
TheoreticaJ Computer Science 7 (1978) 79-98
@ North Holland Publishing Company

SOME APPLICA
ALGORITHM I

P. vam EMDE BOAS

Lkparrment of Muthematics, University of Amsterdam, Amsterdam, ‘The Netherlands

Communicated by A. Meyel
Received August 1976
Revidcd November 1977

Abstract. The McCreight-Meyer algorithm is a pi;ority-queue construction irom abstract recur-
sion theory which was designed for the prcof of the so-called Nanwig or Honest): theorem. V,‘e
exp’a.in the ideas behind the algorithm, pointing at its behaviour as a “clo~re nperator” and
oPtnin;ng various known and new results as corollaries of more general assertions.

I. Isltroduction

The McCreight-Meyer algorithm was designed in order to prove the so-called
Naming or Honesty t heorem which srate:s 21:: the entire hierarchy of complexit>

classes ‘Gth respect to some ablstract complexity measure can be renamed uni-

formly -&. effectively by a so-called measured transformation. This means that

there exists a total recursive ftinction c such that for each i the programs fpl and

qua compute two names for the same complexity class of programs and such that

moreover th.?;; predicate p&x) = y is decidable (whereas the corresponding predi-

cate qi(x):. y might not be). The re;uit is relevant if related to the Compresbkn

theorem and the Gap theorems. The Compression theorem ctaks thal :I s)~stem of

comp!:eqdty classes named by a measured set can be extended uniformly. u\a:~g

functkna.1 composition on the names of the classes. The Gap thecoremh srntc that

such a uniform extension by functional cori~p&tio~~ cr e\‘t‘ri total efectivr: op~~r;r-

tars, w&ing on the names OC classes is not pot;sitj!c for the _lwnp?~~~ ~I?!t‘!n ,li

classe!., named by the sequence of all program:,. For cl<r:tiPs the re:rdl,!- II rtbfcrrccl tl’

Hartmanis and Hopcroft [5]. Applications of the Naming tb~orcan for akc LXX-

struction of hierarchies over the ordinals are given i?y Bass 3rd Young [11

* This report IS registered 2’: 2%’ 73/‘77 of the Mathematical C’entcl

7Y

___ ““_” $(,,:,:;,- > :.,..; “:;y$ <; .::-‘ ::.. :/;-y:,:.~ “s ,+ &de j&j&. J:
_; ,,:

:_

..,,‘. +:‘s: I-., . ‘“; (_ -. j< : .~ ;_ :
l.. ..;

‘1 .i

: . ~~~&&+t&$&&~ a_nti Ho11 [lO]~‘or the present author .[3]. In the present paper
-we~present’a’&rsion ubing a full parallelism instead of the traditional dovetailed
computation. ‘”

Ths algori@rn_uses the old name in order to obtain a test routine which investi-

woes eg@.~~~p&p ,~~~~$$x ‘ofty., hapm b.$w to : f+ ~coq?j~@y &ss
‘prOiriw: t&j&@&$& &I$ $$t~[y magi_ &i., m& i&i&es ihat &q well as
aping &z&&&i~ &is~s ‘the. algorithm might in general be used for “naming”
c&es ; Of ’ prograins defined : using some “almost everywhere” condition. As is
well-known, these closes, are precisely the &G~C of programs which have a
&-presentation. H&wevcr not all. &-classes of programs are complexity classes
(the revel% inclusion being trivial). M&eight [S] gives the example of a union of
two complexity classes which itself is not a complexity class.

St turns out that the McCreight-Meyer algorithm acts as a closure operator,
computing a name for the smallest complexiLl class containing a given &-class of
programs. If the given class is already a con-iplexity class it renames this class. On
the other hand the algorithm can be used to “name” finite intersections and
increasing unions, in thls’way obtaining a strengthening of McCreight’s Union
theorem.

Next we consddcr the question whether the algorithm can be adapted to deal with
other types of classes of programs defined by complexity of computation. As a first
candidate we consider the so-called weak complsxity classes, introduced by the

l present author in. order to study the behaviour oi the honesty classes [3,4]. It is
known that the Naming theorem fails for these classes, but it turns out that the
failing McCreight-Meyer algorithm can be amended (at the price of the
“measured-set” property of the sequence of names obtained by the algorithm).
This way the “closure operator” properties are preserved.

Finally we introduce the so-called anti-complexity classes consisting of programs
having as the name of the class a lower bouiid on tb __.eir run-times. By applying an
order inversion to the algorithm one obtains after some minor modifications an
algorithm computing a name for the smallest anti-complexity class containing a
given &class of programs. As a corollary,we obtain Levin’s result that a complex-
ity sequence of a total recursive function has a greatest lower bound [7].

We use a fixed recursive pairing function (x, y) with coordinate inverses ~1 and
~2. Let ((q$‘& (@$&) denote a complexity measure, cf. Blum [2]. Tit’s means
that (pi):, is an accqtabb Gtidei numbering and Qi and @i have equ?! domain for
each i and the predicate “@i(X)= y” is recurs&e in i, x aud y. The functions CQ~ are
eaued programs and the functions G+ arc called! run-times. All functions are partial
recursive unless explicitly stated to be total. The domain of a function f is denoted

.Applicatiovs of McCreight-Meyer Algorithm bl

~~ and we write f(x)< co (f(x)= 00) for x E 9f (XIZ 9f). We say that a function f is

computed by vi or equivalentiy i is an index for f provided f = cpi extensionnally,

i.e., VX [f(x)= pi(X)]. The inequality f~ g means that 9g c $?Sf and f(x)< g(x)

1 VX [X E St*@i(X) 2 t(X)]} ttx anti-complexity class

The fun: tion t is called a name for these classes. Each of the above classes can be

show:: to be a &-class of programs. Note that the above cIasses may be defined fat

non-rer,ursive names t as well, but in the latter case the resulting classes no lmgxr

are 3; -clilsses of programs.

Complexity classes have been studied from the start of abstract complexity

theor!,r, cf [l, 2,5,8, 111. Weak complexity classes were introduced by’ the prl-sent

hutho.; for the analysis of the behaviour of honesty classes, t:?’ I_’ ?;-$;!1. The

anti-complexity classes are introduced here for the first time in order to obtain as a

coroEary a recent rc:.ult by Levin on the greatest lower bound {If complexity

sequences [7].

~-~+&$#p-:~~ :” :,.: ‘. ‘.,J ;:. I.,i*, ,.“.;::.‘;.-,~,,~~~;‘.~:~ ,‘~ .s.‘.-
,,_ .:;.i ,: 1 ,, /I

L*...:
:p; ~~_:&&:~~~

-, ‘;

:;-‘,. - .,._
., ;?I: ._ ; ;, -1 .

, ;_- .!. + : r
.c, ;;,._ % -.

. _” : .:
‘:

,- >_:h,.“. ,_ ..:

1 .,‘I,&-;,:; ~~~:~~~~~~_rili_~~~~,intrbauction:. & ;pr&ei_lt. 0~ dg&h*$ using paallel&m

_-:‘:ri~~-or:~~~~adiiidnal d*~~tailing,,This is daile in oirder to il,ustrate,the modular

d&ombsition of the M&eight-Mever algorithm and the h&e degree of freedom
one has in obtaining a sequential algorithm by combining the asynchronous parts in

-~~.~~~r~~~~~~~~~ol;~~~ql the:usq.of paralllel~sin~~~~es:~~~~~~~~~~~ of
:$&tk&gI{&#se~f against und&lr+l~ m&&g. &~s&r&i~:da~a,’ We WilJ j t&e, ‘the
‘&@e#of>&tJ&l, s&$on~$~durin~ Iwhi&a Lpro&s.;$as private ac$& to. the, s&&

‘,dat+ Consequently i&e are obliged to ensure that no process ,can diverge within a
‘d&M &j&o& This fact ba,;:i” .f veiifitid the remaining necessary condition for our
pat+&51 program to-be corra~;l; is that no process is prevented from. becoming active
by the other processes,, and freedom of deadlodks. _In hour algorithms we will
indicate the critical sections used, taking the absence of. deadlocks and-lockouts for
granted.

iNote moreover that by using parallelism we obtain mm-deterministic progr urns
as well. Again the motivation is that the non-determinism illustrates the freedor,
ant has for obtaining correct sequential implementations. Also the use of parala
‘k&m might yield iron-recursive fur&ions as .a result of parallel non-deterministic
computations. We shall’ assume however that the parallelism is sufficientI!.r
regulated to obtain nothing but recursive functions.

3, The ciassfcaf McCrefght-Meyer dgorfthn

The McCFeigJzt-A&yer aZgori&m (called the MCM-algorithm hereafter) wa:s
introduced in order to prove the following theorem 181:

Theorem 3.1. There exists a measured transformation of programs u satisfying
Vi [F(upI) = Fh::&

In the algorithm the old name cpi is used in order to obtain a discriminator for
F(v~), which during a dovetailed computation executes an infinite sequence of tests
on al1 programs p+ Depending on the outcome of these tests these programs are
manipukted on a priority queue as being “good” or “bad”; in the meantime a new
name p-(i) is computed in such a way that “good” programs are respected and
“bad” programs are punished. A “bad” program which is punished becomes
“good” whereas a “good” program becomes “bad” after failing a test by the
discriminator. Each change of status induces loss of priority, thus ensuring that the
stable “good” programs will be respected in the limit. The resulting names (cp,&‘&
form a measured set because of the fact that they are computed by a well-behaved
“least-number operation” on some ever changing condition.

The tests against the old name qs are of the follolwing type:

Bi(j* %)=Q @j(?YlXj= m2X th!A @j(W,X)cC&(V*X) else e fi

Applications of McCreight-Meyer Algorithm 83

This shows that for each i the predicate Bi is total and consequently cpi E P;((P~) iff
V’“X i&(/, x)]. Hence F(pi) is nothing but the .&-class of programs discriminated
by &. It makes sense therefore to consider ~,he behavior of the MCM a!gorithm
which results from replacing the discriminator Bi by some arbitrary discriminator
B. The resulting algorithm is described in this section using the framework of full
parallelism (leaving the transformation to a dovetailed computation to the underly-
ing operating system).

Let B be some total recursive function in two variables. The Mc~reight-Meyer

algorithm bused on B consists of three processes operating on a shared data
structul e, which we call the priority queue. The priority queue consists of a linear list
of items, composed from an integral value index and a boolean value colour, where
for didactical reasons the values true and false are denoted by white and black. We

say that item A has a higher priority than B if A precedes B in the linear list. An

item A is displaced by moving it to the tail of the list and reversing its colour
simultaneously.

The first process is the so-called governor. Its task is to introduce all iIndices into
the priority queue. The second process is called the incrimir;!ator. It is *the unique
process which has access to the discriminator B. Its task is to execute tests on the
white items currently on the prioritgr queue displacing those white items which fail a
test.

‘The ttird process computation cuns out to consist of an infinite se+encfz ::f
processes running in parallel, caiiled camp(y). The process camp(y) L:?S to
compute a value for the new name t at argument y, and after succeeding to pro-
vide such a value, .it tests all b:,r,ck items on the priority queue against it,
displacing (i.e., punishing) those b: ack indices which fail this test. The prncesses

camp(y) are the unique processes having access to the decision procedure ior
the predicate @i(x)SZ. Computation of the value is performed by the pro-

cedure .searchval. Together with this later procedure camp(y) reflects the
structure of the complexity classes; MCM-algorithms for weak complexity
classes and anti-complexity classes are obtained by modifying the procedures
searchval, and camp.

In Fig. 1. we illustrate the modular decomposition explained above.
The cri cial procedure *ithin the MCM-algorithm is the procedure searchval. its

task ccr:r:ists of t:cmputing a value z for t(y) such that there exists a black item with

index J for which @j(y) > z !;uch that for all white items (i, rvhile) which have higher

priority we have @(y)~ z; moreover the black item used ghis way should have the

highest possible priority. Belnw we present a description of searchval; its hehaviour

is illustrated in Fig. 2.

Prncedure searchval;

~~~~ut an argument y E N; 
ut a value for t(,y)E 



I - ., 

., ,: ‘. 

..L - - --__ 

--w-i-- 

Fig. 1. Modular decomposition of the MCM-algorithm. 

I&i&&&m start with attempted value val= 0 at the beginning of the priority 
queue; 

loop if the next item on the queue is (i, white) stepwise increase val until 
@&)cval, and proceed to the next item on the queue; if the next item on 
the queue is (i, hJaeJr) then terminate with output val if @i(y)> va1 and 
proceed to the next .item on the queue otherwise; if there is no more item on 
the queue the comput.ation is set to diverge; 

@sld searc&l 

The critical sections in searchval are the test for whether there is a next element 
on the queue and the acquisition of this element, The computation of searchvai is 
illustrated in Fig. 2. The list on the bottom illustrates the priority queue, a shaded 
second square indicating a black item. A dot with an upward arrow indicates a 
white run-time which has to be respected by increasing val above it, whereas a 

ward arrow shows a black run-time which is violated by attempting to define 
vak bely it. Computation starts in the lower left corner and terminates successfully 
at the dot next to the exc!amatioa mark. 



Applications gf McCreight-Meyer Algorithm 

& 

i 
________,____ - _..--_ 1 

t 

A 

i 
_-__--___- j ___-_-__ a 

z 
I 4 t t 
A 

i 

Fi::. 2. The computation of searchval. 

From Fig. 2 and the explanation of searchval, one concludes that searchGal 
indeed stops at the highest priority black item having a run-time exceeding the 
run-times of the preceding white items (where by the run-time of an item we 
understand the run-time of the program with tile same index at the underlying 

.argument y). Consequently termination of searchval is certain whenever such a 
black iicm exists. The procedure searchval may fail either by diverging to infinity at 
a fixed white i?em with infinite run-time, or by exhausting the priority queue. In 
both cases the value of the new name will be undefined at y, and the process 
camp(y) will fail to terminate. In fact we might as well have closed the priority 
queue by a symbolic white item (nil) with infinite run-time, in this wall preventing 
exhaustion of the priority queue. Note however that searchval will never diverge 
within a critical section. 

As a consequence of the parallelism’ in the MCM-algorithm it is moreover 
thinkable that the queue as indicated in Fig. 2 is transformed during a computation 
of searchval by activities of other processes. Such transforma.tions always displace 
items to the tail of the queue and in this way they may prevent eligible black items 
from 17eing selected. This does however not affect the validity of the proofs given in 
the scquei, the argument being that a certain black item will be displaced now 
unless it is displaced by some other process before, in which case nothing remains to 

be proven. 
The three modules and the MCM-alg&+hm are described below: 

process governor; 
initidizatioa set i to 0; 
loop create item (i, white) and append it at the end of the priority icweue; :::xt 

increment i and wait for a while 
end p,overnor; 



..a P. wn Emde-B&s : 

/ 
The &iticd section in the governor is the append operatz$Pta, $I@ governor 

‘sukessively introduces all indices in the priority queue, but in doibg SO iI should 
yield to the remainiag processes time for accessing the queue .a$ w~]j, C&rly the 
governor will never diverge within a critical section. 

~,h&minator; 
setx too; 

loop&n the priority queue for items (i, white) for which B( Ir,.S )W j&e displac. 
ing these items; next increment x and wait for a while 

end incriminator; 

The critical section in the incriminator is the complete scatn QVC~ the priority 
queue. Since at each moment during thle computation the quep& &jt&, a,+# sinpe 
23 is total the incriminator will never diverge within a critical section. 4&n tht: 
incriminator should leave time to the other processes for proce+kmQ 3t1d acces& c, 
the queue. 

compute testval by performing the tall searchval(y ); next set f(y)* t~$vQl and sea r,t 
the complete priority queue for items (i, black) for which (g,(y)Sestvrl, Qphcin,; 

these items; after the scan terminate 

cd corn& 1; 

The critical sections in camp(y) are the critical sections in SQW&V~Y) gd th,s 

entire scan over the priority queue. Again, the priority queue alhays being finite, 
and searchval already being shown to be correct in this regard, t& p~~$eSs cornng)..) 
will never diverge within a critical section. 

process computation consists of running all processes comp(y ) F$ Y 90, I, 2, . . . ifl 

parallei. 

The IN&f-algorithm consists of running the three processes govgrt~ar,irxcri~linati;,; 
and campntation in parallel. 

This completes our description of the IUCM-algorithm, Its l~#8-+~~z- is ~&yseJ 
by considering the three possible behaviours of an item during the ipfln& cornpu- 
tation. An item is called unstable provided it is displaced infin .&y &;&, afld it is 

ealkd stabk otherwise. A stable item is called white stable if it iis$. whit6 iteg after 
its final displacement and black stable otherwise. The class &f 

nated by B is denoted by % and the new name compul[ed 
ithm is denoted by t. 

9: km A is unstable. 



ApplicnGons of McCreight-Meyer Algorithm 87 

Let i denote the index of A. Since A is displaced infinitely often by the incri- 

minator there are infinitely many vaIi;~:s of x such that R(i, X) - false. Consequently 

@i&.X On the other hand A is Asplaced infinitely often by some camp(y) procesk 

Since, for a given y, camp(y) will displace an item at ;nost a single time this meLi,;:; 

tha> @i(y)> ;(_v) for infinitely many arguments v. Thi!: shows that pig F(F). 

Cczse 2: Item A is white stable. 

Let i be the index of A. Since A becomes white stable it is displaced by the 

incriminator only finitely many times. Therefore vi E k??, After having been dis- 

placed for the last time, it can occur on !y Snitely many times that within a process 

cornp( the procedure searchval stops at a black item preceding A (since such a 

black item is displaced subsequently). Consequently the value of val in searchval 

will be increased up to at least 0,(y) for almost all arguments y, and hem< 

&(p)< t(y) almost everywhere. This shows that vi E F(t). 

Ll2se 3: Item A is black stable. 

Let I be the index of A. Since A becomes blaci; stable there are at most finitely 

many processes camp(y) displacing A and cons::quently Q5,(y)s l(y) almost 

everywhere. On the other hand once having been displaced for the last time it wi!! 

occur only finitely many times within a process camp(y) that the procedure search- 

val stops at a black item preceding A. Consequently ffor almost all y item A ~111 be 

considered in searchval and be passed over for having a run-time Q,(y) not 

exizeding the current value of val, (i.e. not exceeding the maximum of the run- 

times of the preceding white items, all of which have (for almost all y) already 

b*come stable}, or else searchval never gets past some preceding white item with 

infinite run-tkne, as val increases inoefinitely. This shows that the run-time @, is 

asymptotically bounded by the maximum of the run-time; of a fixed finite set ,r~f 

programs contained in E 

Gathering all evidence collected thus far we obtain: 

tcetllrna 3.Z If pi E F(t) then there exists a finite cnllection 

Tb~r/r:fi 3.3. Let B be a t&al recursive discriminator for the .X2-cinss -9. ?‘her~ riw 

MCM-algorithm based on B computes a nnrae t such tlut tile clnss F(t) .suri+:/ivs 

F(it’; = n{E(u) 1 2 E F(M ,}, w h ere u ranges over the ck2.u 01 011 prtirll rrl-rrrvi:,i’ 

ftirzctions; moreover fi?~s, F(t). 
‘I’he “measured set” pr-optrty results from: 



Pro&. Consider tie MCM-algorithm based on B as described above. If cpi E F’(t) 
then by the analysis above the item A with index i is white or black stable. If Iwe 
have case 2 (white stable) then Lemma 3.2 is satisfied trivially since @i C @pi and 
qi E%‘. If A is black stable then the analysis of case 3 above shows Lemma 3.2 
holds. This proves Lemma 3.2. . 

* To prove Theorem 3.3 we consider some program cpi. If piti F(t) then by the 
above a-~alysis its corresponding. item is unstable and consequently Qiti X This 
shows B?GP’F(z). Next assume Cpi EF(~). By Lemma 3.2 there exists a finite set 

(4+,,.-•, P~JE X SU& that V~x[Qii(x)~max,,k{~i~(x))]. If %G F(U) then @$*a: u 
for I=l,..., k therefore Ax[maxl,k (@f,(x)}] a: u also. Since by Lemma 3.2 4+ K 

Ax [maxl,k: (@&)]] we derive @i 0~ u and therefore @i E F(u). This shows F(t) c 
n(F(U) 1 WI c F(U)). Th e inclusioa mF(f.4) 1 &l?C F(w)) E F(t) is trivial since %? E 
F(t) and since the function t is itself recursive. This proves Theorem 3.3. 

There remains io prove Corollary X4. If (Bi)z, is uniform sequence of dis- 
criminators we cat, Sesigm an MCM-algorithm based on the sequence (Bi&, using 
the value of i as an additional input parameter. This MCI&algorithm can be 
transformed into a decision procedure for h(y) - z as follows; 

To decide ti(y)= z the MCM-algorithm based on Bi is initiated and simulated up 
to the time where either camp(y) has halted or has increased the value of val in 
searchval(y) above z. In the first case output whether the result of searchval(y) 
equals z, and output false otherwise. ‘This completes the proof. Cl 

Theorem 3.3 shows that the class F(t) can be described independently from the 
name t and that F(t) is completely dete.rmined by the given &-class %‘. We denote 
the class F(t) in the sequel by 2. Clearlmy if t;;. 
class we have 2 = 2; in particular 9 = S:$ 

collection Z is already a co@exity 
,. As a consequence Theorem 3.1 IS seen to 

be a direct consequence of Theorem 3.3 and Corollary 3.4. It is also clear from 
Theorem 3.3 that for &-classes 2 and 9 we have .%G $Y& c @; hence the 
operator $ + ZP acts as a closure operator. Theorem 3.3 also yields for &-classes 
R”n 5% gn @, From this one obtains: 

CoroMafy 3.5. 7?ie intersection of two complexity classes F(t)nF(u) is again (;: 

complexity chs5. 

hkxe that although F(t)n F(u) = F(n) where v = Ax [min (t(x), u(x))] this yields 
no proof for the above corollary since the fr vmntion v may be non-recursive in case t 
or u are partial. 

Qua next applica.tion deals with unions of an effective increasin, sequence 

of complexity classes. By considering items of a slightly different forfiat we 

can discriminate such a union, and by the fact that the sequence is increasing the 
class ~~t~~~~d ~siug the ~C~~~~~gorithrn turns out to be th; union of the sequence 
itself. 



Applications of McCrzight-Meyer Algorithm xc) 

‘Il%earem 3.6. Let (ti)zo be a uniform recursive sequence of partial recursity 
functions such that F(t,)G F(ti+l) for ail i. Then IJFit, .F(ti) i5 riF;i!i:T G ctirtiple_uiry 
class. 

For total names 
McCreight [ 81. 

(bi jzO satisfying ti 5 tit1 this result !has already bwn proved b> 

Proof. We consider an MCM-algorithm manipulating Items indexed by pairs (i, j} 

consisting of a program-index i and an index j of a fu:lction in the sequence (Ir)pzo. 

These pairs correspond to new programs qi.i obtained by replacing each program q, 

by an infinite sequence (rpi,i)zo all computing the same function and having the 

same run-time. Consequently in the process computation of the MCM-algorithm 

these copies behave equally. We can obtain however an Incriminator which treats 

these copies differently. Sir.ce for each index j the class F(ti) is a E-&ass a 

discriminator Bi for F(ti) can be obtained. -Moreover the sequence (ti)zo bzizp 

uniform the sequence (B;)E”=o is uniform as well. We now define the discriminator .f3 

by B((i,j), x)= Bj(i, x). The class E discriminated by B then becomes r’ == 

{cPi,i I QP~ E F(G)}. 

Let tint: be the name computed by the hlCM-algorithm based on B. If cc: E F(t,) 

then Qi,j ~2%’ and consequently the Item with index (i, i> must stabiiizc and 

consequr-:ntly @i,j = @i CC tinf. This shows that /_I:” F(ti)C F(f,,,), 

ConVerseIy assume that Q~ E F(ti”f). Select an arbitrary index k and ccmsidcr the 

item IlJith index (i, k). Since @i,k = @a finf this item must stabiliTc. If it hccc~rnec 

whitEd stable then Qi,k E Z and consequently 

Qi E F(tj)E fi F(tj)a 
j=O 

If,it becomes black stable then let {(iI, &I), . . . , (i,, k,)} be the finite collection ot 

white stable items preceding (i, k), and let k. = maxis, k;. ‘Then q E F(fk,,) for j .ZG .s. 

Since the run-time @i = @i,k is bounded by the pointwise maximum of the run- 

times @i,, . . . , @is .,vhich in its turn is bounded by tk,, we conclude that q, E F(rk,,)i: 

i. JFo Fiti). T!% shows that F(t.,,f)E UFO F(r,). 

Having s! own both inclusions we conclude that 

F(fi”f) = fi F(f) ). C 
, -0 



!iQ P. van Em& Btw 

Coiollrvy 3.7. l’he intersection of an infinite sequence of complexity classes 
nF-0 F(ti:) is a compkxity class with a. not necesswily recursive name. 

For uniform sequences of recursive functiuas this result has been obtained 
already ‘by Robertson [l I]. It is proved by using 2 (non-recursive) discriminator for 
the infinite intersection 82’ = f$$ F(q), Clearly 

since 

4. A M&eight-Meyer rrlgorithm for weak &asses 

The weak complexity classes were introduced in order to study the so-called 
honesty classes; cf. [3,4] for example. If t is a recursive function and if we define 
T(x, y) = t(x) then it turns out tha; the T-honest programs are exactly the programs 
contained in Fw(t). Some existing theorems for complexity classes remain valid for 
weak dasses and honesty classes as well, the Naming theorem being a surprising 
exception. In fact one has: 

Theorem 4.1. For every measured transformation u thtire exists an index e such that 

Fw be 1 f Fw (we,). 

The proof can be found in [4]. 
It turns out, however, that by sactificing the “measuredness” of the resulting new 

names, a hacCreight-Meyer a1gorith.m for weak classes, showing some of the 
“closure operatoi” properties discusseld in the preceding section, can be designed. 
In particular some weaker generalizaltions of Theorem 3.3, Corollary 3.5 and 

l Theorem 3.6 are given in Theor’em 4.3, Corollary 4.4 and Corollary 4.5 respec- 
tiveiy. 

The new algorithm is Obtained by modifying the procedures searchval and camp. 
The two problems we have to solve are: 

(1) If searchval is to use a black item it has to make sure that its rr>n-time is finite. 
This is solved as follows: instead of using a black item at the moment when its 
run-time is found to exceed the current value of val, this black item is only 
marked as a candidate and the computation proceeds onwards, increasing val 

& ~~c~si~nall~~, until lone of the ‘c:andidate black items turns out to have a 
. 

& ~~~~~ to vaT. 4” 



Applications of McCreight-Me!,r?r Algorithm QI 

(2) If sr,archval is attempting to respect a white item by increasing vail to its 

run-time, this will never succeed if this run-time is infinite; however, an 

infinite run-time does not need to be respected at all! 

It is thz second problem which causes the troubles reflected in Theorem 4.1. 

Once a white item with an infinite run-time at all arguments gets itself installed in 

the front of the priority queue almost all subsequent compu;&_xrs of searchval will 

diverse. 

In order to amend this failure we provide the algcrithm with a so-called wizar/l 

pred.icting the divergence of “good” programs. 

LM%&Ion 4.2, A wizard is a recursive predicate b such that for a given value x 

the predicate Ai[b(i, x)] either is total or is undefined for ail i (depending on x). 

The set {x 1 Ai[b(i, x)] is total} is called the reach of b and is denoted 9’6. If ‘P’ is 

a &class of prog-ams and 2 c N thenawe say that the wizard 5 is jusri,fiedfor 1‘t)ti 
Z provided 

(1) 9’b =Z and 

(2) Vi bfmx [tppi E ffund x E Z+@(x)< ~0 iffb(i, x j)]. 
The wizard has the function of predicting (within a reasonable tolerance) whether 

certain computations converge or not. 

The ;xccedure weaksearchal described below uses the wizard for disregarding 

white itelms which are suspected of diverging, in crt:asing the value of val until one of 

the candidate black items is found to have a finite run-time. 

Brocedare weaksearchval; 

InpuQ ;;*I argument y E N; 

Output a value for t(y) E N; 

Initidimtion: compute b(0, y) in order to determine whether y E Y.17; if this 

computation diverges weaksearchval diverges as well Start with attempted 
valued val = 0 at the beginning of the priority queue. 

initialize 3e list of candidates as being empty. 

Ioop if the next item on the queue is (i, white) with h(i: y) = trmue stepwise incaeasc 

val rntil @i(y) S val, each tiJm inspecting all indices j on the jisi of candi- 

dntes to see whether G$(y) = val+ 1 and upon finding such an indcs i 

terminating with output val. 
once ~D~(y)~val has been achieved proceed to tht, next itcm on the nriorif> 

queue. 

if the next item on the queue is (i. ) with G!(v) :. \.a1 inserl inde 4 i in thy% 

list of candidates and proceed to the next item :!n thr n;itir-ity C;UCIIC. 

in all other circumsPances proceed ko the next item on the priority COU~LW. 

If no more items are present strpwise increa3e vai. ir.specf;ng tlae list Of 

candidates as explained above. 

e w,eak searchval: 



- 
-92 ,” ;_‘. i. : P. ian .&de Boas 

The critipl sections in weaksearchval are the test for whether there is an element 
on the, queue and the acquisition of this element, and as before weaksearchval will 
never diverge within a critical section, Its computation is illustrated in Fig. 3, which 
has to be interpreted analogously to Fig. 2. At the bottom of Fig. 3, we have 
irrdimted the$horityqueue, the predictions of the wizard b on the behaviour of the 
white items and the list of canditates created during computation of weaksearchval. 

t 
. 

1:__________.._____ i 
$ --________-__c___ a 

t 
1 

A 
t : 

t 
i -.------.-+--- .._____, 

1 $ 

b(i,y): + - + 

candidates: _----XRHJ- 

Fig. 3. The computation of weaksearchval. 

titer having described weaksearchval the weak MCM-algorithm is obtained as 
follows. We take the processes governor and incriminator from the MCM- 
algoritbm of the prxeding section. In tlhe process computation we replace all 
processes camp(y) by proccsse’s weakcomp(y) described below. The weak MCM- 
~~gor~~~ consist of running the three processes in parallel, 

: compute testval by performing the call weaksearchval(y 
estval and scan ;ire complete priority queue for items (&b 

ering lthese indices on a list of can&&es. 



Applications of McCreight-Meyer Algkthm 93 

loop for k = 1, 2,. . . while the list of candidates is not empty test whether there 

exist an index i on the list of candidates for which Q+(y)= testval + k ; 

displacin,g these corresponding items (provided they are still black) and 

removing them from the list of candidates. 

If the loop terminates by exhaustion of the list of candidates weakcomp(y) 

terminates. 

end q-:eakcomp. 

The critical sections in weakcomp are the scan over priority queue during the 

initializaiion, and the displacements of items during the loop, (together with the 

critical sections in weaksearchval). Again weakcomp will never diverge within; a 

critical sc.:ction. 

Note that a single call oi weakcomp(y) will displace a single item only once. 

Moreover, if weaksearchvai has delivered a value there exists at least a single black 

item whii:h will be displaced in the sequel of the computation of weakcomp (unless 

this item is displaced by a call of weakcomp(z) running in parallel). 

We analyse the behaviour of the weak MCM-algorithm described above. 

Assume that the &-class of programs 8f? is discriminated by B and !c: the wizard b 

be justified for R on Z c N. The test at the beginning of weaksearchval(y) makes 

sure that y E 9’b. Therefore we have 9f E 9’6 = Z. On the other hand, knowing 

that y E $B,‘b we conclude that weaksearchvalcy) terminates provided there exists a 

black item whose run-time at y is finite and exceeds the run-times of the preceding 

whiLe items whose indices i satisfy b(i, y)= true. Actually weaksearchval(y) will 

locate the lowest run-time of a black item satisfyir,g the above condition and 

weakcomp(y) will make sure that all black items s;tisfyL-g this ccadition will be 

displaced. 
1nspecti;rg the behaviour of an item during the computatio:l we again consider 

three cases: 

Case 1:’ Item A is unstable. 

If h denotes the index of A then as before cpi& %’ and i(y)< @i(y)<cO for 

infin sly many y E Z. Thus vi & Fw (t j. 

Case 2: item A is white stable. 

Pf i ilenotes the index of A then as before cpi E gi. This implies that for aInrt:st 

all x G Z, b(i, X) iff qi(x)<cO. Consequentf!y for almost all I: E Z weaksearchva1C.v) 

will either disregard item A or it will succeed in making val g:, _a+.cr t?.an 

@i(X). Consequently the computation of weaksearchvsl 1s r)rcvcrkicd f’ro~~ pas:;tng 

itei9 .h by divergence of Gai(x) for at n;oc,t finitely many arguments. On the other 

hand, if weaksearchval terminates befcre passing A, a higher priority item v”,ill bc 

disphced. As a consequence we see that for almost all arguments x 6: Z f )r which 
Cpi(Xj<oO One has QFPiQX)S r(X). Sit-i?,: naorcove: L3irrc Z this S1Hicc5 to St!ovt 

that 11)~ E Fw (t). 



94 P. ‘oiln E&e Boas 

Case 3: Item A is black stable. 
Let7 denote the index of A. Since it is discovered only a finite number of times 

that t(r)‘< 4+(y)< oa one has rpi E F,(t). After item A has been displaced for the 
last time, there are at most finitely mYany arguments z where wealcsearchval(z) is 
blocked or terminates before accessing item A. For the remaining arguments x E Z 
either &) diverges or Qi,(;n) is. bounded by the maximum of the run-times of the 
white items preceding A which are not disregarded by the wizard. Since the wizard 
is justifiedi, witi: finitely many.exceptions this maximum is finite. As in the proof of 
Theorem 3.3 we cor\elude that the program Q~ is contained within F,(u) for each u 
2Zh thr;= 22.4 c 7 and t;2pc FW(u). 

Hence we have shown: 

‘I’IwwM 4.3. If b is justified for %on 2 and if Zis discriminated by B then the wrak 
MC&algorithm based on Bland b, computes a name t satisfying: 

kbtcz and F,(t)=n(F,,(u)l~~F,(u), 9~ rZ}; 

moreover 

%‘c F,(t). 

As applications we mention: 

4-4. The intersection of two weak complexity classes with recursiue names 
is fzgain a weak com,plexity class with a recursive name. 

CaroDuy 8.5. The increasing union of weak complexity classes 
recursive sequence of total names is again a weak complexity class, 
.,iame. 

with a uniform 
with a recursive 

Proofs, It sufices to provide a wizard which is justified on a suitable domain. 

For Corollary 4.4. let qi = u and (cpr = o be tne (partial) names foi two weak 
classes.TakeZ=~tc!u~~andletw(~)=if~~(x)~~j(X)thenla(x)els~u(;r)fi,i.e. 
w(x j b th e”lrst of the pair of values u(x), V(X) which is computed when the two are 
computed in parallel. Finally let b(k, x)= (@k(x)< w(x)), i.e. b(k, x) diverges ii! 
W(X) diverges. Then clearly 2 = 9’b = 5Bw = 9u LJ 9~ and b is justified for F,,(u)rl 
FIsl$~) on 2. The weak McCreight-Meyer algorithm based upon some discriminator 

e &-class &(u)n F,(v) and b as defined above now computes a name t 
sat~~~~g 

c Fw(uj~F&). 



.4ppiicatiotts of McCreight-Meyer Algorirhm 0.5 

Hence 

For Corollary 4.5 let (ti)go be the sequence of total names and ler 3 = 

U;“-,-, F&). As before in the proof of Theorem 3.6 we consider items whose ind’.:cs 

are pairs i consisting of a program inde.rc n=li and an index of a name: n2i in the 

sequence. The run-time of an index pair s’ is the run-time, of its program Grrli. Let 

~(x)=max+~ (ti(x)}. As wizard for Z? we take the prediclrte b(;., .Y)= @,,,i(x)c 

U(X)). Clearly this wizard is justified for Z on IV. The res: of the proof is, left to the 

reader. Cl 

Since honesty classes form a special type of weak classes these corollaries hold 

for honesty classes as well; cf. 131. 

5. A McCreight-Meyer alg oriUhm for anti +mpEexity classes 

Since the anti-complexity classes are defined by reversing the order 5~ on the 

integers, it would suffice to perform the same order reversal within the part of the 

MCM-algorithm which reflects the structure of the classes cons2 lied, i.e. the 

processes camp(i). This would yield however a “ialgcsi-number” computation in 

searchval, a computation proceeding downwards from infinity to zero. This c!early 

is unfeasible. In order to choose a place to start the downward computations we 

need s~mc additional information; this information is called an n’ priori upper bounti 
(abllreviated apupb). We say that the total function h is an a’ priori upper bound for 
the cluss 2 provided there exists a finite set of programs {cp,,, . . . , cp,,} E 2T such that 

tp”x [h(X)aminkk [@i~(x)I]. 
Clearly each run-time of a total program :ln P is an apupb for P;. Eklow ?ve 

present a :,iescription of the procedure mrisetxrchvul and its caiiing routine anti- 

camp. Replacing camp by anticomp in the MCM-algorithm in Section TS one obtains 

the anti-McCreight-Meyer algorithm baseJ upon the discriminator B an? the d priori 
upper bmmd h. T%e computation of antise:archval is illustrated in Fig. 4. 

procedure antisearchval; 

Input Dot argument y E N; 

a value for t(y)E N; 

ation: Set val to h(y) and start at the beginning of the prinriry quf:ue. 

looir: if the next item on the queue is (it I stepwije &crease cal until 

@i(y)21fal, and oceed to the next ite he queue: if the nex: itcrn ( !2 

the queue is (r, ) then terminate \dith output $,a1 if (D;(y)%: ~a\ anil 

proceed to the next item in the queue otherwise; 

if the queue is exhausted or val = 0 then terminate wit 



compute testval by performing the call antisearchvalb ); next set t(y) = testval; 
if testval # 0 scan the complete priority queue for items (i, black) with @i(y)< 
#sW&displacing theseitems. *After the. scan terminate. 

eird a&&n(y); ” ^ 

.? “:; ,-_, 

Tsl,e critical s+ions in antisearchval and anticomp resemble those in searchval 
and-camp in Section 3. 

fig. 4. The computation of antisearchval. 

Again we co&ier the three possible behaviours of an item A with index i. The 
reasoning i% the s;ame as that for the classical MCM-algorithm with the order 
reversed at the right place. In Case 1 (A unstable) one has qiti 2 and vi& A(t). in 
Case 2 (A white ststie) one has vi E 2? and due to the exhaustion of unstable higher 
~~~~~ie~ it is certain that antisearchval will proceed beyond item A almost every- 
where, and 4$ x, t lmnsequently; h.ence cpi E A(t).

e interesting czse is Case 3 (A black stable). As before Qi E A(t). Moreover @i
n&d from below almost everywhere by the pointwise minimum of h and b9

nite c&ection of run-times @i of programs corresponding to white stable items
is an 6 priori umzr bound for the class 8 it follows that @i is

E~OW by the ~~i~twise minimum of some larger but still finite class

Applications Ls,’ ~/lc~Yreight-Meyer Algorithm 47

of run-times of programs contained in Z. As such qi E A(u) for each u such that

8~ A(u).
We therefore obtain:

‘ITheorem .U, Let h be ar,! apupb for the class 24Y which is discriminnted bv B. 7%~
th’e anti*MCM-algorithm based on h and B computes a name t for the class A(t)

satisfying

A(j) =(7(/:(u) 1 .fZ c A(u)}.

More specifically we have vi E A(t) provided @j is bounded asymptotically from below
by the pointwise minimum of the run-times of a finite collection of members of 27

As corollaries one obtains results on intersections and increasing unions of

anti-complexity classes. A snore interesting corollary is Levin’s greatest lower

bound result which we disccss in the next section.

6. Greatest lower bounds of complexity sequences

Let f be a total function. The sequence of total recursive functions (pi)zC,, is called

a compl&ty sequence for 1’ provided the sequence (pi):0 is cofinal with !k. dec-
tion ol run-times of f in thk ordering 30.

More explicitly:

For more details and app’irations see [9 and 121.

Levin’s result reads [7]:

Theorem 6.1. [Levin]: If (pi)Z 0 is a r.e. decreasing complexity sequence for f then
there exists a recursive greatest lower bound t; i.e. if @j wt then 3 k [Oix)pk] and
moreover Vk [rk _ *t]. Or equivalently Vi [vi =f*@iBft] and Vj [@jXt*Eik [qk = f
and @p,WBkjj.

Proof. E~J 2 be the class of programs vi such thar either Qb,xp, for some j E

NpbJdmlt8y @i”o@k for some index k suck that cpk =f, Since (p;);i=,, is a :.t’.

decreasing complexity sequenice we obtain 3? = u;i-(, A(yi). ence 4‘ is a Z:-class

of programs. The function pO is an 5 priori upper bound for P since there e.uis:ts an

index j for f such that (lji~p,. Consider the name r comptited by the ar.ti-

a”lgori:hm based upon some discriminatclr for -;d and p(,, Then 1 c A(r) which

indica:tes that t is a lower bound for the run-ti s of prograins in 0’; in pahricular

tK CD: for each index j for f, SO t is a lower bou Converse1 5, if cpi 15 i?(I) then @, i3

bounded from below by t inimum of a finite mlkctlon 0%‘ ruri-t1mc5

98. F. vian Emde Boas

of members of.?.. Since (pr)ze is decreasing this shows that @jai?& ‘for some index
k. Hence A(t)c a9, so t is a greatest lower bound.

We conclude that 8 = A(t) (thus proving in fact the union t kzorem’ for anti-
complexity classes). This completes the proof. q

The restriction that the complexity sequence (&& is decreasing can be satisfied
triviahy for the Turing tape measure, or any other measure for which thte parallel
computation axiom holds [t;]. Moreover it is known that functions with a sufficiently
large speed-up hake a decreasing complexity sequence, see e.g. [121.

I am indebted to A. Meyer and two anonymous referees for useful suggestions
and textual improvements; and to P. G&s for providing me with the original prL&
sf th. 6. I.

L, Bass and P. Younft, Ordinal hierarchies and naming complexity classes, J. Assoc. Gwnpuf. Macti.
19 (1972) 158-174.
M. F&m, A machine-independent theory of the complexity of recursive functions, J! Assoc.
Cimput. Mach. 14 (1967) 322-336.
P. van Emde Boas, Abstract resource-!round classes, Ph.D. Thesis, Math. Center Amsterdam,
(September 1974).
P. van Emde Boas, The non-renameabiky of honesty classes, Comnuting 14 (1975) 183-193.
J. Hartmanis and J. E. Hopcroft, An ov+rview of the theory of camp utational complexity, J. Assoc.
amput. Mach. 18 (1971) 444-475.
L. H. Landweber and E. L. Robertson, Recursive propert’es of abstract complexity classes, J.
Arsa: Omput. Ma& 19 (1972) 296-308.
L. A. L&n, On storage capacity for algo/ithms, Soviet Math Dokl. 14 (1973) 1464-1466.
E. M. M&eight and A. Meyer, classes of computable functions defined by bounds on compu-
tation, .Rrst ACMSymp. 7keory of Computing (1969) 79-88.
A. R.. kfeyer and P. C. Fischer, Computational speed-tip by effective operators, .I. Symbolic Logic
37 (1972) 55-68.
R. &WE icnd A. R. %leyer, Honest bounds for complexity class ~6 of recursive functions, 1. Symbok
bgic ,.W (1974) 127-138.
E. L. Robertson, Properties of complexity classes and sets in ai stract complexity theory, Ph.D.
Thesis University of Wiinsin (1970).
c. P. khnorF and G. dtumpf. A characterization of complexity sequences, Z. Math. Logic
Gndhzgen Mark. 21 (1975) 47-56.

t Recently we obtaineo a copy of Levin’s proof (in Russian); this proof actually resembles the proof
%%3u stern in ielj.

