
 Physics Procedia   25  ( 2012 )  1850 – 1856 

1875-3892 © 2012 Published by Elsevier B.V. Selection and/or peer-review under responsibility of Garry Lee
doi: 10.1016/j.phpro.2012.03.321 

2012 International Conference on Solid State Devices and Materials Science 

Design and Implementation of Telemedicine based on Java 
Media Framework 

Fengguang Xiong, Zhiyan Jia  
School of Electronics and Computer Science and Technology 

North University of China 
Taiyuan Shanxi 030051, China 

Abstract 

According to analyze the importance and problem of telemedicine in this paper, a telemedicine system 
based on JMF is proposed to design and implement capturing, compression, storage, transmission, 
reception and play of a medical audio and video. The telemedicine system can solve existing problems 
that medical information is not shared, platform-dependent is high, software is incompatibilities and so on. 
Experimental data prove that the system has low hardware cost, and is easy to transmission and storage, 
and is portable and powerful. 

© 2011 Published by Elsevier Ltd. Selection and/or peer-review under responsibility of [name organizer] 

Key words-Java Media Framework; Telemedicine; Capturing; Transmission; Reception; Storage 

1. Introduction 

Telemedicine is a new integrated subject that provides medical information and services by using 
remote communication technology and computer multimedia technology. With the development of 
information society, it’s playing more and more important role in medical diagnostic and therapeutic. The 
concept of telemedicine system is originally proposed by United States in 1988, which typically includes: 
remote consultation, information services and distance learning. It’s based on computer communication 
and multimedia technology, and primarily realizes the medical data (including data, text, pictures, and 
audio-visual information) and remote transmission , storage, query, display and share of the video and 
audio information[1]. Remote medical consultations establishes a new relation between medical expert 
and patient, which achieves a remote “ face to face” consultation between the expert and patient, between 
expert and medical personnel. Telemedicine involve in not only medical and clinical issues, but also 
communications networks, databases and other technology. At present, although there have been some 

Available online at www.sciencedirect.com

© 2012 Published by Elsevier B.V. Selection and/or peer-review under responsibility of Garry Lee
Open access under CC BY-NC-ND license.

Open access under CC BY-NC-ND license.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82295937?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 Fengguang Xiong and Zhiyan Jia  /  Physics Procedia   25  ( 2012 )  1850 – 1856 1851

telemedicine systems, all are  based on broadband network, and limited heavily on the different platform. 
Otherwise, there is a terrible problem that data can’t be shared and exchanged between various 
telemedicine. Those problems have hindered seriously the process of telemedicine construction. 

2. Java Media Framework 

Java Media Framework(JMF)[2] is an optional application programming interface in Java SE, which 
provides a unified framework for capture, playback, transmission and encoding conversion of audio and 
video media content. JMF encapsulates the bottom operations, and doesn’t depend on the hardware 
platform and operating system, and has the future of device-independent and platform independence, and 
has the powerful compatibility of hardware and software, and is able to solve compatibility issues that 
exist in telemedicine. 

Main classes in JMF are shown as follows. 

2.1 Capture Device 

Capture device is a hardware which is able to capture audio or video, such as microphones, cameras 
and so on. The information of capture device is stored in CaptureDeviceInfo object. Each device is 
corresponding to a CaptrueDeviceInfo object. Captured data can be sent to player or processor object for 
processing. 

2.2 DataSource 

Datasource contains the media data streams. In JMF, datasource object is the data source, which can be 
data from the collection device, can also be a multimedia file, and can also be data stream downloaded 
from the Internet. For datasource object, once you've confirmed its location and type, location of a 
multimedia information and software information to play this multimedia can both be got. object on the 
location that contains and software to play the multimedia information. When you create a datasource 
object, it can be sent to player object, while player don’t care how the data source is obtained, and format 
is. In addition, multiple datasources can be merged into one datasource. 

2.3 Player 

Player object takes the audio, video data stream as input, and then the audio signal is sent to the 
speaker, and the video data sent to the same screen, such as player reads data from digital video. 

2.4 Processor 

Processor interface inherits the player interface. So, it not only has the function of player object, but 
also can process or interpret media data, and then process outputs media data in a fit format, and the 
output goal can be local output device, local files or network. In addition, saving streaming media, format 
conversion, and transmitting stream media can only use processor. 

2.5 Format 

Format object saves the format information of media. Class format has subclass : AudioFormat and 
VideoFormat. VideoFormat describes the type of video data such as H.363 and so on, and has six 
subclass: H361Format, H363Format, IndexedColorFormat, JPEGFormat, RGBFormat and YUVFormat 



1852   Fengguang Xiong and Zhiyan Jia  /  Physics Procedia   25  ( 2012 )  1850 – 1856 

class [3]. AudioFormat describes the properties of AudioFormats such as sampling frequency, data bits 
per sample and so on.. 

2.6 DataSink 

DataSink is used to read the media data of datasource and output it to a specific destination. A specific 
datasink object can output data to a file, or transmit data through the network, or broadcast by RTP. Same 
as player, datasink need a datasource object as a parameter, which can be constructed by manager. 

2.7 Manager 

Manager controls how to construct player, processor, datasource object and integrates seamless new 
application and JMF. JMF provides four Managers: Manager, PackageManager, CaptureDeviceManager 
and PlugInManager. 

3. Design and Implemention of Telemedicine  

The function of telemedicine system mainly includes: capturing, compression, storage, transmission, 
reception and play of audio and video. 

3.1 Capturing of audio and video data 

Real-time audio and video captured from the patient (or doctors) is sent to the doctor(or the patient) to 
playback, which mainly involves in capturing, compression, storage, transmission, reception and 
playback. JMF can be used to achievement easily these five stages. 

Stage 1: according to the selected audio and video formats to locate audio and video equipment and 
take the first device of the list. Codes are shown as follows. 

Vector audioDevList =CaptureDeviceManager.getDeviceList 
(new AudioFormat("linear",44100,16,2)); 
Vector videoDevlist = CaptureDeviceManager.getDeviceList 
(new VideoFormat(VideoFormat.JPEG)); 
CaptureDeviceInfo audioDI =(CaptureDeviceInfo) audioDev- 
List.firstElement(); 
CaptureDeviceInfo videoDI =(CaptureDeviceInfo) videoDev- 
list.firstElement(); 
Stage 2: Obtaining MediaLocator object from the audio and video object and creating audio and video 

data streams. Codes are shown as follows. 
DataSource[] ds = new DataSource[2]; 
ds [0] = Manager.createDataSource(audioDI.getLocator()); 
ds [1] = Manager.createDataSource(videoDI.getLocator()); 
Stage 3: To be able to play, save and transmit audio and video data at the same time, audio and video 

data must be encapsulates as a cloneable data source. Codes are shown as follows. 
ds[0]=Manager.createCloneableDataSource(ds[0]); 
ds[1]=Manager.createCloneableDataSource(ds[1]); 
DataSource[] clonedDS=new DataSource[2]; 
clonedDS [0]= (SourceCloneable)ds[0].createClone(); 
clonedDS [1]= (SourceCloneable)ds[1].createClone(); 
Stage 4: Creating player object using the cloned datasource. Codes are shown as follows. 



 Fengguang Xiong and Zhiyan Jia  /  Physics Procedia   25  ( 2012 )  1850 – 1856 1853

Player audioPlayer=Manager.createPlayer(camDS[0]); 
Player videoPlayer=Manager.createPlayer(camDS[1]); 
audioPlayer.realize(); 
audioPlayer.start(); 
videoPlayer.realize(); 
videoPlayer.getControlPanelComponent(); 
videoPlayer.getVisualComponent(); 
videoPlayer.start(); 
Data flow diagram of capturing audio and video data is shown as figure 1. 

3.2 Compression and storage of audio and video data 

There are four steps shown as follows. 
Step 1: Cloning datasource of audio and video. Codes are shown as follows. 
DataSource[] clonedDS=new DataSource[2]; 
clonedDS [0]= (SourceCloneable)ds[0].createClone(); 
clonedDS [1]= (SourceCloneable)ds[1].createClone(); 
Step 2: Merging audio and video data stream. Codes are shown as follows. 

Start

Getting collection equipment

Getting the name of first device

Getting the location of the device

Getting datasource

End

false

true
Device list is null

Figure 1 Capturing of audio and video data 

DataSource mgDS =Manager.createMergingDataSource 



1854   Fengguang Xiong and Zhiyan Jia  /  Physics Procedia   25  ( 2012 )  1850 – 1856 

(clonedDS); 
Step 3: creating Processor object by cloned datasource object. Codes are shown as follows. 
Processor processor = Manager.createProcessor(clonedDS); 
Step 4: Invoking methods of getTrackControls and setFormat on each track. Codes are shown as 

follows. 
VideoFormat videoFmt = new VideoFormat(VideoFormat 
.JPEG); 
AudioFormat audioFmt = new AudioFormat(AudioFormat 
.LINEAR); 
(processor.getTrackControls())[0].setFormat(audioFmt); 
(processor.getTrackControls())[1].setFormat(videoFmt); 
Step 5: Creating a MediaLocator object used to specify a location to save the file. 
MediaLocator dest = new MediaLocator ("file:///c:/f1.mov"); 
Step 6: Creating datasink object with datasource outputted by processor object, and writing data to the 

specified format file. Codes are shown as follows. 
processor.setContentDescriptor (new FileTypeDescriptor( 
FileTypeDescriptor.QUICKTIME)); 
StreamWriterControl control = processor.getControl  
("javax.media.control.FrameRateControl") 
control.setStreamSizeLimit(1000000000); 
DataSink datasink = Manager.createDataSink(processor 
.getDataOutput(), dest); 
processor.start(); 
datasink.open(); 
datasink.start(); 

3.3 Transmission of audio and video 

Transmitting data in the network can use TCP and UDP. TCP is connection-oriented and more reliable, 
so it is applied to the application which doesn’t allow data loss, such as file transfer. The UDP doesn’t 
need to establish connection, so it is more applied to the application which requests faster processing 
speed, higher reliable data transfer, such as data broadcasting. The transmission of audio and video 
requires highest real-time, so UDP is more suitable to transmit data. But considering of UDP is not 
reliable transmission and easy to loss packet, RTP and RTCP based on UDP is most suitable to transmit 
data. RTP is used to transmit data and RTCP is used to control RTP. The processing steps are shown as 
follows. 

Step 1: Creating a RTPManager object with a static newInstance method of RTPManager. 
Step 2: Using the initialize (RTPConnector) method of RTPManager to set the local session's address 

and port, and destination address and port. 
Step 3: Using RTPManagecreateSendStream(DataSource dataSource, int streamIndex) method to 

create the output stream, and write the encoded signal obtained into the output stream in order to send. 
Step 4: Invoking start method of output stream to send data stream. 
Data flow diagram of transmitting audio and video is shown as figure 2. 



 Fengguang Xiong and Zhiyan Jia  /  Physics Procedia   25  ( 2012 )  1850 – 1856 1855

Starting to send data

Initializing RTPManager

Creating data stream for sending

Setting local address and port

Setting destination address and port

Figure 2 Transmission of audio and video 

3.4 Reception and play of audio and video 

Reception and play of audio and video uses RTP to receive and play signal, and uses RTCP to manage 
session. The process steps are shown as follows. 

Step 1: Setting RTP manager 
Creating and initializing RTP manager. 
Using addReceiveStreamListener(ReceiveStreamListener) method to add RTP event 
listener for RTPManager. 
Setting local address and port, and destination address and port. 

Step 2: RTP event handling. 
Listener monitors NewReceiveStreamEvent event that the RTPManager receives 
Obtaining input stream by getReceiveStream method. 
Obtaining data source received by getDataSource method of this input stream. 
Creating player by received datasource. 
Adding listener to the player by addControllerListener(ControllerListener) method, and 
changing the state of listener. 
Instancing a player and changing its state from unrealized to realized.  

Step 3: Player event handling. 
Listener monitors RealizeCompleteEvent event receive. 
Getting a player object by getSourceController method of this event. 
Getting a visual component by this player, and judging whether this component is null. 
If component is not null, showing this component and playing audio and video. If 
component is null, playing direct audio and video Video signal has a visual component to 
show video, and audio signal has not visual component. 



1856   Fengguang Xiong and Zhiyan Jia  /  Physics Procedia   25  ( 2012 )  1850 – 1856 

Data flow diagram of receiving and playing audio and video is shown as figure 3. 

4. Conclusion 

Telemedicine is based on JMF framework which has feature of cross-platform. Capturing, compression, 
storage, transmission, reception and play of audio and video is implemented with JFM. Experimental data 
prove that the system is low cost hardware, easy to transmission and storage, of security and stability, of 
portability and scalability. Further function is to implement remote education to perfect the system. 

Start

                

Obtaining visual component

Starting to Play

false

true

Receiving RealizeCompleteEvent event

Is visual component

Figure 3. Reception and play of audio and video 

References 

[1] Peredia D A.Telemedicine Technology and Clinical Applications .JAMA, 1995, 273(6):483. 
[2] JMF 3.0 API Guide http://Java.sun.com/products/Java-media/jmf/3.1.1/specdownload.html. 
[3] Christopoulos C, Skodras A, Ebrahimi T. The JPEG2000 Still Image Coding System: An 

Overview. IEEE Transactions on  ConsumerElectronics, 2000, 46(4): 1103-1127. 
[4] Helen K.Li. Telemedicine and Ophthalmology. Survey of Ophthalmology, Volume 44, Issue 1, 

8 July 1999, Pages 61-72 
[5] Takashi Takahashi. The present and future of telemedicine in Japan. International Journal of 

Medical Informatics, Volume 61, Issues 2-3, May 2001, Pages 131-137. 
[6] Chung-Chih Lin, Heng-Shuen Chen, Ching-Yu Chen, Sheng-Mou Hou. Implementation and 

evaluation of a multifunctional telemedicine system in NTUH. International Journal of Medical 
Informatics, Volume 61, Issues 2-3, May 2001, Pages 175-187. 

[7] Brett C. Meyer, Rema Raman, Marcus R. Chacon, Matt Jensen, Janet D. Werner. Reliability of 
Site-Independent Telemedicine when Assessed by Telemedicine-Naive Stroke Practitioners. Journal of 
Stroke and Cerebrovascular Diseases, Volume 17, Issue 4, July-August 2008, Pages 181-186. 


