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We have previously identified in mitochondria two truncated forms of the T3 nuclear receptor TRa1,
with molecular weights of 43kDa (p43) and 28kDa (p28) respectively located in the matrix and in the
inner membrane. Previously, we have demonstrated that p43 stimulates mitochondrial transcrip-
tion and protein synthesis in the presence of T3. Here we report that p28 is targeted into the orga-
nelle in a T3-dependent manner and displays an affinity for T3 higher than the nuclear receptor. We
tried to generate mice overexpressing p28 using the human a-skeletal actin promoter, however we
found an early embryonic lethality that was probably linked to a transient expression of p28 in tro-
phoblast giant cells. This could be partly explained by the observation that overexpression of p28 in
human fibroblasts induced alterations of mitochondrial physiology.
� 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
1. Introduction

Triiodothyronine (T3) exerts a pleiotropic effect on develop-
ment and on adult homeostasis. T3 action is mediated by ligand-
inducible transcription factors that are members of the steroid/
thyroid hormone receptor superfamily. There are two types of thy-
roid hormone receptor (T3Rs) encoded by TRa and TRb genes
(NR1A1 and NR1A2 according to nuclear hormone receptor
nomenclature) [1,2]. Both TR loci are complex and numerous TR
proteins are produced by alternative promoter usage, alternative
splicing and the use of internal initiation codon. We have previ-
ously identified in mitochondria two truncated forms of the
nuclear receptor TRa1, with molecular weights of 43kDa (p43)
and 28kDa (p28) respectively located in the matrix and in the inner
membrane of mitochondria [3,4].

p43 is a ubiquitously expressed mitochondrial T3 receptor
which stimulates mitochondrial transcription and protein synthe-
sis in the presence of T3 [5]. In myoblast, p43 overexpression stim-
ulates mitochondrial activity and potentiates their terminal
differentiation [6-8]. Recently, we have generated mice lacking
specifically p43 [9] or mice overexpressing p43 in skeletal muscle
[10]. We have shown that p43 affects muscle mass and the meta-
bolic and contractile features of myofibers [10–12]. In addition, we
also found that p43 depletion induced a major defect in insulin
secretion and a loss of glucose-stimulated insulin secretion [9],
and that these mice became glucose intolerant and insulin-resis-
tant during aging [13]. These data demonstrate clearly the physio-
logical importance of the mitochondrial T3 receptor p43.

Apart for its localization in the mitochondrial inner membrane
[3,4] we know little about the other mitochondrial T3 receptor p28.
Here we report that this protein is targeted into the organelle in a
T3-dependent manner. In addition, binding experiments indicate
that p28 displays an affinityfor triiodothyronine higher than p43
and the T3 nuclear receptor. We tried to generate mice over-
expressing p28 in skeletal muscle using the human a-skeletal actin
promoter. However we found an early embryonic lethality linked
to a transient expression of p28 in the developing placenta. This
could be partly explained by the observation that overexpression
of p28 in human fibroblasts induced alterations of mitochondrial
physiology.

2. Materials and methods

2.1. Mitochondrial import

Import experiments were performed as previously described
[14] using highly purified isolated rat liver mitochondria. Mito-
chondria were incubated for 45 min in the presence of 5% rabbit
reticulocyte lysate containing [35S]-methionine-p28 or [35S]-
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methionine-RXRa (Promega Kit). After import experiments, mito-
chondria were treated with proteinase K to avoid contamination
by non-imported proteins as previously described [5]. 10% of the
amount of reticulocyte lysate added to mitochondria for import
experiments was loaded in the control lane.

2.2. T3 binding assays

p28 affinity for T3 (Ka) was measured in saturation experiments
using [125I]-T3 (3.3 mCi/lg; NEN Life Science Products) according
to Daadi et al. [15]. Non-specific binding was assessed in simulta-
neous assays in which 1 lM of cold T3 was added. Bound and free
T3 were separated using Sephadex G-50 column.

2.3. Transgene construct

The mouse p28 coding sequence was amplified using the fol-
lowing primers: 50mp28, AGG ATC CAG GAG GAG ATG ATT CGC
TCA CT; 30mcea1250, AAG ATC TGC CGC CTG AGG CTT TAG A,
and cloned in a pGEM-T vector. The 1.0 kb EcoRI fragment from
pGEM-mp28 was inserted in the pGS-HSA plasmid (kindly pro-
vided by Melki) [16] containing the 2.2 kb fragment of the human
a-skeletal actin promoter (HSA) [17,18], a beta globin intron and
SV40 polyadenylation site. The NotI fragment of the pGS-HSA-
mp28 plasmid was inserted in pBS3isol plasmid containing three
copies the 50HS4 fragment from the chicken b-Globin gene locus
(kindly provided by Houdebine) [19].

2.4. Ethics statement

All animal experiments were performed according to European
directives (86/609/CEE). Our institution guidelines for the care and
use of laboratory animals were respected. Our animal facility is
approved by the Departmental Veterinary Services (No. C34-172-
10) and our Ministry of Research (No. 4962). In addition the corre-
sponding author also has an authorization to experiment on living
vertebrates certified by the departmental veterinary services (No.
34356). The experiments described in this manuscript did not need
a special authorization from our ethics committee other than those
listed above.

2.5. Generation of founders and screening

The transgene was excised from pBSisol/HSA-mp28/2isol on a
KpnI fragment. DNA was micro-injected into fertilized oocytes of
F1 mice (C57BL/6JxCBA). Screening of founders mice and their off-
spring for stable transmission through the germline was done by
PCR and/or Southern-Blotting. DNA was extracted from tail biopsy
in lysis buffer (100 mM Tris–HCl pH7.5, 1 mM EDTA, 0.2% SDS,
200 mM NaCl, 100 lg proteinase K) overnight at 56 �C followed
by phenol extraction, isopropanol precipitation and resuspension
in H2O. A 586 bp fragment corresponding to the endogenous c-
erb A a locus was amplified using the following primers:
50mp28, AGG ATC CAG GAG GAG ATG ATT CGC TCA CT; 30intron
6, CTT GGT GTT GGG TAA CTT AGT GCA. A 344 bp fragment corre-
sponding to the transgene was amplified using the following prim-
ers: 50mp28, AGG ATC CAG GAG GAG ATG ATT CGC TCA CT;
30ceaE7, CTC GGA GAA CAT GGG CAG TTT T. The PCR was per-
formed in Promega reaction buffer containing 400 ng of genomic
DNA, 1.5 mM MgCl2, 0.3 lM of each primer, 0.3 mM of each dNTP
and 1.25u of TAQ polymerase in a final volume of 25 ll. Thirty-five
cycles were performed with an annealing temperature of 56 �C. For
Southern-Blot analysis, 10 lg of total genomic DNA was digested
using EcoRI restriction enzyme and transferred to a Nytran super-
charge membrane (Schleicher & Schuell) following standard
procedures.
2.6. Histological analysis

After euthanasia of mothers by cervical dislocation, mouse
embryos were collected at E6.5, embedded with OCT matrix, and
immediately frozen in isopentane cooled in liquid nitrogen. Ten
lm thick serial sections were obtained and processed for immuno-
histochemical staining with RHTII antibody raised against thyroid
hormone receptor. Briefly, the embryon sections were incubated
with the antibody for 1 h at 37 �C. After washing with phos-
phate-buffered saline, the second antibody, rabbit anti-mouse
IgG labeled with rhodamine (Fluoprobes) diluted 1:50 v/v in phos-
phate-buffered saline, was applied for 30 min at 37 �C. After fur-
ther washing, the sections were fixed with moviol. Nuclei were
stained with Hoechst 33258 (1 lg/ml).

2.7. Cell culture

Human dermal fibroblasts were grown in DMEM supplemented
with gentamicin (100 IU/ml) and FCS (10%) at 37 �C and 5% CO2 as
previously described [20]. Human fibroblasts constitutively
expressing p28 were obtained by stable transfection of the pIRV-
p28 expression vector. Control fibroblasts were obtained by stable
transfection of the pIRV ‘‘empty’’ vector. Ten micrograms of each
plasmid carrying G418 resistance were transfected using the cal-
cium phosphate procedure 24 h after plating. The medium was
changed 24 h later after PBS washes, and amplification was done
after 10 days in the presence of G418.

2.8. Measurement of cytochrome oxidase activity

Cells plated in coated dishes were harvested in 1 ml PBS and
then centrifuged for 5 min at 12000�g. For enzymatic activity
determination, the pellet was resuspended in 100 lL lysis buffer
[10 mmol/L Tris (pH 7.8)] and lysed by three cycles of freezing/
defreezing. Total proteins were measured on an aliquot using the
Bio-Rad protein assay kit (Bio-Rad, Hercules, CA). Cytochrome oxi-
dase was measured as specific activity [21].

2.9. Cytoimmunofluorescence studies

Mitochondrial morphology was assessed by cytoimmunofluo-
rescence. After methanol fixation and appropriate washings, cells
were stained with a mouse anti-human mitochondria monoclonal
antibody (MAB1273, Chemicon International, Temecula, CA) and
then incubated with a rhodamine-conjugated antibody raised
against mouse immunoglobulins.

2.10. Apoptosis

Quantification of cell apoptosis was measured using Annexin V
FITC (BD Bioscience), which utilizes Annexin V-PE to detect the
phosphatidylserine on the external membrane of apoptotic cells.
Briefly, 100 ll of 106 cells was suspended in a mixture of 100 ll
Annexin V-PE. After incubation at room temperature for 15 min,
samples were analyzed by flow cytometry. Results are expressed
as percentage of apoptotic cells.

3. Results

3.1. p28 displays a binding affinity for T3 higher than p43 and the
nuclear receptor TRa1

We have previously shown that p43 displays a binding affinity
for T3 similar to that of the nuclear receptor TRa1 [5]. In order to
define the p28 binding affinity for T3 we performed saturation
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Fig. 1. Binding affinity of p28 for triiodothyronine. (A) Saturation experiments were
performed with p28 synthesized in rabbit reticulocyte lysate and labeled with
[125I]-T3. (B) The affinity constant (Ka) was estimated by using a Scatchard
linearization of saturation experiments. Data are the mean ± S.E.M. of three
separate experiments.
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experiments using [125I]-T3. After Scatchard Analysis, we found
that p28 displayed a strong affinity (Ka = 3.3 � 1010 M�1) for the
hormone (Fig. 1), higher than p43 and TRa1 (respectively
Ka = 2 � 109 and 3 � 109 M�1) [5,22].
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3.2. p28 is imported into mitochondria in a T3 dependent manner

To understand how p28 is addressed to mitochondria, we stud-
ied the import of [35S]-p28 in isolated rat liver mitochondria as
previously described by our team [5,23,24]. In these experiments,
RXRa which is cleaved during import was used as control [23].
At the end of the import experiment, the reaction mixture was
treated with proteinase K to rule out contamination by non-
imported proteins. In these conditions, we found that p28 is pro-
tected against proteolytic activity inside the organelles only in
the presence of T3 (Fig. 2A, lane 3) as RXRa (Fig. 2C, lane 3). The
observation that, following import, p28 and RXRa sensitivity to
proteinase K is restored after solubilization of mitochondrial mem-
branes by a detergent treatment (Fig. 2B, lane 3 and Fig. 3C, lane 4),
demonstrated that protection of p28 and RXRa proteins to the pep-
tidase enzyme is provided by mitochondrial membranes. There-
fore, these data establish that p28 is translocated into
mitochondria in a T3 dependent manner.

3.3. p28 overexpression induced early embryonic lethality

In order to assess the importance of p28 in muscle development
and of mitochondrial activity, we planed to generate mice over-
expressing this mitochondrial T3 binding protein under control
of the 2.2-kb human a-skeletal actin promoter (HSA) flanked by
chicken b-globin 50HS4 insulator (Fig. 3A) as was previously done
with the p43 mitochondrial T3 receptor [10]. The transgene con-
struct was micro-injected into fertilized oocytes of F1 mice
(C57BL/6JxCBA) and viable pups were screened by Southern-Blot
and PCR (Fig. 3B and C). 26 mosaic p28-Tg founders mice were
obtained (15 males and 11 females).

Mosaic p28-Tg founders mice were crossed to normal C57BL/6
mice to generate transgenic animals. Unfortunately, no p28-Tg
pups were identified in 153 litters born comprising 1173 pups,
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Fig. 3. Generation of transgenic founders mice. (A) Schematic representation of the construct used for microinjection of [C57BL/6 x CBA] F1 fertilized oocytes. HSA: human a-
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Table 1
Distribution of viable pups/litter resulting from matings of p28-Tg founders mice.

Number of viable pups/litter Number of founders

<6,5 7
6,5–7 3
7–7,5 3
7,5–8 0
8–8,5 5
8,5–9 4
>9 h 4

Genotype

Age N=   +/+ Tg

E7-E8.5 55 40 15

E9.5-E12.5 91 91 0

A

p28-Tg

WT

B

Fig. 4. p28 overexpression induced early embryonic lethality. (A) Genotype
analysis of embryos with different gestational ages; (B) Picture showing a wild-
type and a transgenic embryos at E8.5.
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suggesting an embryonic lethality. Consistent with this possibility
we found that some founder mice had a smaller number of young
per litter (n < 6.5) compared to the normal average (n = 8) (Table 1).
Three males of these founder mice were crossed to normal C57BL/6
mice and embryos were recovered at different stages of gestation
and genotyped by PCR. Interestingly, we found transgenic embryos
with gestational ages <E8.5 (15/55) (Fig. 4A). However, p28-Tg
embryos with gestational ages PE9.5 were not identified (0/91)
(Fig. 4A). Examination of embryos of various gestational ages
revealed that p28-Tg embryos appeared to develop normally until
E8.5, after which development is stopped, followed by degenera-
tion (Fig. 4B).

3.4. p28 overexpression in developing placenta

This early embryonic lethality suggested that the transgene
could be expressed in extra-muscular tissue. In agreement with
this possibility Clausen et al. [25] reported that a-skeletal actin is
transiently expressed in placenta. This observation led us to inves-
tigate p28 overexpression in this tissue. To this end, we performed
immunofluorescence studies in transgenic and control embryos
sections from E8 gestational stage using an antibody raised against
thyroid hormone receptor TRa1. This antibody is not specific to
p28 and recognizes p43 and TRa1. As expected, we found that pla-
centa from transgenic embryos overexpressed a TRa1 protein. In
particular, the protein was expressed in trophoblast giant cells,
which are polyploid cells, and presented a punctiform network like
mitochondria (Fig. 5). However, the protein was not overexpressed
in other embryonic tissues (Data not shown).

3.5. Mitochondrial physiology was affected by p28 overexpression in
human fibroblast

To assess the possible influence of p28 on mitochondrial phys-
iology, we stably transfected the protein in human fibroblasts as
previously described for p43 [20]. As attested by Western blot,
two clones with distinct levels of p28 were obtained (Fig. 6A). Fur-
ther experiments were conducted using the clone 2 which showed
a higher level of p28. Cytoimmunofluorescence studies performed
using an antibody raised against mitochondria, revealed a pro-
found alteration of the mitochondrial morphologies in p28 over-
expressing cells in comparison to control cells (Fig. 6B). Wild-
type fibroblasts were characterized by a mitochondrial network
of extended tubules distributed throughout the cytoplasm with
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only a few rounded mitochondria present (Fig. 6B). In contrast, in
fibroblasts overexpressing p28, we observed a strong accumulation
of rounded mitochondria and only a few significant tubules were
detected (Fig. 6B). In addition, in these cells, we found a strong
inhibition of cytochrome oxidase activity (complex IV) in fibro-
blasts overexpressing p28 (�68%, P < 0.001) (Fig. 6C). Finally, to
determine whether p28 could influence apoptosis, the Annexin
V-FITC detection kit was used. We found that the extent of apopto-
sis was very low and not significantly affected by p28 overexpres-
sion (Fig. 6D).

4. Discussion

According to Bigler et al. [26], p28 is synthesized by the use of
an internal AUG of the TRa1 messenger. In contrast to p43 and the
nuclear receptor TRa1, p28 lacks the DNA binding domain of these
receptors. We observed that the binding affinity of p28 for T3 was
higher than for p43 and TRa1 [5,22]. In addition, this affinity is
identical to that previously found for specific T3 binding sites local-
ized in the inner mitochondrial membranes [27,28]. This suggests
that p28 probably corresponds to the specific T3 binding sites char-
acterized by these authors. Moreover, these results also suggest
that the amino-terminal deletion occurring in p28 increases the
T3-binding activity of the protein.

Import experiments using isolated mitochondria revealed that
p28 like p43 is targeted to mitochondria. However, in contrast to
p43, p28 is imported into the organelle in a T3 dependent manner.
This data and the difference in their localization in the mitochon-
dria suggest that p28 and p43 probably use distinct import path-
ways. In addition, this T3-dependent localization raises the
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question of whether the hormone is important for the function of
p28, or if the hormone is only required for the import of the protein
in the mitochondrial membrane.

If T3 is often considered as the major active iodothyronine,
accumulating evidence suggests that other iodothyronines such
as 3,5-diiodothyronine (T2) could have biological relevance. In par-
ticular, T2 is able to stimulate mitochondrial activities [29,30] and
specific binding sites for T2 have been described in rat liver mito-
chondria [31]. In addition, these authors have shown that T2 could
interact with the cytochrome c complex [30]. The data associated
with the mitochondrial inner membrane localization of p28 sug-
gest that p28 could also interact with this thyroid hormones deriv-
ative. However, the binding affinity of p28 for T2 remains to be
elucidated as well as whether or not T2 has a physiological
function.

To directly assess in vivo the role of p28, we tried to generate
transgenic mice expressing p28 under the control of the HSA mus-
cle specific promoter [16,17] flanked by chicken b-globin 50HS4
insulator. Insulators are used to reduce variation between founder
transgenic mice and to avoid having mice that fail to transmit the
transgene to their progeny [32]. Using the same strategy we have
previously generated several transgenic lines with various levels
of p43 overexpression (2-fold to 8-fold) [10]. Unfortunately, in this
study despite the obtention of 26 chimeric p28-Tg founders mice,
the birth of 153 litters and 1153 pups, no viable p28-Tg mice were
obtained, suggesting an embryonic lethality. Because the probabil-
ity that all p28 founders mice only allowed very high levels of p28
expression in progeny was clearly unlikely, we excluded the possi-
bility that the embryonic lethality observed was an artefact linked
to very high levels of p28 overexpression.

One possibility was that the very high T3 binding affinity of p28
could result in an early lethality caused by a T3 sequestration by
p28. However, we excluded this possibility because if insufficient
T3 levels during pregnancy in humans results in intellectual
impairments, growth retardation, neonatal hypothyroidism, and
an increase of pregnancy loss and infant mortality, hypothyroidism
has never been considered as inducing a systematic embryonic
lethality as observed in our study.

Examination of embryos revealed interesting data. First, we
found numerous transgenic embryos with gestational ages <E8.5.
Moreover, at this stage transgenic embryos and control embryos
could not be morphologically distinguished before E8.5. At E8.5
development of transgenic embryos was stopped followed by
degeneration thus explaining why embryos with gestational ages
PE9.5 were not identified.

Localization of p28 overexpression in E7.5 placentas revealed
that the protein was highly expressed in trophoblast giant cells.
Unfortunately, we cannot show pictures demonstrating the co-
localization of p28 in the mitochondria of trophoblast cells because
we no longer have the transgenic embryos sections. However, in
trophoblast giant cells the protein was in a punctiform network
like mitochondria and clearly not localized in the nucleus or at
plasma membrane. Trophoblast giant cells are polyploid cells
which are the first cells to differentiate from the trophoectoderm,
but they may also derive from trophoblasts and spongiotropho-
blasts via endoreplication [33], a process often associated with
highly metabolically active cells [34]. Trophoblast giant cells
invade into the uterine wall, establishing a receptive environment
for development of a functional maternal-fetal interface via elabo-
ration of paracrine factors including VEGF, metalloproteinases,
hormones and cytokines [35,36]. Thus, viable trophoblast giant
cells through their role in the diffusion of nutrients and oxygen
between maternal and fetal blood and the production of different
growth hormones are essential for embryo implantation and pla-
cental development [35]. By consequence, the early embryonic
lethality induced by p28 may reflect a giant cells deficiency.
Because of their high metabolic rate, trophoblast giant cells may
be particularly vulnerable to perturbations in mitochondrial
dynamics and in respiratory chain activity. Our data obtained on
fibroblasts showing that p28 overexpression induced a strong
decrease of cytochrome c oxidase activity and an alteration of
mitochondrial network, suggest that the embryonic lethality could
be directly linked to alterations of mitochondrial physiology in tro-
phoblast giant cells.

Very recently, in osteocytes, a TRa1 protein, produced from
internal translational start codon (met 150) as p28, was found to
be located at the plasma membrane level and activate kinase cas-
cades to regulate cell survival and proliferation [37]. In addition,
they found that the palmitoylation of this TRa protein is strictly
required for the plasma membrane localization. This report sug-
gests that TRa, as others receptors belonging to the steroid recep-
tor superfamily (Estrogens (ER), androgens (AR), and progesterone
receptors (PR)), exerts rapid, non-genomic effects through mem-
brane-bound receptors (For review: [38]) in a palmitoylation
dependent fashion. Interestingly, a recent study using a transgenic
mouse with a point mutation of the palmitoylation site of ERa
(C451A-ERa) to obtain membrane-specific loss of function of
ERa, demonstrate that palmitoylation of ERa, which is best known
to date, is tissue-specific and regulates membrane versus nuclear
actions in vivo [39]. In particular, in this study the authors show
that E2 action in the uterus was preserved in C451A-ERa mice sug-
gesting that palmitoylation of proteins belonging to nuclear recep-
tor family does not occur in this tissue. Thus probably because
DHHC-7 and -21, two palmitoylacyltransferase involved in the
endogenous ER, PR, and AR palmitoylation [40] are not expressed
in this tissue. Our data and the study of Kalyanaraman and co-
workers [37] suggest that p28 is located at the mitochondrial level
or sometimes at the plasma membrane in tissues where palmitoy-
lation event occurs. However, because in our study the overexpres-
sed 28kDa TRa1 protein was clearly not localized at the plasma
membrane in the trophoblast giant cells of uterus, the embryonic
lethality observed is probably linked to a mitochondrial defect
induced by the mitochondrial localization of the protein.

In future studies, it will be of interest to explore potential phys-
iological roles of p28 in vivo. These studies will require generation
of mice overexpressing p28 in selected lineages and/or at selected
periods of development and the availability of specific knockout
mice. The importance of elucidating p28 function in vivo is high-
lighted by our studies demonstrating the physiological importance
of p43, clearly defined as a mitochondrial T3 receptor [9–13,41].
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