). Since \([f_1] + [f_i] + [f_j] \not\sim [e_1] - [e_j] \), we have
\[
[f_1] - \pi_i(-1)^{-1}[f_i] - \pi_j(-1)^{-1}[f_j] \not\sim [e_1] - \pi_{i+j}(1)[e_j].
\]

Then \(\pi_i(1)^{-1} - \pi_{i+j}(1)^{-1} \pi_{i+j}(1)^{-1} \pi_j(1)^{-1} = 0 \), that is, \(\pi_{i+j}(1)^{-1} \pi_j(-1) = \pi_{i+j}(1) \pi_i(1) = 0 \). On the other hand, letting \(a = 1 \) in (3.5), we have \(\pi_{i+j}(1) \pi_i(1) + \pi_j(1) \pi_{i+j}(1) = 0 \). Thus \(\pi_{i+j}(1) \pi_i(1) = -\pi_j(1) \pi_{i+j}(1) \). Canceling \(\pi_{i+j}(1) \), we obtain \(\pi_j(-1) = -\pi_j(1) \); then from (3.4), we have \(\pi_i(1) = -\pi_i(1) \). □

Lemma 3.6. Let \(\pi = \pi_2(1)^{-1} \pi_2 \), then \(\pi \) is an automorphism of \(\mathbb{F}_q \).

Proof. We will show \(\pi_i(-a) = -\pi_i(a) \) first. Since \([e_1] - a[e_2] + a[f_3] \not\sim [e_1] + [e_2] + [f_2] \), we have \(\pi_2(-a) \pi_{i+2}(1) + \pi_{i+3}(a) \pi_3(1) = 0 \). By Lemma 3.5(ii), \(\pi_{i+3}(a) \pi_3(1) = \pi_2(a) \pi_{i+2}(1) \). Thus \(-\pi_2(-a) \pi_{i+2}(1) = \pi_2(a) \pi_{i+2}(1) \), which implies \(\pi_2(-a) = -\pi_2(a) \). Therefore, \(\pi_i(-a) = -\pi_i(a) \).

From \([e_1] + (a)[e_2] + a[e_3] \not\sim [e_1] - [f_2] + b[f_3] \), we deduce \(\pi_2(ab) \pi_{i+2}(1) + \pi_{i+3}(a) \times \pi_{i+3}(b) = 0 \). By Lemma 3.5(ii) again,
\[
\pi_2(ab) = \pi_{i+2}(1)^{-1} \pi_3(a) \pi_{i+3}(b) = \pi_{i+2}(1)^{-1} (\pi_3(a) \pi_{i+3}(1)) (\pi_{i+3}(b) \pi_3(1)) (\pi_{i+3}(1)^{-1} \pi_3(1)^{-1}) = \pi_{i+2}(1)^{-1} \pi_2(b) \pi_{i+2}(1) \pi_{i+2}(1)^{-1} = \pi_2(a) \pi_2(b) \pi_2(1)^{-1}.
\]

Then \(\pi(ab) = \pi_2(1)^{-1} \pi_2(ab) = \pi_2(1)^{-1} \pi_2(a) \pi_2(b) \pi_2(1)^{-1} = \pi(a) \pi(b) \).

To prove \(\pi(a + b) = \pi(a) + \pi(b) \), it is enough to assume \(ab \not= 0 \). Suppose \(\sigma([f_1] - a^{-1}[f_2] + a^{-1}b[f_3]) = [f_1] + x[f_2] + y[f_3] \). Since \([f_1] - a^{-1}[f_2] + a^{-1}b[f_3] \not\sim [e_1] + a[e_2] \) and \(\sigma([e_1] + a[e_2]) = [e_1] + \pi_2(a)[e_2] \), we have \(x = -\pi_2(a)^{-1} \). Similarly, \(y = \pi_3(ab)^{-1} \). Thus \(\sigma([f_1] - a^{-1}[f_2] + a^{-1}b[f_3]) = [f_1] - \pi_2(a)^{-1}[f_2] + \pi_3(ab)^{-1}[f_3] \). Since \([e_1] + (a+b)[e_2] + [e_3] \not\sim [f_1] - a^{-1}[f_2] + a^{-1}b[f_3] \), we have \(1 - \pi_2(a + b) \pi_2(a)^{-1} + \pi_3(1) \pi_3(ab)^{-1} = 0 \). But \(\pi_3(1) \pi_3(ab)^{-1} = (\pi_3(1) \pi_3(ab)^{-1})^{-1} = \pi(ab)^{-1} = \pi(a^{-1}) \pi(b) \), hence
\[
\pi_2(a + b) = \pi_2(a) + \pi_2(a) \pi(a^{-1}) \pi(b) = \pi_2(a) + \pi_2(a) (\pi_2(a) \pi(a^{-1}) \pi(b) = \pi_2(a) + \pi_2(a).
Therefore \(\pi(a + b) = \pi_2(1^{-1}) \pi_2(a + b) = \pi_2(1^{-1}) (\pi_2(a) + \pi_2(b)) = \pi(a) + \pi(b) \).

It is clear that \(\pi \) is injective. Since \(\mathbb{F}_q \) is finite, \(\pi \) is an automorphism of \(\mathbb{F}_q \). \(\square \)

Note that by Lemmas 3.5 and 3.6, we have also \(\pi = \pi_2^{-1}(1) \pi_2 = \cdots = \pi_v^{-1}(1) \pi_v = \pi_{v+2}^{-1}(1) \pi_{v+2} = \cdots = \pi_{v+2}^{-1}(1) \pi_{v+2} \).

Let us return to the proof of Theorem 3.3(ii). We will prove that for any vertex \([\alpha] = \{a_1, a_2, \ldots, a_{2v}\} \) of \(O(2v, q) \), where \(v \geq 3 \),

\[
\sigma([\alpha]) = [\pi(a_1), k_2 \pi(a_2), \ldots, k_v \pi(a_v), k_1 \pi(a_{v+1}), k_1 k_2^{-1} \pi(a_{v+2}), \ldots, k_1 k_v^{-1} \pi(a_{2v})],
\]

where \(k_1 = \pi_2(1) \pi_{v+2}(1), k_2 = \pi_2(1), \ldots, k_v = \pi_v(1) \). We distinguish the following four cases:

(a) \(a_1 \neq 0 \). We may assume \(a_1 = 1 \) and let \(\sigma([1, a_2, \ldots, a_{2v}]) = [1, a_2', \ldots, a_{2v}'] \). For \(2 \leq i \leq v \), by Lemma 3.4, \(a_i' = \pi_1(a_i) = k_1 \pi_1(a_i) \) and \(a_i'^{v+1} = \pi_1(a_i) = k_1^{v+1} \pi_1(a_i) \). If \(a_{v+i} \neq 0 \), there exists \(j \), \(2 \leq j \leq 2v \), \(j \neq v + 1 \), such that \(a_j \neq 0 \). If \(2 \leq j \leq v \), since \([1, a_2, \ldots, a_{2v}'] \not\sim [e_1] - a_1'^{v+1} [f_j] \), we have \(a_i'^{v+1} = \pi_1(a_i) = k_1 \pi_1(a_i) = k_1^{v+1} \pi_1(a_i) = k_1 \pi_1(a_i) = k_1 \pi_1(a_i) \). The case \(v < j \leq 2v \) can be treated similarly. Therefore (3.6) holds in this case.

(b) \(a_1 = \cdots = a_{v+i-1} = 0, a_{v+i} \neq 0, 2 \leq i \leq v \). We may assume \(a_{v+i} = 1 \) and let \(\sigma([0, 0, 0, 1, a_{v+i+1}, \ldots, a_{2v}]) = [0, 0, 1, a'_{v+i+1}, \ldots, a'_{2v}] \). If \(a_{v+j} \neq 0, 2 \leq j < v \), then \([0, 0, 0, 1, a_{v+i+1}, \ldots, a'_{2v}] \not\sim [e_1] - a_1'^{v+1} [e_j] \), which implies \(a_i'^{v+1} = \pi_1(a_i) = k_1 \pi_1(a_i) = k_1^{v+1} \pi_1(a_i) = k_1 \pi_1(a_i) = k_1 \pi_1(a_i) \). If \(a_{v+j} = 0, \) the foregoing formula also holds. Therefore

\[
\sigma([0, 0, 0, 1, a_{v+i+1}, \ldots, a_{2v}]) = [0, 0, 1, k_1 k_i^{-1} \pi(a_{v+i+1}), \ldots, k_1 k_i^{-1} \pi(a_{2v})] = [0, 0, 0, k_1 k_i^{-1} \pi(1), \ldots, k_1 k_i^{-1} \pi(a_{2v})].
\]

(c) \(a_1 = \cdots = a_v = 0, a_{v+1} \neq 0 \). We may assume \(a_{v+1} = 1 \) and let \(\sigma([0, 0, 0, 1, a_{v+2}, \ldots, a_{2v}]) = [0, 0, 0, 1, a'_{v+1}, \ldots, a'_{2v}] \). If \(a_{v+j} \neq 0, 2 \leq j \leq v, [0, 0, 0, 1, a_{v+2}, a_{v+3}, a_{v+4}] \not\sim [e_j] - a_1'^{v+1} [e_j] \), which implies \(a_i'^{v+1} = \pi_1(a_i) = k_1 \pi_1(a_i) = k_1^{v+1} \pi_1(a_i) = k_1 \pi_1(a_i) = k_1 \pi_1(a_i) \). If \(a_{v+j} = 0, \) the foregoing formula holds trivially. Therefore

\[
\sigma([0, 0, 0, 1, a_{v+2}, \ldots, a_{2v}]) = [0, 0, 0, 1, k_1 k_i^{-1} \pi(a_{v+2}), \ldots, k_1 k_i^{-1} \pi(a_{2v})] = [0, 0, 0, k_1 k_i^{-1} \pi(1), k_1 k_i^{-1} \pi(a_{v+2}), \ldots, k_1 k_i^{-1} \pi(a_{2v})].
\]

(d) \(a_1 = \cdots = a_{i-1} = 0, a_i \neq 0, 2 \leq i \leq v \). Assume \(a_i = 1 \) and let \(\sigma([0, 0, 0, 1, a_{i+1}, \ldots, a_{2v}]) = [0, 0, 0, 1, a'_{i+1}, \ldots, a'_{2v}] \). First we consider \(a_j', \) where \(j \) satisfies \(i < j \leq v \). If \(a_j \neq 0 \), we have \([0, 0, 0, 1, a_{i+1}, \ldots, a_{2v}] \not\sim [f_i] - a_1'^{v+1} [f_j] \). By (b), \(\sigma([f_i] - a_1'^{v+1} [f_j]) = [f_i] - k_i k_j^{-1} \pi(a_j^{-1}) [f_j] \). Thus \([0, 0, 0, 1, a_{i+1}, \ldots, a_{2v}] \not\sim [f_i] - k_i k_j^{-1} \pi(a_j^{-1}) [f_j] \), which implies \(a_j' = k_i^{-1} k_j \pi(a_j^{-1}) = k_i^{-1} k_j \pi(a_j) \). If \(a_j = 0 \), then \(a_j' = 0 \) and the formula for \(a_j \) also holds.

Then we consider \(a_{v+j}' \), where \(j \) satisfies \(2 \leq j \leq v \) and \(j \neq i \). Suppose \(\sigma([e_j] - a_{v+j} [f_j]) = [e_j] + x [f_j] \). Since \([e_j] - a_{v+j} [f_j] \not\sim [e_j] - a_{v+j} [f_j] \), we have \(x = -\pi_1(1)^{-1} \pi_{v+j}(a_{v+j}) = -k_1 k_i^{-1} k_j^{-1} \pi(a_{v+j}) \) and

\[
\sigma([e_j] - a_{v+j} [f_j]) = [e_j] - k_1 k_i^{-1} k_j^{-1} \pi(a_{v+j}) [f_i].
\] (3.7)

Since \([0, 0, 0, 1, a_{i+1}, \ldots, a_{2v}] \not\sim [e_j] - a_{v+j} [f_j] \), we have \(a_j' = k_i^{-1} k_j^{-1} \pi(a_{v+j}) \).
Now we consider a'_{v+i}. From $[0, \ldots, 0, 1, a_{i+1}, \ldots, a_{2v}] \not\sim [e_1] - a_{v+i} [f_i]$, we deduce $[0, \ldots, 0, 1, a'_{i+1}, \ldots, a'_{2v}] \not\sim [e_1] - \pi_{v+i} (a_{v+i}) [f_i]$. Then $a'_{v+i} = \pi_{v+i} (a_{v+i}) = k_1 k_2^{-1} \pi (a_{v+i}).$

Finally we consider a'_{v+i}. It is enough to consider the case $a_{v+i} \neq 0$. Then there exists j, $i + 1 \leq j \leq v$, such that $a_j \neq 0$ or there exists j, $1 \leq j \leq v$, $j \neq i$, such that $a_{v+j} \neq 0$. If the former case occurs, from $[0, \ldots, 0, 1, a_{i+1}, \ldots, a_{2v}] \not\sim [e_1] - a_j^{-1} a_{v+i} [f_i]$ and (3.7), we deduce $a'_{v+i} = a'_j k_1 k_2^{-1} \pi (a_{v+i}) = k_1 k_2^{-1} \pi (a_{v+i})$. If the latter case occurs, we distinguish further: $j = 1, 2 \leq j < i$ or $i > j$.

For $j = 1$, from $[0, \ldots, 0, 1, a_{i+1}, \ldots, a_{2v}] \not\sim [e_1] - a_{v+1} a'_{v+i} [e_1]$, we deduce $[0, \ldots, 0, 1, a_{i+1}, \ldots, a_{2v}] \not\sim [e_1] - k_i \pi (a_{v+1} a'_{v+i}) [e_i]$, which implies $a'_{v+i} = (k_i \pi (a_{v+1} a'_{v+i}))^{-1} a'_{v+1} = k_1 k_2^{-2} \pi (a_{v+i}).$

For $2 \leq j < i$, suppose $\sigma ([e_j] - a_i [e_i]) = [e_j] + x [e_i]$. From $[e_j] - a_i [e_i] \not\sim [e_1] + a_i [f_j] + [f_i]$, by case (a), we deduce $[e_j] + x [e_i] \not\sim [e_1] + k_1 k^{-1} \pi (a_i) [f_j] + k_1 k^{-1} [f_i]$, then $x = -(k_1 k_2^{-1})^{-1} k_1 k^{-1} \pi (a_i) = -k_1 k^{-1} \pi (a_i)$ and

$$\sigma ([e_j] - a_i [e_i]) = [e_j] - k_1 k^{-1} \pi (a_i) [e_i]. \quad (3.8)$$

From $[0, \ldots, 0, 1, a_{i+1}, \ldots, a_{2v}] \not\sim [e_j] - a_{v+i} a_{v+j} [e_i]$ and (3.8), we deduce $a'_{v+i} = (k_j k_1^{-1} \pi (a_{v+i} a_{v+j}))^{-1} a'_{v+j} = k_1 k^{-2} \pi (a_{v+i}).$

If $j > i$, interchanging the roles of i and j in (3.8), we have

$$\sigma ([e_j] - a_j [e_j]) = [e_i] - k_1 k^{-1} \pi (a_j) [e_j]. \quad (3.9)$$

From $[0, \ldots, 0, 1, a_{i+1}, \ldots, a_{2v}] \not\sim [e_j] - a_{v+j} a_{v+i} [e_j]$ and (3.9), we deduce $a'_{v+i} = (k_j k_1^{-1} \pi (a_{v+j} a_{v+i})) a'_{v+j} = k_1 k^{-2} \pi (a_{v+i}).$

Therefore

$$\sigma ([0, \ldots, 0, 1, a_{i+1}, \ldots, a_{2v}])$$

$$= [0, \ldots, 0, 1, k_1^{-1} k_{i+1} \pi (a_{i+1}), \ldots, k_1^{-1} k_v \pi (a_v), k_1 k^{-1} \pi (a_{v+1}), k_1 k^{-1} k_2^{-1} \pi (a_{v+2}), \ldots, k_1 k^{-1} k_2^{-1} \pi (a_{2v})]$$

$$= [0, \ldots, 0, k_1 \pi (1), k_{i+1} \pi (a_{i+1}), \ldots, k_v \pi (a_v), k_1 \pi (a_{v+1}), k_1 k_2^{-1} \pi (a_{v+2}), \ldots, k_1 k_2^{-1} \pi (a_{2v})].$$

Hence (3.6) is proved for all the cases. \Box

Corollary 3.7.

$$|\text{Aut}(O(2v, q))| = \begin{cases} 2, & \text{if } v = 1; \\ 2((q + 1)!)^2, & \text{if } v = 2; \\ q^{v(v-1)} \prod_{i=1}^{v} (q^i - 1) \prod_{i=0}^{v-1} (q^i + 1)[\mathbb{F}_q : \mathbb{F}_p], & \text{if } v \geq 3; \end{cases}$$

where p is the characteristic of \mathbb{F}_q.
Proof. When \(v = 1 \), \(O(2 \cdot 1, q) \) is a complete graph on \(q^0 + 1 = 2 \) vertices, hence \(|\text{Aut}(O(2 \cdot 1, q))| = 2 \). Now let \(v \geq 2 \). Clearly,

\[
|\text{Aut}(O(2 \cdot v, q))| = \frac{|PO_{2v}(\mathbb{F}_q)| |E|}{|PO_{2v}(\mathbb{F}_q) \cap E|}.
\]

By [7, Theorem 6.21], \(|PO_{2v}(\mathbb{F}_q)| = \frac{1}{2} |O_{2v}(\mathbb{F}_q)| = \frac{1}{2} q^{v(v-1)} \prod_{i=1}^{v} (q^i - 1) \prod_{i=0}^{v-1} (q^i + 1) \). Moreover, \(|E| = ((q - 1))^2 \) or \((q - 1)^v |\text{Aut}(\mathbb{F}_q)| \) according as \(v = 2 \) or \(v \geq 3 \), respectively, and \(PO_{2v}(\mathbb{F}_q) \cap E \) consists of those \(\sigma \in E \) which are reduced from some matrices of the form \(\text{diag}(k_1, \ldots, k_v, k_1^{-1}, \ldots, k_v^{-1}) \), \(k_i \in \mathbb{F}_q^\ast \). Thus, \(|PO_{2v}(\mathbb{F}_q) \cap E| = \frac{1}{2} (q - 1)^v \). Hence

\[
|\text{Aut}(O(2 \cdot 2, q))| = \frac{|PO_{2 \cdot 2}(\mathbb{F}_q)| |E|}{|PO_{2 \cdot 2}(\mathbb{F}_q) \cap E|} = 2((q + 1))^2,
\]

and when \(v \geq 3 \),

\[
|\text{Aut}(O(2v, q))| = q^{v(v-1)} \prod_{i=1}^{v} (q^i - 1) \prod_{i=0}^{v-1} (q^i + 1) |\mathbb{F}_q : \mathbb{F}_p|,
\]

as is well known that \(|\text{Aut}(\mathbb{F}_q)| = [\mathbb{F}_q : \mathbb{F}_p] \). \(\square \)

4. Automorphism groups (II): The case \(\delta = 1 \)

Theorem 4.1. Let \(v \geq 2 \) and \(E \) be the subgroup of \(\text{Aut}(O(2v + 1, q)) \) defined as follows:

\[
E = \{ \sigma \in \text{Aut}(O(2v + 1, q)) : \sigma([e_i]) = [e_i], \ \sigma([f_i]) = [f_i], \ i = 1, \ldots, v \}.
\]

Then \(\text{Aut}(O(2v + 1, q)) = PO_{2v+1}(\mathbb{F}_q) \cdot E \). Moreover,

\[
E \cong \left(\mathbb{F}_q^\ast \times \mathbb{F}_q^\ast \times \cdots \times \mathbb{F}_q^\ast \times \mathbb{F}_3^\ast \right) \rtimes \psi \text{Aut}(\mathbb{F}_q),
\]

where \(\mathbb{F}_3^\ast = \{-1, 1\} \) is regarded as the unique subgroup of order 2 of \(\mathbb{F}_q^\ast \) and the isomorphism from \((\mathbb{F}_q^\ast \times \mathbb{F}_q^\ast \times \cdots \times \mathbb{F}_q^\ast \times \mathbb{F}_3^\ast) \rtimes \psi \text{Aut}(\mathbb{F}_q) \) to \(E \) is defined as:

\[
h : (k_1, \ldots, k_v, \delta, \pi) \mapsto \sigma(k_1, \ldots, k_v, \delta, \pi)
\]

where \(\sigma(k_1, \ldots, k_v, \delta, \pi) \) is the map that carries the vertex \([a_1, a_2, \ldots, a_{2v}, a_{2v+1}]\) of \(O(2v + 1, q) \) to the vertex

\[
[\pi(a_1), k_2 \pi(a_2), \ldots, k_v \pi(a_v), k_1 \pi(a_v+1), k_1 k_2^{-1} \pi(a_{v+2}), \ldots, k_1 k_v^{-1} \pi(a_{2v}), \delta \sqrt{k_1} \pi(a_{2v+1})],
\]

where \(\delta = \pm 1 \) and \(\sqrt{k_1} \) is one of the square roots of \(k_1 \).
Proof. Similar to Theorem 3.3, we can prove \(\text{Aut}(O(2\nu + 1, q)) = PO_{2\nu + 1}(\mathbb{F}_q) : E \).

Clearly \(\sigma(1, \ldots, k, \delta, \pi) \) is well defined and \(\sigma(1, \ldots, k, \delta, \pi) \in E \), thus \(h \) is well defined. It is easy to verify that \(h \) is an injective group homomorphism from \((\mathbb{F}_q^{*2} \times \mathbb{F}_q^* \times \cdots \times \mathbb{F}_q^* \times \mathbb{F}_q^*)_q \times_q \text{Aut}(\mathbb{F}_q) \) to \(E \). Thus to prove the second part of the theorem, it is enough to show that every element \(\sigma \) of \(E \) is of the form \(\sigma(1, \ldots, k, \delta, \pi) \).

Lemma 4.2. If \([a_1, \ldots, a_{2\nu}, a_{2\nu+1}] \in V(O(2\nu + 1, q)) \) and \([a_1, \ldots, a_{2\nu}] \in V(O(2\nu, q)) \), then \(a_{2\nu+1} = 0 \).

Proof. This is clear from the definition of the orthogonal graphs. \(\square \)

Let \(\sigma \in E \). For \([a_1, \ldots, a_{2\nu}, a_{2\nu+1}] \in V(O(2\nu + 1, q)) \), let \(\sigma([a_1, \ldots, a_{2\nu}, a_{2\nu+1}]) = [b_1, \ldots, b_{2\nu}, b_{2\nu+1}] \). As the case \(\delta = 0 \), \(a_i \neq 0 \) if and only if \(b_i \neq 0 \). Therefore by Lemma 4.2 and the foregoing statement, we have permutations \(\pi_i, i = 2, \ldots, v, v + 2, \ldots, 2v \), of \(\mathbb{F}_q \) with \(\pi_i(0) = 0 \) such that

\[
\sigma([e_1] + a_j[e_j]) = [e_1] + \pi_j(a_j)[e_j], \quad 2 \leq j \leq v,
\]

\[
\sigma([e_1] + a_{v+j}[f_j]) = [e_1] + \pi_{v+j}(a_{v+j})[f_j], \quad 2 \leq j \leq v.
\]

In the following, we distinguish the cases: \(v \geq 3 \) and \(v = 2 \).

(i) \(v \geq 3 \). If we take Lemma 4.2 into account, the following lemmas corresponding to Lemmas 3.4–3.6 can be proved in a similar way.

Lemma 4.3. Suppose \([1, a_2, \ldots, a_{2\nu}, a_{2\nu+1}] \in V(O(2\nu + 1, q)) \) and let \(\sigma([1, a_2, \ldots, a_{2\nu}, a_{2\nu+1}]) = [1, a'_2, \ldots, a'_{2\nu}, a'_{2\nu+1}] \). Then \(a'_j = \pi_j(a_j) \) and \(a'_{v+j} = \pi_{v+j}(a_{v+j}) \), \(2 \leq j \leq v \).

Lemma 4.4.

(i) \(\pi_i(1)^{-1} \pi_i = \pi(1)^{-1} \pi_j = \pi_{v+i}(1)^{-1} \pi_{v+i} = \pi_{v+j}(1)^{-1} \pi_{v+j} \), where \(2 \leq i, j \leq v \).

(ii) For any \(a \in \mathbb{F}_q, \pi_i(a)\pi_i(1) = \pi_{v+i}(a)\pi_i(1) = \pi_j(a)\pi_j(1) = \pi_{v+j}(a)\pi_j(1) \), where \(2 \leq i, j \leq v \). In particular, \(\pi_2(1)\pi_{v+2}(1) = \pi_3(1)\pi_{v+3}(1) = \cdots = \pi_1(1)\pi_{2v}(1) \).

Lemma 4.5. Let \(\pi = \pi_2(1)^{-1} \pi_2 \), then \(\pi \) is an automorphism of \(\mathbb{F}_q \).

As the case \(\delta = 0 \), we have also \(\pi = \pi_2^{-1}(1) = \pi_2^{-1}(1) = \pi_2^{-1}(1) \). By the same method of the proof of Theorem 3.3, we can show that the vertex \([a_1, \ldots, a_{2\nu}, a_{2\nu+1}] \) is mapped into

\[
[a_1, \pi(a_1), k_2\pi(a_2), \ldots, k_v\pi(a_v), k_1\pi(a_{v+1}), k_1k_2^{-1}\pi(a_{v+2}), \ldots, k_1k_v^{-1}\pi(a_{2\nu}), a'_{2\nu+1}]
\]

under \(\sigma \), where \(a'_{2\nu+1} \) is to be determined. Since \([a_1, \ldots, a_{2\nu}, a_{2\nu+1}] \in V(O(2\nu + 1, q)), 2(a_1a_{v+1} + \cdots + a_2a_{v+1}) + a_{2\nu+1}^2 = 0 \) and \(2k_1(\pi(a_1)\pi(a_{v+1}) + \cdots + \pi(a_2)\pi(a_{v+2})) + a_{2\nu+1}^2 = 0 \), which imply \(a_{2\nu+1}^2 = k_1\pi(a_{2\nu+1}) = k_1\pi(a_{2\nu+1})^2 \). Hence \(k_1 \in \mathbb{F}_q^* \). Let \(\sqrt{k_1} \) be one of its square roots in \(\mathbb{F}_q^* \). Then \(a'_{2\nu+1} = \delta\sqrt{k_1}\pi(a_{2\nu+1}) \), where \(\delta = \pm 1 \).

It remains to prove that all elements of \(E \) are either of the form \(\sigma(k_1, \ldots, k_v, 1, \pi) \) or of the form \(\sigma(k_1, \ldots, k_v, -1, \pi) \). We need a lemma first.
Lemma 4.6. Let W be a maximal totally isotropic space of \mathbb{F}_q^{2v+1}, $v \geq 2$, and $X = \{[\alpha]: \alpha \in W, \alpha \neq 0\}$. Then every vertex not in X is adjacent with exactly q^{v-1} vertices in X.

Proof. By the transitivity of the orthogonal group (cf. [7]), we can assume $W = \{e_1, \ldots, e_v\}$. Let $[\alpha] \in V(O(2v+1, q)) \setminus X$ and $\alpha = (a_1, a_2, a_3, \ldots, a_{v+1}, a_{v+2})$. Then $(a_{v+1}, \ldots, a_{v+2}) \neq 0$. Let $\beta = x_1e_1 + \cdots + x_ve_v \in \{e_1, \ldots, e_v\}$, x_i not all zero. Then $[\alpha] \not\sim [\beta]$ if and only if $a_{v+1}x_1 + \cdots + a_{v+2}x_v = 0$. The number of nonzero solutions of this equation in x_1, \ldots, x_v is $q^{v-1} - 1$. Thus the number of vertices in W which are adjacent with $[\alpha]$ is $\frac{q^v - 1}{q-1} - \frac{q^{v-1} - 1}{q-1} = q^{v-1}$. \qed

Lemma 4.7. Let $v \geq 2$. If there exists a vertex $[\alpha] = (a_1, \ldots, a_{2v+1})$ of $O(2v+1, q)$ with $a_{2v+1} \neq 0$, such that $\sigma([\alpha]) = \sigma(k_1, \ldots, k_v, 1, \pi)([\alpha])$, then $\sigma = \sigma(k_1, \ldots, k_v, 1, \pi)$.

Proof. It suffices to consider the vertices with their last components nonzero. Without loss of generality, we may assume $a_{2v+1} = 1$ and $\sigma([\alpha]) = \sigma(k_1, \ldots, k_v, 1, \pi)([\alpha])$. Let $V_1 = \{[x_1, \ldots, x_2v, 1] \in V(O(2v+1, q)): x_i \in \mathbb{F}_q\}$ and $[\beta] = [b_1, \ldots, b_{2v}, 1] \in V_1$. Then $\sigma([\beta]) = \sigma(k_1, \ldots, k_v, 1, \pi)([\beta])$, where $\delta = 1$ or -1.

If $[\beta] \not\sim [\alpha]$, then

$$b_1a_{v+1} + b_2a_{v+2} + \cdots + b_va_{v+2} + b_{v+1}a_1 + \cdots + b_{2v}a_v + 1 = 0. \quad (4.1)$$

Since σ is an automorphism, $\sigma([\alpha]) \not\sim \sigma([\beta])$, i.e.,

$$\pi(b_1)k_1\pi(a_{v+1}) + k_2\pi(b_2)k_1k_2^{-1}\pi(a_2) + \cdots + k_v\pi(b_v)k_1k_2^{-1}\pi(a_{2v})$$

$$+ k_1\pi(b_{v+1})\pi(a_1) + \cdots + k_1k_2^{-1}\pi(b_{2v})k_1k_1^{-1}\pi(a_v) + \delta k_1 = 0. \quad (4.2)$$

From (4.1) and (4.2), we deduce $\delta = 1$.

From the above conclusion, we need only show that the complementary graph \overline{H}_1 of the induced subgraph H_1 of $O(2v+1, q)$ with vertex set V_1, is connected. Let $\gamma_1 = e_1 - 2^{-1}f_1 + e_{2v+1}$ and $\gamma_2 = e_2 - 2^{-1}f_2 + e_{2v+1}$. Then it is clear that $W_1 = \{[\gamma_1, e_2, e_3, \ldots, e_v] \text{ and } W_2 = \{[\gamma_2, f_1, f_3, \ldots, f_v] \text{ are two maximal totally isotropic subspaces, and } W_1 \cap W_2 = \{0\}. \text{ As in Lemma 4.6, let } X_i = \{[\alpha]: \alpha \in W_i, \alpha \neq 0\}, \text{ where } i = 1 \text{ or } 2. \text{ Then any two distinct vertices in each } X_i \text{ are not adjacent. Clearly, } [\gamma_1 + e_2] = [e_1 + e_2 - 2^{-1}f_1 + e_{2v+1}] \in X_1 \cap V_1,$$ $[\gamma_2 - 2^{-1}f_1] = [e_2 - 2^{-1}f_1 - 2^{-1}f_2 + e_{2v+1}] \in X_2 \cap V_1, \text{ and they are not adjacent. For every } [\gamma] = [c_1, \ldots, c_{2v}, 1] \in V_1 \setminus ((X_1 \cup X_2) \cap V_1), \text{ we claim that there exists } [\theta] \in (X_1 \cup X_2) \cap V_1 \text{ such that } [\gamma] \not\sim [\theta]. \text{ If not, then all the elements of } X_i \cap V_i, \text{ } i = 1, 2, \text{ are adjacent with } [\gamma]. \text{ Note that } |X_i \cap V_i| = q^{v-1} \text{ and by Lemma 4.6, the number of vertices in } X_i \text{ which are adjacent with } [\gamma] \text{ is exactly } q^{v-1} \text{, so } [\gamma] \text{ is not adjacent with } [e_i], \text{ } 2 \leq i \leq v, \text{ and also not adjacent with } [f_i], \text{ } i = 1, 3, \ldots, v. \text{ Then } c_i = 0, \text{ } 1 \leq i \leq 2v + 1, \text{ } i \neq 2 \text{ and } i \neq v + 1. \text{ But now } [\gamma] = c_2[e_2] + c_{v+1}[f_1] + [e_{2v+1}] \text{ is not a vertex of } O(2v+1, q). \text{ This is a contradiction, and our claim is proved. Therefore } \overline{H}_1 \text{ is connected. Hence } \sigma = \sigma(k_1, \ldots, k_v, 1, \pi). \quad \Box$

The proof of theorem for the case $v \geq 3$ is complete.

(ii) $v = 2$. Now we have only permutations π_2 and π_4.

Lemma 4.8. $\pi_2(1)^{-1} \pi_2 = \pi_4(1)^{-1} \pi_4$.
\textbf{Proof.} Taking Lemma 4.2 into account, as the case \(v = 2, \delta = 0\), we can prove

\[
\begin{align*}
\sigma([0, 0, 1, a_4, 0]) &= [0, 0, 1, -\pi_2(-a_4^{-1})^{-1}, 0], \quad \text{if } a_4 \neq 0, \\
\sigma([0, 1, a_3, 0, 0]) &= [0, 1, -\pi_4(-a_3), 0, 0]
\end{align*}
\]

and

\[
\sigma([1, a_2, a_3, a_4, 0]) = [1, \pi_2(a_2), -\pi_2(a_2)\pi_4(a_4), \pi_4(a_4), 0], \quad \text{where } a_2a_4 + a_3 = 0.
\]

Let \([1, a_2, a_3, a_4, a_5] \in V(O(5, q))\), then \(2(a_3 + a_2a_4) + a_2^2 = 0\). Suppose \(\sigma([1, a_2, a_3, a_4, a_5]) = [1, a'_2, a'_3, a'_4, a'_5]\). For \(a_2 \neq 0\), from \([1, a_2, a_3, a_4, a_5] \not\sim [0, 0, 1, -a_2^{-1}, 0]\), we have \(a'_2 = \pi_2(a_2)\). For \(a_2 = 0\), we have \(a'_2 = 0\) and the formula \(a'_2 = \pi_2(a_2)\) also holds. From \([1, a_2, a_3, a_4, a_5] \not\sim [0, 1, -a_4, 0, 0]\), we have \([a'_2, a'_3, a'_4, a'_5] \not\sim [0, 1, -\pi_4(a_4), 0, 0]\), then \(a'_4 = \pi_4(a_4)\).

Next suppose \(a_2, a_4 \in \mathbb{F}_q^*\) and we will calculate \(a'_3\) in two ways. First from \([1, a_2, a_3, a_4, a_5] \not\sim [1, -a_4^{-1}a_3, 0, 0, 0]\), we have \(a'_3 = -\pi_2(-a_4^{-1}a_3)\pi_4(a_4)\). On the other hand, from \([1, a_2, a_3, a_4, a_5] \not\sim [1, 0, 0, -a_2^{-1}a_3, 0]\), we have \(a'_3 = -\pi_2(a_2)\pi_4(-a_2^{-1}a_3)\). Hence

\[
\pi_2(a_2)\pi_4(-a_2^{-1}a_3) = \pi_4(a_4)\pi_2(-a_2^{-1}a_3)
\]

for all \(a_2, a_4 \in \mathbb{F}_q^*\) and \(a_3 \in \mathbb{F}_q\) such that \(-2(a_3 + a_2a_4) \in \mathbb{F}_q^{*2} \cup \{0\}\).

Let \(a \in \mathbb{F}_q^*\) and \(a \neq 1\), we will show \(\pi_2(1)\pi_4(a) = \pi_4(1)\pi_2(a)\). We distinguish the following two cases: \(-a \in \mathbb{F}_q^{*2} \) or not.

(i) \(-a \notin \mathbb{F}_q^{*2} \). There is one and only one of \(-2(-a)(1 - a) \) and \(-2(1 - a) \) in \(\mathbb{F}_q^{*2} \). If \(-2(-a)(1 - a) \in \mathbb{F}_q^{*2} \), substituting \(a_2 = a_4 = a, a_3 = -a\) into (4.3), we have \(\pi_2(a)\pi_4(1) = \pi_4(a)\pi_2(1)\). If \(-2(1 - a) \in \mathbb{F}_q^{*2} \), substituting \(a_2 = a_4 = 1, a_3 = -a\) into (4.3), we also have \(\pi_2(1)\pi_4(a) = \pi_4(1)\pi_2(a)\).

(ii) \(-a \in \mathbb{F}_q^{*2} \). We distinguish further: \(2 \in \mathbb{F}_q^{*2} \) or not.

If \(2 \in \mathbb{F}_q^{*2} \), then \(-2a \in \mathbb{F}_q^{*2} \). Choose \(a_5 \in \mathbb{F}_q\) such that \([1, 0, a, 0, a_5] \in V(O(5, q))\). Suppose \(\sigma([1, 0, a, 0, a_5]) = [1, 0, a_5', 0, a_5']\). We will calculate \(a'_3\) in two ways. Since \([1, 0, a, 0, a_5] \not\sim [1, -a, a, 0], [1, 0, a', 0, a'_5] \not\sim [1, \pi_2(1), -\pi_2(1)\pi_4(a), \pi_4(a), 0]\), which implies \(a'_3 = \pi_2(1)\pi_4(a)\). Similarly, from \([1, 0, a, 0, a_5] \not\sim [1, a, -a, 1, 0]\), we have \(a'_3 = \pi_4(1)\pi_2(a)\). Hence \(\pi_2(1)\pi_4(a) = \pi_4(1)\pi_2(a)\).

If \(2 \notin \mathbb{F}_q^{*2} \), we distinguish further: \(a - 1 \in \mathbb{F}_q^{*2} \) or not. If \(a - 1 \notin \mathbb{F}_q^{*2} \), substituting \(a_2 = a_4 = 1, a_3 = -a\) into (4.3), we have \(\pi_2(1)\pi_4(a) = \pi_4(1)\pi_2(a)\). If \(a - 1 \in \mathbb{F}_q^{*2} \), substituting \(a_2 = 1, a_3 = -2^{-1}a, a_4 = 2^{-1}\) into (4.3), we have

\[
\pi_2(1)\pi_4(2^{-1}a) = \pi_4(2^{-1})\pi_2(a).
\]

Suppose \([1, 0, a_3, a_4, a_5] \in V(O(5, q)) \) and let \(\sigma([1, 0, a_3, a_4, a_5]) = [1, 0, a'_3, a'_4, a'_5]\). Then \(a'_4 = \pi_4(a_4)\). Before continuing, note the following claim:

\textbf{Claim.} Let \([1, 0, a_3, a_4, a_5] \) and \([1, 0, a_3, b_4, a_5] \in V(O(5, q))\). If \(\sigma([1, 0, a_3, a_4, a_5]) = [1, 0, a'_3, a'_4, a'_5]\) and \(\sigma([1, 0, a_3, b_4, a_5]) = [1, 0, a_3'', b'_4, a_5'']\), then \(a'_3 = a_3''\).
Proof. Since \([1, 0, a_3, a_4, a_5] \in V(O(5, q))\) and \([1, 0, a_3, b_4, a_5] \in V(O(5, q))\), we have \([1, 0, a'_3, a'_4, a'_5] \) and \([1, 0, a_3'', b'_4, a_5''] \in V(O(5, q))\), which implies

\[
2a'_3 + a'_5^2 = 0, \tag{4.5}
\]

\[
2a''_3 + a''_5^2 = 0. \tag{4.6}
\]

Clearly, \([1, 0, a_3, a_4, a_5] \not\sim [1, 0, a_3, b_4, a_5]\), then \([1, 0, a'_3, a'_4, a'_5] \not\sim [1, 0, a_3'', b'_4, a_5'']\), which implies

\[
a'_3 + a'_5'' + a_5'' = 0. \tag{4.7}
\]

From (4.5)–(4.7), we deduce \(a'_3 = a''_3\). \(\square\)

Since \(-a \in \mathbb{F}_q^{*2}\), we may choose \(a_5 \in \mathbb{F}_q\) such that \(a + a_5^2 = 0\). Then \([1, 0, 2^{-1}a, 2^{-1}a, a_5]\) and \([1, 0, 2^{-1}a, 2^{-1}, a_5]\) are all vertices of \(O(5, q)\). By the claim we may suppose \(\sigma([1, 0, 2^{-1}a, 2^{-1}, a_5]) = [1, 0, a'_3, a'_4, a'_5]\) and \(\sigma([1, 0, 2^{-1}a, 2^{-1}, a_5]) = [1, 0, a''_3, a''_4, a''_5]\). Since \([1, 0, 2^{-1}a, 2^{-1}, a_5] \not\sim [1, 1, -a, a, 0]\), we have

\[
[1, 0, a'_3, a'_4, a'_5] \not\sim [1, \pi_2(1), -\pi_2(1), \pi_4(a), \pi_4(a), 0],
\]

which implies

\[
a'_3 - \pi_2(1)\pi_4(a) + \pi_4(2^{-1}a)\pi_2(1) = 0. \tag{4.8}
\]

Similarly, since \([1, 0, 2^{-1}a, 2^{-1}, a_5] \not\sim [1, a, -a, 1, 0]\), we have

\[
a'_3 - \pi_2(a)\pi_4(1) + \pi_2(a)\pi_4(2^{-1}) = 0. \tag{4.9}
\]

From (4.4), (4.8) and (4.9), we have \(\pi_2(1)\pi_4(a) = \pi_4(1)\pi_2(a)\).

Therefore, we have proved \(\pi_2(1)\pi_4(a) = \pi_4(1)\pi_2(a)\) for all \(a \in \mathbb{F}_q^*\) and \(a \neq 1\). Clearly, when \(a = 0\) or \(1\), the lemma holds trivially. Thus the proof of the lemma is complete. \(\square\)

Let \(\pi = \pi_2(1)^{-1}\pi_2\), then \(\pi(1) = 1\) and (4.3) can be rewritten as:

\[
\pi(a_2)\pi(-a_2^{-1}a_3) = \pi(a_4)\pi(-a_4^{-1}a_3), \tag{4.10}
\]

where \(a_2, a_4 \in \mathbb{F}_q^*\) and \(a_3 \in \mathbb{F}_q\) such that \(-2(a_3 + a_2a_4) \in \mathbb{F}_q^{*2} \cup \{0\}\). We will show \(\pi \in \text{Aut}(\mathbb{F}_q)\).

First we have

Lemma 4.9. \(\pi(-a) = -\pi(a)\) for all \(a \in \mathbb{F}_q\).

Proof. Substituting \(a_2 = a_3 = -1, a_4 = 1\) into (4.10), we have \(\pi(-1)^2 = 1\). Hence \(\pi(-1) = -1\).

If \(a = 0\), \(\pi(-a) = -\pi(a)\) holds trivially. Next let \(a \neq 0\). We distinguish the cases: \(a \in \mathbb{F}_q^{*2}\) or not. When \(a \in \mathbb{F}_q^{*2}\), substituting \(a_2 = -1, a_3 = -a, a_4 = a\) into (4.10), we have \(\pi(-1)\pi(-a) = \pi(a)\pi(1)\), that is, \(\pi(-a) = -\pi(a)\). When \(a \notin \mathbb{F}_q^{*2}\), we distinguish further: \(2(a + 1) \in \mathbb{F}_q^{*2}\) or not.

If \(2(a + 1) \notin \mathbb{F}_q^{*2}\), then \(2a(a + 1) \in \mathbb{F}_q^{*2}\). Substituting \(a_2 = a_3 = -a, a_4 = a\) into (4.10), we have
\[\pi(\omega) = \pi(\omega) \] that is, \(\pi(\omega) = -\pi(\omega) \). If \(2(a + 1) \in \mathbb{F}_q^* \), substituting \(a_2 = -1 \), \(a_3 = -a, a_4 = 1 \) into (4.10), we have \(\pi(-1)\pi(-a) = \pi(\omega) \), then \(\pi(-a) = -\pi(\omega) \). Therefore, \(\pi(-a) = -\pi(\omega) \) for \(a \in \mathbb{F}_q \).

Lemma 4.10. If \(2 \notin \mathbb{F}_q^* \), then \(\pi(2a) = \pi(2)\pi(a) \) for all \(a \in \mathbb{F}_q \).

Proof. Suppose \(2 \notin \mathbb{F}_q^* \). If \(a = 0 \), \(\pi(2a) = \pi(2)\pi(a) \) holds trivially. Now we assume \(a \neq 0 \). We distinguish the following two cases: \(a \in \mathbb{F}_q^* \) or not. If \(a \in \mathbb{F}_q^* \), substituting \(a_2 = 2a, a_3 = 2a, a_4 = -2 \) into (4.10), we have \(\pi(2a)\pi(-1) = \pi(-2)\pi(a) \), which implies \(\pi(2a) = \pi(2)\pi(a) \). If \(a \notin \mathbb{F}_q^* \), then \(2a \notin \mathbb{F}_q^* \). Substituting \(a_2 = 1, a_3 = -2a, a_4 = a \) into (4.10), we have \(\pi(2a) = \pi(a)\pi(2) \).

Lemma 4.11. \(\pi(ab) = \pi(a)\pi(b) \) for all \(a, b \in \mathbb{F}_q \).

Proof. It is enough to assume \(ab \neq 0, a \neq 1, b \neq 1 \). We distinguish the following two cases: \(2ab(1 - a) \in \mathbb{F}_q^* \) or not. When \(2ab(1 - a) \in \mathbb{F}_q^* \), substituting \(a_2 = a, a_3 = -ab, a_4 = ab \) into (4.10), we have \(\pi(a)\pi(b) = \pi(ab) \). When \(2ab(1 - a) \notin \mathbb{F}_q^* \), we distinguish further: \(2 \notin \mathbb{F}_q^* \) or not. If \(2 \notin \mathbb{F}_q^* \), then \(2a(2b)(1 - a) \notin \mathbb{F}_q^* \). By the previous case, we have \(\pi(2ab) = \pi(a)\pi(2b) \). Noting that here \(2 \notin \mathbb{F}_q^* \), by Lemma 4.10, we have \(\pi(ab) = \pi(a)\pi(b) \). On the other hand, if \(2 \in \mathbb{F}_q^* \), we distinguish further: \(a \in \mathbb{F}_q^* \) or not. When \(a \notin \mathbb{F}_q^* \), \(2b(1 - a) \notin \mathbb{F}_q^* \). Substituting \(a_2 = -1, a_3 = ab, a_4 = b \) into (4.10), we have \(\pi(-1)\pi(ab) = \pi(b)\pi(-a) \), which implies \(\pi(ab) = \pi(a)\pi(b) \). When \(a \notin \mathbb{F}_q^* \), by the symmetry of \(a \) and \(b \), we can assume further \(b \notin \mathbb{F}_q^* \). By the repeated use of the following lemma (if necessary), this case will be reduced to the case \(a \notin \mathbb{F}_q^* \) or the trivial situation. So it suffices to prove the following lemma.

Lemma 4.12. \(\pi(a^2) = \pi(a)^2 \) for all \(a \in \mathbb{F}_q \).

Proof. It suffices to assume \(a \neq 0, 1 \). By the proof of Lemma 4.11, we need only consider the case: \(2 \in \mathbb{F}_q^* \), \(a \in \mathbb{F}_q^* \) and \(1 - a \notin \mathbb{F}_q^* \). Since \(2 \notin \mathbb{F}_q^* \) and \(a \notin \mathbb{F}_q^* \), choose \(a_5 \in \mathbb{F}_q \) such that \([0, 1, 0, -a, a_5] \in V(\mathcal{O}(5, q)) \). Suppose \(\sigma([0, 1, 0, -a, a_5]) = [0, 1, 0, a_4', a_5'] \), we will calculate \(a_4' \) in two ways. Since \([0, 1, 0, -a, a_5] \prec [1, a, -a', a_2', 0], [0, 1, 0, a_4', a_5'] \prec [1, \pi_2(a), -\pi_2(a)\pi_4(a^2), \pi_4(a^2), 0] \), from which we can deduce \(a_4' = -\pi_2(a)^{-1}\pi_4(a^2) \). Similarly from \([0, 1, 0, -a, a_5] \prec [1, 1, -a, a, 0] \), we have \(a_4' = -\pi_2(1)^{-1}\pi_4(a) \). Hence \(-\pi_2(a)^{-1} \times \pi_4(a^2) = -\pi_2(1)^{-1}\pi_4(a) \), which implies \(\pi(a^2) = \pi(a)^2 \).

Lemma 4.13. \(\pi \in \text{Aut}(\mathbb{F}_q) \).

Proof. It suffices to prove \(\pi(1 + a) = 1 + \pi(a) \) for \(a \in \mathbb{F}_q \). It holds trivially when \(a = -1 \). Thus one can assume \(a \neq -1 \). From \([1, 1 + a, -2, 0, 2] \prec [1, a, -2a, 2, 0] \), by the proof of Lemma 4.8 we have

\[
[1, \pi_2(1 + a), -\pi_2(1 + a)\pi_4(2(1 + a)^{-1}), 0, a_5'] \prec [1, \pi_2(a), -\pi_2(a)\pi_4(2), \pi_4(2), 0],
\]

then

\[
-\pi_2(a)\pi_4(2) + \pi_2(1 + a)\pi_4(2) - \pi_2(1 + a)\pi_4(2(1 + a)^{-1}) = 0,
\]
which implies
\[-\pi(a)\pi(2) + \pi(1 + a)\pi(2) - \pi(1 + a)\pi\left(2(1 + a)^{-1}\right) = 0.\]

Therefore \(\pi(1 + a) = 1 + \pi(a).\) \(\square\)

Next we will show that for any vertex \([a_1, a_2, a_3, a_4, a_5],\)
\[
\sigma(\{a_1, a_2, a_3, a_4, a_5\}) = \left[\pi(a_1), k_2\pi(a_2), k_1\pi(a_3), k_1k_2^{-1}\pi(a_4), a'_5\right],
\] (4.11)

where \(k_1 = \pi_2(1)\pi_4(1), k_2 = \pi_2(1)\) and \(a'_5 \in \mathbb{F}_q\) is to be determined. We distinguish the following cases:

(a) \([1, a_2, a_3, a_4, a_5] \in V(O(5, q)).\)

Suppose \(\sigma([1, a_2, a_3, a_4, a_5]) = [1, a'_2, a'_3, a'_4, a'_5].\) By the proof of Lemma 4.8, we have \(a'_2 = \pi_2(a_2) = k_2\pi(a_2), a'_4 = \pi_4(a_4) = k_1k_2^{-1}\pi(a_4)\) and \(a'_3 = -\pi_2(-a_4^{-1})\pi_4(a_4) = k_1\pi(a_3).\) Therefore (4.11) holds.

(b) \([0, 1, a_3, a_4, a_5] \in V(O(5, q)).\)

Let \(\sigma([0, 1, a_3, a_4, a_5]) = [0, 1, a'_3, a'_4, a'_5].\) From \([0, 1, a_3, a_4, a_5] \not\sim [1, 0, 0, -a_3, 0],\) we deduce \(a'_3 = \pi_4(a_3) = k_1k_2^{-1}\pi(a_3).\) For \(a'_4,\) it is enough to assume \(a_4 \neq 0.\) We distinguish \(a_3 = 0\) or not. If \(a_3 \neq 0,\) from \([0, 1, a_3, a_4, a_5] \not\sim [1, -a_3a_4^{-1}, 0, 0, 0],\) we have \([0, 1, a'_3, a'_4, a'_5] \not\sim [1, -\pi_2(a_3a_4^{-1}), 0, 0, 0],\) which implies \(a'_4 = \pi_2(a_3a_4^{-1})^{-1}a'_3 = k_1k_2^{-2}\pi(a_4).\) If \(a_3 = 0,\) from \([0, 1, 0, a_4, a_5] \not\sim [1, a_4, -a_4, 0],\) we have \([0, 1, 0, a'_4, a'_5] \not\sim [1, \pi_2(1), -\pi_2(1)\pi_4(-a_4), \pi_4(-a_4), 0],\) then \(a'_4 = -\pi_2(1)\pi_4(-a_4) = k_1k_2^{-2}\pi(a_4).\) Therefore
\[
\sigma(\{0, 1, a_3, a_4, a_5\}) = [0, 1, k_1k_2^{-1}\pi(a_3), k_1k_2^{-2}\pi(a_4), a'_5] = [0, k_2\pi(1), k_1\pi(a_3), k_1k_2^{-1}\pi(a_4), a'_5].
\]

(c) \([0, 0, 1, a_4, 0] \in V(O(5, q)).\)

Assume \(a_4 \neq 0.\) As the case of \(\nu = 2\) and \(\delta = 0,\) we have \(\sigma([0, 0, 1, a_4, 0]) = [0, 0, 1, -\pi_2(-a_4^{-1}), 0] = [0, 0, 1, k_2^{-1}\pi(a_4), 0] = [0, 0, k_1\pi(1), k_1k_2^{-1}\pi(a_4), 0].\) Hence (4.11) holds.

(d) \([0, 0, 0, 1, 0] \in V(O(5, q)).\) This case is trivial.

Notice that Lemmas 4.6, 4.7 hold also for \(\nu = 2.\) Thus one may conclude that every element of \(E\) is of the form \(\sigma(k_1, k_2, \delta, \pi)\) and the proof of theorem for the case \(\nu = 2\) is complete. Therefore the theorem is proved. \(\square\)

Corollary 4.14. When \(\nu = 1,\) \(|\text{Aut}(O(2 \cdot 1 + 1, q))| = (q + 1)!.\) When \(\nu \geq 2,\) \(|\text{Aut}(O(2\nu + 1, q))| = q^{2\nu} \prod_{i=1}^{\nu} (q^i - 1) \prod_{i=1}^{\nu} (q^i + 1) [\mathbb{F}_q: \mathbb{F}_p].\)

Proof. The proof is similar to that of Corollary 3.7 and, hence, is omitted. \(\square\)

5. Automorphism groups (III): The case \(\delta = 2\)

Theorem 5.1. Let \(\nu \geq 2\) and \(E\) be the subgroup of \(\text{Aut}(O(2\nu + 2, q))\) defined as follows:
\[
E = \{\sigma \in \text{Aut}(O(2\nu + 2, q)) : \sigma([e_i]) = [e_i], \sigma([f_i]) = [f_i], i = 1, \ldots, \nu\}.\]
Then $\text{Aut}(O(2\nu + 2, q)) = PO_{2\nu + 2}(\mathbb{F}_q) \cdot E$. Moreover, E consists of all $\sigma(k_1, \ldots, k_\nu, \pi, x_1, x_2, y_1, y_2)$ which maps any vertex $[a_1, \ldots, a_{2\nu + 2}]$ of $O(2\nu + 2, q)$ to

$$\left[\pi(a_1), k_2 \pi(a_2), \ldots, k_\nu \pi(a_\nu), k_1 \pi(a_{\nu + 1}), k_1 k_2^{-1} \pi(a_{\nu + 2}), \ldots, k_1 k_\nu^{-1} \pi(a_{2\nu}), a'_{2\nu + 1}, a'_{2\nu + 2} \right],$$

(5.1)

where $k_1, \ldots, k_\nu \in \mathbb{F}_q^\times, \pi \in \text{Aut}(\mathbb{F}_q)$, $x_1, x_2, y_1, y_2 \in \mathbb{F}_q$ and satisfying $x_1^2 - z x_2^2 = k_1$, $y_1^2 - z y_2^2 = k_1 \pi(-z)$ and

$$a'_{2\nu + 1} = k_1 (y_2 \pi(a_{2\nu + 2}) + x_2 \pi (a_{2\nu + 2})) / (x_1 y_2 - x_2 y_1),$$

$$a'_{2\nu + 2} = k_1 z^{-1} (y_1 \pi(a_{2\nu + 1}) + x_1 \pi (a_{2\nu + 1})) / (x_1 y_2 - x_2 y_1).$$

Proof. Similar to Theorem 3.3, we can prove $\text{Aut}(O(2\nu + 2, q)) = PO_{2\nu + 2}(\mathbb{F}_q) \cdot E$. It can be readily verified that the map $\sigma(k_1, \ldots, k_\nu, \pi, x_1, x_2, y_1, y_2)$ defined by (5.1) is in E. Conversely, we will show that every element of E is of the form $\sigma(k_1, \ldots, k_\nu, \pi, x_1, x_2, y_1, y_2)$.

Lemma 5.2. If $[a_1, \ldots, a_{2\nu}, a_{2\nu + 1}, a_{2\nu + 2}] \in V(O(2\nu + 2, q))$ and $[a_1, \ldots, a_{2\nu}] \in V(O(2\nu, q))$, then $a_{2\nu + 1} = a_{2\nu + 2} = 0$.

Proof. This is clear from the definition of orthogonal graphs. \(\Box\)

Let $\sigma \in E$. Suppose the image of $[a_1, \ldots, a_{2\nu}, a_{2\nu + 1}, a_{2\nu + 2}]$ under σ is $[b_1, \ldots, b_{2\nu}, b_{2\nu + 1}, b_{2\nu + 2}]$. Then as the cases $\delta = 0$ and $\delta = 1$, we have $a_i \neq 0$ if and only if $b_i \neq 0$, $1 \leq i \leq 2\nu$. Therefore by Lemma 5.2 and the foregoing statement, we have permutations $\pi_i, i = 2, \ldots, \nu, \nu + 2, \ldots, 2\nu$, of \mathbb{F}_q with $\pi_i(0) = 0$ such that

$$\sigma ([e_1] + a_j [e_j]) = [e_1] + \pi_j(a_j) [e_j], \quad 2 \leq j \leq \nu,$$

$$\sigma ([e_1] + a_{\nu + j} [f_j]) = [e_1] + \pi_{\nu + j}(a_{\nu + j}) [f_j], \quad 2 \leq j \leq \nu.$$

In the following, we distinguish the cases: $\nu \geq 3$ and $\nu = 2$.

(i) $\nu \geq 3$. If we take Lemma 5.2 into account, the following lemmas corresponding to Lemmas 3.4–3.6 can be proved in a similar way.

Lemma 5.3. Suppose $[1, a_2, \ldots, a_{2\nu}, a_{2\nu + 1}, a_{2\nu + 2}] \in V(O(2\nu + 2, q))$ and let

$$\sigma ([1, a_2, \ldots, a_{2\nu}, a_{2\nu + 1}, a_{2\nu + 2}]) = [1, a'_{2}, \ldots, a'_{2\nu}, a'_{2\nu + 1}, a'_{2\nu + 2}].$$

Then $a'_{2} = \pi_2(a_2)$ and $a'_{2\nu + j} = \pi_{\nu + j}(a_{\nu + j}), 2 \leq j \leq \nu$.

Lemma 5.4.

(i) $\pi_1(1)^{-1} \pi_1 = \pi_1(1)^{-1} \pi_j = \pi_{\nu + i}(1)^{-1} \pi_{\nu + i} = \pi_{\nu + j}(1)^{-1} \pi_{\nu + j}$, where $2 \leq i, j \leq \nu$.

(ii) For any $a \in \mathbb{F}_q$, $\pi_i(a) \pi_{\nu + i}(1) = \pi_{\nu + i}(a) \pi_i(1) = \pi_j(a) \pi_{\nu + j}(1) = \pi_{\nu + j}(a) \pi_j(1)$, where $2 \leq i, j \leq \nu$. In particular, $\pi_2(1) \pi_{\nu + 2}(1) = \pi_3(1) \pi_{\nu + 3}(1) = \cdots = \pi_\nu(1) \pi_{2\nu}(1)$.
Lemma 5.5. Let \(\pi = \pi_2(1)^{-1}\pi_2 \), then \(\pi \) is an automorphism of \(\mathbb{F}_q \).

Similar to the proof of Theorem 3.3, any vertex \([a_1, \ldots, a_{2v}, a_{2v+1}, a_{2v+2}] \in V(O(2v + 2, q)) \), \(v \geq 2 \), is mapped to

\[
\{ (a_1\pi(a_1), k_2\pi(a_2), \ldots, k_v\pi(a_v), k_1\pi(a_{v+1}), k_1k_2^{-1}\pi(a_{v+2}), \ldots, k_1k_v^{-1}\pi(a_{2v}), a'_{2v+1}, a'_{2v+2}) \},
\]

under \(\sigma \), where \(k_1 = \pi_2(1)\pi_2^{-1}(1) \), \(k_2 = \pi_2(1), \ldots, k_v = \pi_v(1) \) and \(a'_{2v+1} = a_{2v+1} - za_{2v+2} \). Since \([a_1, \ldots, a_{2v}, a_{2v+1}, a_{2v+2}] \in V(O(2v + 2, q)) \), we have

\[
2(a_1a_{v+1} + \cdots + a_va_{2v}) + a_{2v+1}^2 - za_{2v+2}^2 = 0,
\]

\[
2k_1(2(a_1\pi(a_1) + \cdots + \pi(a_v)\pi(a_{2v})) + a'_{2v+1}^2 - za'_{2v+2}^2 = 0.
\]

Then \(a'_{2v+1} = za'_{2v+2} = k_1(2a_{2v+1} - za_{2v+2}) \). In particular, when \((a_{2v+1}, a_{2v+2}) = (1, 0) \) or \((0, 1) \), we have the following lemmas:

Lemma 5.6. Suppose \([a_1, \ldots, a_{2v}, 1, 0] \in V(O(2v + 2, q)) \) and

\[
\sigma([a_1, \ldots, a_{2v}, 1, 0]) = [\pi(a_1), \ldots, k_1k_v^{-1}\pi(a_{2v}), x_1, x_2],
\]

where \((x_1, x_2)\) is one of the solutions of the equation \(X_1^2 - zX_2^2 = k_1 \). Then for any vertex \([b_1, \ldots, b_{2v}, 1, 0] \) of \(O(2v + 2, q) \), we have

\[
\sigma([b_1, \ldots, b_{2v}, 1, 0]) = [\pi(b_1), \ldots, k_1k_v^{-1}\pi(b_{2v}), x_1, x_2].
\]

Proof. Let \([b_1, \ldots, b_{2v}, 1, 0] \in V(O(2v + 2, q)) \) and suppose

\[
\sigma([b_1, \ldots, b_{2v}, 1, 0]) = [\pi(b_1), \ldots, k_1k_v^{-1}\pi(b_{2v}), y_1, y_2],
\]

where \((y_1, y_2)\) is one of the solutions of the equation \(X_1^2 - zX_2^2 = k_1 \). We will show \((y_1, y_2) = (x_1, x_2)\).

If \([b_1, \ldots, b_{2v}, 1, 0] \not= [a_1, \ldots, a_{2v}, 1, 0] \), then \([\pi(b_1), \ldots, k_1k_v^{-1}\pi(b_{2v}), y_1, y_2] \not= [\pi(a_1), \ldots, k_1k_v^{-1}\pi(a_{2v}), x_1, x_2] \). From these non-adjacent relations, we deduce that \(b_1a_{v+1} + \cdots + b_{2v}a_v + 1 = 0 \) and \(k_1\pi(b_1a_{v+1} + \cdots + b_{2v}a_v) + x_1y_1 - zx_2y_2 = 0 \), respectively. Then \(x_1y_1 - zx_2y_2 = k_1 \). But \(x_1^2 - x_2^2 = k_1 \) and \(y_1^2 - y_2^2 = k_1 \), therefore \((x_1 - y_1)^2 - z(x_2 - y_2)^2 = 0 \). Since \(z \) is a fixed non-square element, \(x_1 = y_1 \) and \(x_2 = y_2 \).

It remains to show that the complementary graph \(\overline{H}_2 \) of the induced subgraph \(H_2 \) of \(O(2v + 2, q) \) with vertex set \(V_2 = [[c_1, \ldots, c_{2v}, 1, 0] \in V(O(2v + 2, q))] \) is connected. It is clear that \(\overline{H}_2 \) is isomorphic to the graph \(\overline{H}_1 \) in Lemma 4.7. Since \(\overline{H}_1 \) is connected, \(\overline{H}_2 \) is connected, too. \(\Box \)

Lemma 5.7. Suppose \([a_1, \ldots, a_{2v}, 0, 1] \in V(O(2v + 2, q)) \) and

\[
\sigma([a_1, \ldots, a_{2v}, 0, 1]) = [\pi(a_1), \ldots, k_1k_v^{-1}\pi(a_{2v}), y_1, y_2],
\]
where \((y_1, y_2)\) is one of the solutions of the equation \(X_1^2 - zX_2^2 = k_1\pi(-z)\). Then for any vertex \([b_1, \ldots, b_{2v}, 0, 1]\) of \(O(2v + 2, q)\), we have

\[
\sigma([b_1, \ldots, b_{2v}, 0, 1]) = [\pi(b_1), \ldots, k_1k_v^{-1}\pi(b_{2v}), y_1, y_2].
\]

Proof. The proof is similar to that of Lemma 5.6 and is omitted. \(\square\)

Now assume that for every vertex \([a_1, \ldots, a_{2v}, 1, 0]\) of \(O(2v + 2, q)\),

\[
\sigma([a_1, \ldots, a_{2v}, 1, 0]) = [\pi(a_1), \ldots, k_1k_v^{-1}\pi(a_{2v}), x_1, x_2],
\]

where \((x_1, x_2)\) is one of the solutions of the equation \(X_1^2 - zX_2^2 = k_1\), and for every vertex \([b_1, \ldots, b_{2v}, 0, 1]\) of \(O(2v + 2, q)\),

\[
\sigma([a_1, \ldots, a_{2v}, 0, 1]) = [\pi(a_1), \ldots, k_1k_v^{-1}\pi(a_{2v}), y_1, y_2],
\]

where \((y_1, y_2)\) is one of the solutions of the equation \(X_1^2 - zX_2^2 = k_1\pi(-z)\). Clearly, \(x_1^2 - zx_2^2 = k_1\) and \(y_1^2 - zy_2^2 = k_1\pi(-z)\). Moreover, we have

Lemma 5.8.

(i) \(x_1y_1 = x_2y_2z\).

(ii) \(x_1y_2 - x_2y_1 \neq 0\).

Proof. (i) Choose \([a_1, \ldots, a_{2v}, 1, 0]\) and \([b_1, \ldots, b_{2v}, 0, 1]\) \(\in V(O(2v + 2, q))\) such that they are not adjacent, that is, \(a_1b_{v+1} + \cdots + a_{2v}b_v = 0\). Since \(\sigma \in E\),

\[
[\pi(a_1), \ldots, k_1k_v^{-1}\pi(a_{2v}), x_1, x_2] \not\sim [\pi(b_1), \ldots, k_1k_v^{-1}\pi(b_{2v}), y_1, y_2],
\]

that is, \(k_1\pi(a_1b_{v+1} + \cdots + a_{2v}b_v) + x_1y_1 - zx_2y_2 = 0\). Hence \(x_1y_1 - x_2y_2z = 0\).

(ii) Since

\[
k_1^2\pi(-z) = (x_1^2 - zx_2^2)(y_1^2 - zy_2^2) = (x_1y_1 - zx_2y_2)^2 - z(x_1y_2 - x_2y_1)^2 = -z(x_1y_2 - x_2y_1)^2,
\]

we have \(x_1y_2 - x_2y_1 \neq 0\). \(\square\)

Finally, we will show \(\sigma = \sigma(\pi, k_1, k_v, \ldots, k_{2v}, x_1, x_2, y_1, y_2)\). Let \([\alpha] = [a_1, \ldots, a_{2v}, a_{2v+1}, a_{2v+2}] \in V(O(2v + 2, q))\). Suppose \(\sigma([\alpha]) = [\pi(a_1), \ldots, k_1k_v^{-1}\pi(a_{2v}), a'_{2v+1}, a'_{2v+2}]\). Choose \([\gamma_1] = [c_1, \ldots, c_{2v}, 1, 0] \in V(O(2v + 2, q))\) such that \([\gamma_1] \not\sim [\alpha]\), then \(a_1c_{v+1} + \cdots + a_{2v}c_v + a_{2v+1} = 0\). Since \(\sigma \in E\), we have \(\sigma([\gamma_1]) \not\sim \sigma([\alpha])\), that is, \(k_1\pi(a_1c_{v+1} + \cdots + a_{2v}c_v) + x_1a'_{2v+1} - zx_2a'_{2v+2} = 0\). Hence we have

\[
x_1a'_{2v+1} - zx_2a'_{2v+2} = k_1\pi(a_{2v+1}). \tag{5.2}
\]

Choose \([\gamma_2] = [d_1, \ldots, d_{2v}, 0, 1] \in V(O(2v + 2, q))\), such that \([\gamma_2] \not\sim [\alpha]\), then \(a_1d_{v+1} + \cdots + a_{2v}d_v - za_{2v+2} = 0\). Since \(\sigma \in E\), we have \(\sigma([\gamma_2]) \not\sim \sigma([\alpha])\), then \(k_1\pi(a_1d_{v+1} + \cdots + a_{2v}d_v) + y_1a'_{2v+1} - zy_2a'_{2v+2} = 0\). Hence we have

\[
y_1a'_{2v+1} - zy_2a'_{2v+2} = -k_1\pi(za_{2v+2}). \tag{5.3}
\]
Solving (5.2) and (5.3), we obtain

\[a'_{2v+1} = k_1(y_2\pi(a_{2v+1}) + x_2\pi(za_{2v+2}))/ (x_1y_2 - x_2y_1), \]

\[a'_{2v+2} = k_1z^{-1}(y_1\pi(a_{2v+1}) + x_1\pi(za_{2v+2}))/ (x_1y_2 - x_2y_1). \]

Hence the proof of the theorem for the case \(v \geq 3 \) is complete.

(ii) \(v = 2 \). Now we have only permutations \(\pi_2 \) and \(\pi_4 \).

Lemma 5.9.

(i) \(\pi_2(1)^{-1}\pi_2 = \pi_4(1)^{-1}\pi_4 \).

(ii) Let \(\pi = \pi_2(1)^{-1}\pi_2 \). Then \(\pi(ab) = \pi(a)\pi(b) \), \(\pi(-a) = -\pi(a) \) for \(a, b \in \mathbb{F}_q \).

Proof. Let \([1, a_2, a_3, a_4, a_5, a_6] \in V(O(2 \cdot 2 + 2, q)) \). Suppose its image under \(\sigma \) is \([1, a'_2, a'_3, a'_4, a'_5, a'_6] \). If \(a_2 \neq 0 \), from \([1, a_2, a_3, a_4, a_5, a_6] \not\sim [0, 0, 1, -a_2^{-1}, 0, 0] \), we deduce \([1, a'_2, a'_3, a'_4, a'_5, a'_6] \not\sim [0, 0, 1, -\pi_2(a_2)^{-1}, 0, 0] \), which implies \(a'_2 = \pi_2(a_2) \). If \(a_2 = 0 \), then \(a'_2 = 0 \) and the formula \(a'_2 = \pi_2(a_2) \) holds trivially. Moreover, from \([1, a_2, a_3, a_4, a_5, a_6] \not\sim [0, 1, -a_4, 0, 0, 0] \), we deduce \([1, a'_2, a'_3, a'_4, a'_5, a'_6] \not\sim [0, 1, -\pi_4(a_4), 0, 0, 0] \), hence \(a'_4 = \pi_4(a_4) \).

Next let \(a_2, a_4 \in \mathbb{F}_q^* \) and we will calculate \(a'_3 \) in two ways. From \([1, a_2, a_3, a_4, a_5, a_6] \not\sim [1, -a_4^{-1}a_3, 0, 0, 0, 0] \), we have \(a'_3 = -\pi_2(-a_4^{-1}a_3)\pi_4(a_4) \). Similarly, from \([1, a_2, a_3, a_4, a_5, a_6] \not\sim [0, 0, -a_2^{-1}a_3, 0, 0, 0] \), we have \(a'_3 = -\pi_2(a_2)\pi_4(-a_2^{-1}a_3) \). Hence

\[\pi_2(-a_4^{-1}a_3)\pi_4(a_4) = \pi_2(a_2)\pi_4(-a_2^{-1}a_3) \] \hspace{1cm} (5.4)

where \(a_2, a_4 \in \mathbb{F}_q^* \) and \(a_3 \in \mathbb{F}_q \).

(i) Substituting \(a_2 = a_4 = 1 \) into (5.4), we have \(\pi_2(-a_3)\pi_4(1) = \pi_2(1)\pi_4(-a_3) \) for \(a_3 \in \mathbb{F}_q \).

Hence \(\pi_2(1)^{-1}\pi_2 = \pi_4(1)^{-1}\pi_4 \).

(ii) Let \(\pi = \pi_2(1)^{-1}\pi_2 \). Substituting \(a_3 = -a_4 \) into (5.4), we have

\[\pi_2(1)\pi_4(a_4) = \pi_2(a_2)\pi_4(a_2^{-1}a_4). \] \hspace{1cm} (5.5)

Then substituting \(a_4 = 1 \) into (5.5), we have \(\pi_2(1)\pi_4(1) = \pi_2(a_2)\pi_4(a_2^{-1}) \). Hence

\[\pi(a_2^{-1}) = \pi_4(1)^{-1}\pi_4(a_2^{-1}) = \pi_2(1)\pi_2(a_2)^{-1} = \pi(a_2)^{-1}. \] \hspace{1cm} (5.6)

From (5.5) and (5.6), we deduce that \(\pi(a_2a_4) = \pi(a_2)\pi(a_4) \). Therefore \(\pi(ab) = \pi(a)\pi(b) \), for \(a, b \in \mathbb{F}_q \). In particular, \(1 = \pi(1) = \pi(-1)^2 \), then \(\pi(-1) = -1 \). Hence for \(a \in \mathbb{F}_q \), \(\pi(-a) = \pi(-1)\pi(a) = -\pi(a) \). \(\square \)

Note that \([a_1, a_2, a_3, a_4, a_5] \in V(O(5, q)) \) if and only if \([a_1, a_2, a_3, a_4, a_5, 0] \in V(O(2 \cdot 2 + 2, q)) \). Parallel to the case \(v = 2, \delta = 1 \), we have \(\pi \in \text{Aut}(\mathbb{F}_q) \) and

\[\sigma([a_1, a_2, a_3, a_4, a_5, a_6]) = [\pi(a_1), k_2\pi(a_2), k_1\pi(a_3), k_1k_2^{-1}\pi(a_4), a'_5, a'_6], \] \hspace{1cm} (5.7)

where \(k_1 = \pi_2(1)\pi_4(1), k_2 = \pi_2(1) \) and \(a'_5^2 - za'_6^2 = k_1\pi(a_5^2 - za_6^2) \).
Notice that Lemmas 5.6, 5.7 hold also for \(\nu = 2 \). Thus one may conclude that every element of \(E \) is of the form \(\sigma(k_1, k_2, x_1, x_2, y_1, y_2, \pi) \) and the proof of theorem for the case \(\nu = 2 \) is complete. Therefore the theorem is proved.

Corollary 5.10. When \(\nu = 1 \), \(|\text{Aut}(O(2 \cdot 1 + 2, q))| = (q^2 + 1)! \). When \(\nu \geq 2 \), \(|\text{Aut}(O(2\nu + 2, q))| = q^{\nu(\nu + 1)} \prod_{i=1}^{\nu} (q^i - 1) \prod_{i=1}^{\nu+1} (q^i + 1)[F_q : F_p] \).

Proof. The proof is similar to that of Corollary 3.7 and, hence, is omitted.

References