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Using Drinfeld modular curves we determine the places of supersingular reduc-
tion of elliptic curves over F2r(T ) with certain conductors. This enables us to classify
and describe explicitly all elliptic curves over F2r(T ) having a conductor of
degree 4. Our results also imply that extremal elliptic surfaces over the algebraic
closure of F2 are unirational. � 2001 Academic Press

0. INTRODUCTION

It is well known that the conductor of a non-constant elliptic curve over
a rational function field Fq(T) is a divisor of degree at least 4.

In this paper we classify explicitly all elliptic curves over F2r(T ) with a
conductor of degree 4.

Since in characteristic 2 (and 3) the exponent of a prime divisor in the
conductor can be bigger than 2, there are 11 possibilities for the decom-
position of such a conductor into prime divisors of F2r(T). Namely, there
are 5 semistable (i.e. square-free) types, 3 types without multiplicative
reduction, and 3 mixed types.

The curves without multiplicative reduction (treated in Section 6) are
different from the others as they turn out to be twisted constant curves.

The classification of the curves with a place of multiplicative reduction is
carried out in Sections 3 to 5. To find their equations we apply the same
strategy that was used in [Ge3] and [Ge4] to classify elliptic curves in
characteristics 2 and 3 with conductors � } T n:

(1) Find the places of supersingular reduction of the elliptic curves
with such a conductor.
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(2) This restricts the possible prime divisors of the j-invariants of
these curves.

(3) Use Tate's algorithm to determine the conductors of the
``untwisted'' elliptic curves with the possible j-invariants.

(4) Describe the effect of twisting on the conductor.

(5) Divide the curves with the wanted conductor into isogeny classes.

The first step relies on the fact that these elliptic curves are isogeny factors
of the Jacobian of a Drinfeld modular curve (at least after a suitable con-
stant field extension and a suitable transformation of T ). It is clearly the
key step. In order to make it work for our conductors we have to refine the
method by taking into consideration the Atkin�Lehner involution of the
Drinfeld modular curve (Section 2). In view of Theorem 1.5 this restricts us
to characteristic 2, in contrast to the experience that this characteristic
usually causes the most problems.

Many of our results, for example Proposition 2.3 and the numbers of
isogeny classes, have first been guessed from the tables (for q�16) in
[Ge1].

An elliptic curve E over Fq(T ) can also be interpreted as an elliptic
surface over Fq . Here by an elliptic surface we mean an elliptic fibration
S � C with a base curve C and a section. Recall that over an algebraically
closed field of positive characteristic an elliptic surface which has at least
one bad fiber is called extremal if its Picard number \ equals its second
Betti number b2 and its Mordell-Weil rank r is 0.

If the conductor of E�Fq(T ) has degree 4, the corresponding elliptic
surface will be extremal; and conversely, every extremal elliptic surface over
the algebraic closure of a finite field is obtained in this way. This results
from the formula

r+b2&\=4g(C)&4+deg(conductor),

valid also in characteristic 2 and 3. (Compare Proposition 4.2 in [Ito] and
Section 1 of [Sh]).

In [La1] and [La2] W. Lang has determined all extremal rational ellip-
tic surfaces in all positive characteristics. It turns out that in our situation
every Frobenius isogeny class contains at least one curve such that the
corresponding elliptic surface over F2 is listed in [La1] or [La2]. Thus
our results also provide a partial answer to Problem 3.4 in [Ito]:

Proposition. Every extremal elliptic surface over the algebraic closure
of F2 is unirational.
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1. BASIC FACTS

Throughout this paper Fq will be a finite field of characteristic 2 with q
elements. We denote by A the polynomial ring Fq[T] and by K its quotient
field Fq(T ).

The choice of T distinguishes a place � of K corresponding to the degree
valuation. The places of K different from � correspond to the monic
irreducible polynomials in A, which we will occasionally also call primes.
Often we will refer to a K-rational place T&t simply as the place t.

Also, for the decomposition type of a divisor we use a notation that
should be self-explaining; for example the divisor � } T 3(T 2+T+1) of
F2(T ) is of type (1, 13, 2).

We will quite frequently use the fact that Aut(K�Fq) is isomorphic to
PGL2(Fq), where a matrix ( a

c
b
d) acts on K by the Mo� bius transformation

T [ aT+b
cT+d .

In characteristic 2 the well-known formulas for the discriminant and the
j-invariant of an elliptic curve E in long Weierstra? form

Y 2+a1 XY+a3Y=X3+a2 X2+a4X+a6

simplify to

2=a6
1a6+a5

1a3 a4+a4
1a2a2

3+a4
1a2

4+a4
3+a3

1a3
3

and

j(E )=a12
1 �2.

Depending on the j-invariant we can find shorter normal forms.

Proposition 1.1. Let E be an elliptic curve over K with j(E)=0. Then
there exist a3 , a4 , a6 # A and d # N0 such that

Y 2+a3 Y=X3+a4 X+a6

is a model of E which is minimal at all places different from � and

Y 2+
a3

T 3d Y=X3+
a4

T 4d X+
a6

T 6d

is minimal at �.
The discriminant of the above model over A is a4

3 .

Proof. Since A is a principal ideal domain, there exists a long
Weierstra? form over A which outside � is a minimal model for E.
Furthermore j=0 is equivalent to a1=0.
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A closer look at the transformations in Tate's algorithm ([Ta] or [Si2])
that are necessary to make the model minimal at � shows that these can
be carried out on the equation over A without destroying the minimality
at the finite primes.

Finally, by the shift X [ X+a2 we can get rid of a2 . K

Elliptic curves E over K with j(E){0 can be written in normal form

Y 2+XY=X 3+a2X 2+a6 ,

where a6= 1
j(E )

and a2 # K (compare [Si1] Appendix A). Then 2=a6 .
If j(E ){0, then every elliptic curve over K with the same j-invariant is

a quadratic twist of E. Indeed, replacing a2 in the above normal form by
a2+: with : # K corresponds to twisting E by the extension L=K(;) with
;2+;=:. The conductor of L is also called the conductor of the twist :.

For every field k of characteristic 2 we write ^(k) for the image of k
under the additive map x [ x2+x.

Thus replacing a2 by a2+: with : # ^(K) doesn't change the curve.
Replacing a2 by a2+: with : # Fq&^(Fq) means twisting E by the quad-
ratic constant field extension Fq2(T) of K. This twist changes neither the
conductor nor the type of reduction (supersingular, additive, multi-
plicative) but it multiplies the values $p by (&1)deg(p) where we use the
convention $p=1 (resp. $p=&1) if the multiplicative reduction at p is
split (resp. non-split).

More generally, we have

Theorem 1.2 [Ge3].

(a) The exponents f (E ), f (:), and f (E:) of a place p in the conductors
of the elliptic curve E, the quadratic twist :, and the twisted curve E: are
related by

f (E:)�max[ f (E), 2f (:)],

with equality in case f (E){2f (:).

(b) Modulo the trivial twists ^(K) and modulo the twist by the
constant field extension, the quadratic twists that are unramified outside the
place T are the ones of the form

:=:1T &1+:3T &3+ } } } +:2d&1T &(2d&1)

where :i # Fq and :2d&1 # F_
q . The conductor of such a twist is T 2d.

If the j-invariant of an elliptic curve E over K is not constant, the
K-isogeny class of E contains infinitely many K-isomorphism classes since
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we can apply the Frobenius isogeny (i.e., squaring the coefficients of the
equation) again and again.

Since Y 2+XY=X 3+a2X2+ 1
j(E)

is isomorphic to Y 2+XY=X 3+a2
2X 2

+ 1
j(E )

, we see that a curve is ``Frobenius-minimal'' if and only if j(E ) is not
a square in K. In Sections 3 to 5 we will describe K-isogeny classes by
specifying their Frobenius-minimal curves. The following simple fact is
fundamental for our calculations.

Proposition 1.3. Let j(E)= f (T)
g(T)

with relatively prime f (T ), g(T ) # A be
the j-invariant of the elliptic curve E over K. Then:

(a) Only primes of bad reduction can divide g(T). All primes of multi-
plicative reduction divide g(T ).

(b) Only primes of additive or supersingular reduction can divide f (T ).
All primes of supersingular reduction divide f (T).

(c) If E has multiplicative reduction at �, then deg( f )>deg(g).

Proof. E has a model over A which is minimal at all finite places and
g(T ) divides its discriminant. If p is a place of multiplicative reduction,
then over the completion Kp of K either E or its twist by the unramified
quadratic extension of Kp is a Tate curve, so j(E ) has a pole at p.

Statement (b) follows easily from (a) and the fact that an elliptic curve
in characteristic 2 is supersingular if and only if its j-invariant is 0. K

To get a handle on the places of supersingular reduction we have to
make a detour involving Drinfeld modular curves. In particular we need
the (proven!) analogue of the conjecture of Shimura, Taniyama and Weil,
namely that the modular elliptic curves over K are exactly those that are
Tate curves at �.

Theorem 1.4 [G6R]. Every elliptic curve over K with conductor � } n
and split multiplicative reduction at � is K-isogenous to a one-dimensional
factor of the Jacobian of the Drinfeld modular curve X0(n).

The genus of a curve over a field of characteristic p is an upper bound
for the p-rank of its Jacobian. The curve is called ordinary, if this p-rank
equals the genus. For elliptic curves this is just the usual definition of being
ordinary as opposed to being supersingular.

The Drinfeld modular curves X0(n) are ordinary; in [G6R] their
Jacobians are described by means of certain multiplicative period lattices.
In Section 2 we will use the following theorem to show the ordinarity of the
reduction of X0(n) at certain primes and hence the ordinarity of certain
reductions of some modular elliptic curves.
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Theorem 1.5 [Cr], [Ray]. Let X be a curve over a field of charac-
teristic p, and let G be a finite p-group of automorphisms of X. Then the
following two conditions are equivalent:

(a) X is ordinary.

(b) G"X is ordinary and the second ramification groups of the covering
X � G"X are trivial.

2. THE PLACES OF SUPERSINGULAR REDUCTION

It is well known that for a prime p with p |% n the Drinfeld modular curve
X0(n) has good reduction mod p. We denote this reduction by X0(n)

t
.

The inner (i.e., non-cusp) points of X0(n)
t

correspond to isomorphism
classes of triples (,, u, �) where , and � are Drinfeld modules of rank 2 in
A-characteristic p and u is a cyclic n-isogeny from , to �. The
Atkin�Lehner involution Wn induces a nontrivial involution Wn

t
on X0(n)

t
,

which acts on these triples by mapping (,, u, �) to (�, ut, ,) where
ut b u=n in End(,).

We also need quaternion algebras for our proof but, strangely enough,
not the ones which are endomorphism rings of supersingular elliptic curves.

Let Hp be the quaternion algebra over K ramified at � and p. An
embedding of a quadratic order B into a maximal order O of Hp is called
optimal if the intersection of the quotient field of B with O is B and not a
bigger order.

Fix a maximal order O in Hp and a set of representatives Ii ,
i=1, ..., h(Hp) for the left ideal classes of O. Let Oi be the right order of the
ideal Ii . We denote by m(Bf , Oi) the number of optimal embeddings of the
inseparable order Bf=A[f - T] into Oi modulo conjugation by O_

i .

Lemma 2.1. If p |% f then

:
h(Hp)

i=1

m(Bf , Oi)=h(Bf),

where h(Bf) is the ideal class number of Bf .

Proof. Unfortunately, all the results in the literature on optimal embed-
dings of quadratic orders seem to be stated only for separable orders. It is
however not difficult to check that the arguments on pp. 96�101 of [Ei]
carry over to our situation. K

Lemma 2.2. Let n=T 3+aT 2+bT+c # A be a polynomial of degree 3.
There exists a unique s # Fq with s2=b. At all places outside � } n } (T&s)
the Drinfeld modular curve X0(n) has good and ordinary reduction.
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Proof. We fix a place p not dividing � } n } (T&s). It is well known
that the genus of X0(n)

t
is q or q&1 depending on whether n is square-free

or not.
So we only have to find q+1 (respectively q) fixed points of Wn

t
. Then

we will see from the Hurwitz formula that Wn

t
"X0(n)
t

has genus 0, that
there are no other fixed points, and that the second ramification groups of
Wn

t
are trivial. Since Wn

t
"X0(n)
t

, being a rational curve, is trivially
ordinary, Theorem 1.5 then will imply that X0(n) mod p is ordinary.

To construct the fixed points we use the embeddings of BT&s into Oi .
Writing - n=l(T)+(T&s) - T with l(T) # A, one easily sees the following
chain of equivalences:

(T&s) | n � (T&s) | l(T) � (T&s)2 | n � n has a multiple root.

Putting *=l(T )+(T&s) - T, each embedding of BT&s into an Oi

corresponds to some * # Oi with *2=n. If the embedding is optimal, * is
primitive, i.e., cannot be divided in Oi by any non-constant a # A. If n is
square-free, the optimal embedding of B1 gives rise to another primitive *
in some Oi , because (T&s) |% l(T ). By Lemma 2.1 the number of these
primitive * up to conjugation by O_

i thus is h(BT&s)+h(B1)=q+1 for
square-free n, and h(BT&s)=q otherwise.

According to [Ge2], the isomorphism classes of supersingular Drinfeld
modules of rank 2 in A-characteristic p are in bijection with the left ideal
classes of O, their endomorphism rings being isomorphic to the right orders
Oi . Thus every primitive * # Oi with *2=n gives rise to a triple (,i , *, , i)
invariant under Wn

t
. (The primitivity guarantees that * # Oi=End(,i) has

cyclic kernel.) Of course, conjugates of * by O_
i give isomorphic triples and

hence the same fixed point.
So we have constructed enough fixed points, up to one subtlety. We have

to exclude the possibility that together with *2=n for * # Oi we also have
(=*)2=n for some 1{= # O_

i , because both elements would lead to the
same fixed point.

Obviously, (=*)2=n=*2 can only occur if = doesn't commute with *.
One easily verifies that in this situation [1, =, *, =*] is the A-basis of an
order in Hp and that the discriminant of this order is n2. Together with
p |% n this contradicts the fact that Hp is ramified at p.

Hence we have found enough fixed points and the proof is complete. K

Proposition 2.3. Let E be an elliptic curve over K with conductor � } n
where n=T 3+aT 2+bT+c # A is a polynomial of degree 3. There exists a
unique s # Fq with s2=b.
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(a) At all places outside � } n } (T&s) the curve E has good and
ordinary reduction.

(b) At the places dividing � } n and different from T&s the reduction
of E is multiplicative.

(c) If (T&s) | n, then E has additive reduction at T&s. If (T&s) |% n,
the reduction of E at T&s is supersingular.

Proof. Replacing E by its twist with the quadratic constant extension of
K if necessary, we may suppose that E is a Tate curve at �. Then (a)
follows from combining Theorem 1.4 with Lemma 2.2.

If n has a multiple root, this root obviously must be s. This already
proves statement (b).

Equally easily one shows that s cannot be a simple root of n, which
settles the first half of (c). Finally, j(E ) must have a pole at �. By Proposi-
tion 1.3 the only possible prime divisor of the numerator of j(E) is T&s.
This shows the supersingularity of the reduction mod (T&s) in case
(T&s) |% n. K

The remainder of this section will not be needed in the sequel, but is
interesting in its own right.

We want to indicate that the method of proof of Lemma 2.2 can be
generalized. Namely, instead of Wn we may use partial Atkin�Lehner
involutions Wm of X0(n). We refer to [Sch1] for an account of their most
important properties.

Every m # A can be written as m=c2+d2T with uniquely determined
c, d # A. We write d(Wm) for the d defined by m in this way. Obviously the
polynomial T&s in Lemma 2.2 is a special case of this.

Lemma 2.4. Suppose n # A is square-free, and let G be a subgroup of the
Atkin�Lehner involutions of X0(n). If the prime p # A satisfies the following
three conditions:

(a) p |% n,

(b) the curve G"X0(n) has ordinary reduction mod p,

(c) p |% d(Wm) for all Wm # G,

then the reduction of X0(n) mod p is ordinary.

Sketch of proof. For square-free n we have a complete description of
the fixed points of all Atkin�Lehner involutions Wm on X0(n) (compare
Lemma 12 in [Sch1] and its proof). The fixed points of Wm

t
on the reduc-

tion of X0(n) mod p for p |% n involve supersingular Drinfeld modules ,
such that End(,) contains an optimally embedded Bf with f | d(Wm). If
p |% d(Wm), one can conclude from Lemma 2.1 that Wm

t
has as many fixed
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points on X0(n)
t

as Wm has on X0(n). Since the second ramification groups
of Wm are trivial, by the Hurwitz formula the same must hold for Wm

t
.

Theorem 1.5 completes the proof. K

At the price of making the description more technical we could even give
a more general version of Lemma 2.4 for arbitrary n, but one doesn't seem
to gain much.

Obviously, we can only make use of this lemma if we have some control
over the curve G"X0(n). This is the case for example if G"X0(n) is rational
or if it is elliptic and we know its places of supersingular reduction. There
are only finitely many such curves with deg(n)�4. They are listed in
[Sch2].

Take for example q=2 and n=T(T 4+T 3+1), and let G be the full
group of Atkin�Lehner involutions of X0(n). As described in [Sch2]
Propositions 5.6 and 4.5, in this case G"X0(n) is an elliptic curve of
conductor � } (T 4+T 3+1) and isogenous over F2(T) to Y 2+TXY+Y=
X 3+X 2. One easily verifies that T is the only place of supersingular reduc-
tion of this elliptic curve. For the non-trivial elements of G we have d(WT)
=1, d(WT 4+T 3+1)=T, and d(Wn)=(T+1)2. Hence for q=2 the curve
X0(T(T 4+T 3+1)) has good and ordinary reduction at all places outside
� } T(T 4+T 3+1)(T+1).

Now if q=2 and n # A, the covering X0(T 2n) � X0(Tn) is galois of
degree 2. Moreover it is unramified outside the cusps. Since for every place
p not dividing � } Tn the reduction map mod p is injective on the set of
cusps, we can use Theorem 1.5 to show inductively that X0(T nn) has
ordinary reduction mod p provided we know that X0(Tn) has.

By similar arguments we obtain

Proposition 2.5. Let E be an elliptic curve over F2(T) with conductor
� } n. If n and m are positive integers, then we obtain the following table of
possible places of supersingular reduction of E (see Table 1).

TABLE 1

n No supersingular reduction outside

T n ��
T n(T 2+T+1) T+1

T n(T 3+T 2+1) T+1
T n(T 3+T+1) T+1

T n(T 4+T 3+1) T+1
T n(T+1)m ��

T n(T+1)m (T 2+T+1) ��
T n(T+1)m (T 3+T+1) T 2+T+1

39ELLIPTIC CURVES IN CHARACTERISTIC TWO



Together with Proposition 1.3 this yields strong restrictions on the
possible j-invariants of such curves.

3. CURVES WITH 4 RATIONAL PLACES OF MULTIPLICATIVE
REDUCTION

We begin our classification with the case where the curve has four
K-rational places of multiplicative reduction. After applying a Mo� bius
transformation we may suppose that �, 0, and 1 are among these places.

Lemma 3.1. If there exists an elliptic curve E over K with multiplicative
reduction at the four different K-rational places �, 0, 1, b and good
reduction elsewhere, then b must be a third root of unity; in particular K must
contain the field F4 .

Moreover, if E is Frobenius-minimal and k, l, m, n denote the pole orders
of j(E) at �, b, 0, 1, repectively, then we must have k+l+m+n=12 and
k#l#m#n#\1 mod 4.

Proof. We divide the somewhat lengthy proof into three steps.

Step 1. There exists a unique s # Fq with s2=b. Combining Proposi-
tions 1.3 and 2.3 we see that the j-invariant of E must be of the form

j(E )=
(T&s)d

=(T&b) l T m(T&1)n

with = # F_
q , d, l, m, n # N and d>l+m+n. We consider the normal form

Y 2+XY=X 3+a2 X 2+
1

j(E )
.

Making this equation integral, we see from the discriminant that d must be
a multiple of 12, say d=12e, for otherwise E would have bad reduction at
T&s. Furthermore, since we assume E to be Frobenius-minimal, at least
one of the numbers l, m, n must be odd.

Step 2. We examine the ``untwisted'' form of our curve, i.e., the one
with a2=0. Its integral model is

Y 2+(T&s)2e XY=X 3+=(T&b) l T m(T&1)n.

Executing Tate's algorithm ([Ta] or [Si2]) to determine the exponent of
T&s in the conductor we need a shift Y [ Y+r with r # Fq such that

H :=r2+=(T&b) l T m(T&1)n

is divisible by T&s.
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As H#=(s2+s) l&1 sm(s+1)n (l+m(s+1)+ns)(T&s) mod (T&s)2, we
see that (T&s)2 | H � l#m#n mod 2, because s is different from 0 and 1
and not all of l, m, n are even.

Let's assume (T&s)2 | H for the moment and write l=2*+1,
m=2++1, n=2&+1. Then we have

H==(s2+s)2* s2+(1+s)2& (1+s+s2+*++(1+s)2+&s2)(T&s)2

+=(s2+s)2* s2+(1+s)2& (T&s)3+higher terms in (T&s).

Hence (T&s)3 | H if and only if 1+s+s2=0 and *#+#& mod 2.
Now one easily verifies that the conductor of the ``untwisted'' curve is

� } T(T&1)(T&b)(T&s)12e&4 if (T&s)2 | H, and

� } T(T&1)(T&b)(T&s)12e if (T&s)2 |% H.

Step 3. Now we are looking for a suitable a2 to get rid of the bad
reduction at T&s. Let's first suppose (T&s)2 |% H. By Theorem 1.2
the conductor of the twist a2 must be (T&s)6e for otherwise we would
have bad reduction at T&s or additive reduction elsewhere. Thus
a2=:6e&1(T&s)&(6e&1)+ } } } +:1(T&s)&1. The integral model is now

Y 2+(T&s)3e XY=X 3+(:6e&1(T&s)+ } } } +:1(T&s)6e&1) X 2

+=(T&s)6e (T&b) l T m(T&1)n.

Tate's algorithm reveals immediately that this curve has bad reduction at
T&s.

Similarly, Tate's algorithm shows that e>1 always leads to bad reduc-
tion at (T&s). Hence e must be 1 and therefore k+l+m+n=12e=12.

Finally, applying Tate's algorithm under the conditions (T&s)2 | H and
e=1, we see that E can only have good reduction at (T&s) if (T&s)3 | H.
As discussed in Step 2, this implies that s, and hence b, is a third root of
unity and it also implies the congruence condition for k, l, m, n. K

Theorem 3.2. Elliptic curves over K with multiplicative reduction at four
K-rational places and good reduction elsewhere exist if and only if F4 �K.
There exists an Fq -automorphism of K that maps the 4 rational places to
�, 1, s, s2 where s is a third root of unity.

Over every field K=Fq(T ) with F4 �Fq there are eight K-isogeny classes
of elliptic curves with conductor � } (T&1)(T&s)(T&s2). The Frobenius-
minimal curves of four of these isogeny classes are listed in Table 2, where
curves in the same box belong to the same class. The other four classes are
obtained by twisting with the quadratic constant field extension of K.
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TABLE 2

No. Equation 2

(3333) Y 2+TXY+Y=X 3+T 3+1 (T 3+1)3

(9111) Y 2+TXY+Y=X 3 T 3+1
(1911) Y 2+TXY+Y=X 3+T 2(T 3+1) (T+1)9 (T 2+T+1)
(1191) Y 2+s2TXY+Y=X 3+sT 2(T 3+1) s(T+1)(T+s)9 (T+s2)
(1119) Y 2+sTXY+Y=X 3+s2T 2(T 3+1) s2(T+1)(T+s)(T+s2)9

(5511) Y 2+TXY+Y=X 3+X 2+T (T+1)5 (T 2+T+1)
(1155) Y 2+TXY+Y=X 3+X 2+T 5+T 2+T (T+1)(T 2+T+1)5

(5115) Y 2+sTXY+Y=X 3+X 2+sT s(T+1)(T+s)(T+s2)5

(1551) Y 2+sTXY+Y=X 3+X 2+s2T 5+s2T 2+sT s2(T+1)5 (T+s)5 (T+s2)

(5151) Y 2+s2TXY+Y=X 3+X 2+s2T s2(T+1)(T+s)5 (T+s2)
(1515) Y 2+s2TXY+Y=X 3+X 2+sT 5+sT 2+s2T s(T+1)5 (T+s)(T+s2)5

The number (klmn) gives the pole order of the j-invariant (in this case
T 12�2) at �, 1, s, and s2, respectively. All these curves have supersingular
reduction at the place 0, but nowhere else.

Over F4(T ) we have the types of multiplicative reduction listed in Table 3.

Proof. We can apply a Mo� bius transformation such that the multi-
plicative reduction of our curve E is located at �, 0, 1, and b with a
suitable b # Fq . By the previous lemma this implies F4 �K and b=s2. Now
we translate T [ T+s; then the conductor is � } (T&1)(T&s)(T&s2).

Moreover, Lemma 3.1 shows that E (if Frobenius minimal) has a model

Y 2+XY=X 3+:X 2+
=(T&1) l (T&s)m (T&s2)n

T 12

with = # F_
q , : # K, l+m+n<12 and l#m#n# \1 mod 4.

The curve with :=0 has conductor � } T 8(T&1)(T&s)(T&s2). If we
want to get rid of the bad reduction at T without creating additive reduc-
tion somewhere else, by Theorem 1.2 the conductor of the twist : must be
T 4, i.e. :=:3 T &3+:1T &1 with :3 # F_

q and :1 # Fq .

TABLE 3

Isogeny class $� $1 $s $s2

(3333), (9111), (1911), (1191), (1119) 1 1 1 1
(5511), (1155) 1 1 &1 &1
(5115), (1551) 1 &1 &1 1
(5151), (1515) 1 &1 1 &1
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Now the Tate algorithm shows that E has good reduction at T only for
:3=1, ==sn&m and :1 a value depending on l, m, and n. Carrying out all
the calculations one obtains the curves listed above.

The proof concerning the isogeny classes is postponed to Proposi-
tion 3.5. K

Remarks 3.3.

(a) The curve 1b' in table (9.3.) of [Ge1] is isomorphic over F2(T )
to the F4(T)-twist of our curve (3333).

(b) The equations of Theorem 3.2 give exactly the elliptic surfaces
listed in [La1]. Note however that the equations for the surfaces (5511)
and (3333) given on page 436 of [La1] contain some misprints.

Lemma 3.4. Let Ei (i=1, 2) be elliptic curves over a finite field Fq with
characteristic polynomials of the Frobenius X 2&aiX+q=(X&|i)(X&|� i ).
If over some finite extension of Fq both curves have the same number of
rational points, then

|1

|2

=
a1+- a2

1&4q

a2+- a2
2&4q

or
|� 1

|2

=
a1&- a2

1&4q

a2+- a2
2&4q

must be an m-th root of unity with m # [1, 2, 3, 4, 6, 8, 12].

Proof. If E1 and E2 have the same number of rational points over Fqm ,
then we must have |m

1 =|m
2 or |� m

1 =|m
2 , so |1 �|2 or |� 1 �|2 is an m th

root of unity. On the other hand, (a1\- a2
1&4q)�(a2+- a2

2&4q) is
contained in the compositum of two quadratic number fields. K

Proposition 3.5.

(a) The 3-torsion of the curve (3333) is K-rational. We show the
3-isogenies of (3333) in Table 4.

TABLE 4

Kernel Image

[0, (T 2, sT 3+s2), (T 2, s2T 3+s)] (9111)
[0, (T+1, 1), (T+1, T 2+T )] (1911)

[0, (sT+s2, 1), (sT+s2, sT 2+s2T )] (1191)
[0, (s2T+s, 1), (s2T+s, s2T 2+sT )] (1119)
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(b) The point (1, 1) is a 5-torsion point of the curve (5511). It
generates the kernel of a K-rational 5-isogeny from (5511) to (1155).

(c) The curves (3333), (5511), (5115), and (5151) are pairwise
nonisogenous over K.

Proof.

(a) The cyclic 3-torsion groups induce K-isogenies of the curve
(3333). The images must again be Tate curves at the places �, 1, s, and
s2, the pole order of the j-invariant being 1 or 9. By Theorem 3.2 the only
curves with these properties are (9111), (1911) etc. To see which kernel
corresponds to which image one looks at the behaviour under the transfor-
mation T [ sT.

(b) is proved similarly.

(c) An isogeny between any two of these curves would by use of the
map T [ sT imply that (5511) and (5151) are isogenous.

But over the field F4[T ]�(T 2+T+s) the curve (5511) has 20 rational
points whereas (5151) has 10. So the characteristic polynomials of the
Frobenius on these reductions are X 2&3X+16 and X 2+7X+16. Now
Lemma 3.4 shows that (5511) and (5151) are not isogenous over any K. K

4. CURVES WITH NONRATIONAL PLACES OF MULTIPLICATIVE
REDUCTION

Now we want to classify all semistable elliptic curves whose conductors
have degree 4 but do not split completely into prime divisors of degree 1
over K.

We begin with the case where the conductor splits into two linear and
one quadratic prime divisor.

Theorem 4.1. Elliptic curves over K with conductor of decomposition
type (1, 1, 2) exist only if there exisits an Fq -automorphism of K that
transforms the conductor into � } (T&1)(T 2+T+1). In particular, K
cannot contain the field F4 .

Over every field K=Fq(T ) with F4 �3 Fq there exist four isogeny-classes of
elliptic curves with conductor � } (T&1)(T 2+T+1) (see Table 5).

Proof. Suppose E has conductor of type (1, 1, 2). There exists a Mo� bius
transformation which maps one rational place of multiplicative reduction
to �. Then the conductor is � } n, where by a translation we can achieve
n=T 3+bT+c. Over the quadratic constant field extension, n splits into
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TABLE 5

No. Equation $� $1 $T 2+T+1

1 (3333), (9111), (1911) 1 &1 1
2 K(F4)&twists of no. 1 &1 1 1
3 (5511), (1155) 1 1 &1
4 K(F4)&twists of no. 3 &1 &1 &1

linear factors. By the results of Section 3 this implies b=0. As n has a root
in Fq , we may transform to n=T 3&1=(T+1)(T 2+T+1).

Since T 2+T+1 has to be irreducible, K cannot contain the field F4 .
Over the quadratic constant field extension K(F4), however, n splits into
linear factors and the reduction of E at � is split multiplicative. Hence (up
to Frobenius isogeny) E�K(F4) must be one of the curves in the table of
Theorem 3.2 and j(E ) must have the same pole order at s and s2.

Remains to show that the K(F4)-isogenies from (3333) to (9111) and
(1911) and from (5511) to (1155) are already defined over K. But this is
clear from the Galois action on the 3-torsion points (resp. 5-torsion points)
in Proposition 3.5. K

Theorem 4.2. Elliptic curves E over K with conductor of type (1, 3) exist
if and only if K contains F4 . Over every such K there are two PGL2(Fq)-
orbits of such conductors, namely the orbits of � } (T 3+c) and � } (T 3+c2)
where c is a fixed element of Fq that is not a third power.

The curves with conductor � } (T 3+c) form two isogeny classes. The first
class consists (up to Frobenius isogeny) of the curves listed in Table 6; the
other class consists of their unramified quadratic twists.

Proof. Let E be an elliptic curve over K with conductor of type (1, 3).
After Mo� bius transformation we may assume cond(E )=� } (T 3+bT+c).
Over the cubic constant field extension the polynomial (T 3+bT+c) splits
into linear factors. By Theorem 3.2 this implies b=0. Now A contains
irreducible polynomials of the form T 3+c if and only if F4 �K.

From Theorem 3.2 we also see that over the cubic constant field exten-
sion (where we can transform T 3+c into T 3&1) the curve E must be

TABLE 6

No. Equation 2 $� $T 3+c

(3333)$ Y 2+TXY+cY=X 3+c(T 3+c) c(T 3+c)3 1 1
(9111)$ Y 2+TXY+cY=X 3 c3(T 3+c) 1 1
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isomorphic to one of the curves listed above. By a standard Galois
cohomology argument this isomorphism is already defined over K. (Note
that the curves are not defined over a finite field and hence have
endomorphism ring Z and automorphism group [\1].)

As in Proposition 3.5 the 3-torsion point (0, 0) generates the kernel of a
rational 3-isogeny from (9111)$ to (3333)$. K

Lemma 4.3. Let E be a semistable elliptic curve over K with conductor of
degree 4. Then E has exactly one (rational) place of supersingular reduction.
If this place is �, then the conductor of E is of the form T 4+cT+d.

Proof. Over a big enough constant field extension L of K, the curve E
has four rational places t1 , t2 , t3 , t4 of multiplicative reduction. By the
previous results E has over L exactly one place of supersingular reduction.
This place is L-rational and since it is the only one, it must even be
K-rational.

Now suppose this place is �. There exists a Mo� bius transformation M
of L that maps t1 , t2 , t3 to �, 1, s, respectively where s is a third root of
unity. Theorem 3.2 then implies M(t4)=s2 and M(�)=0. Thus z [ 1

M(z)
is

an affine transformation of L. Hence cond(E ) is an affine transformation of
T(T&1)(T&s)(T&s2)=T 4+T. Consequently cond(E ) is of the form
T 4+cT+d. K

Theorem 4.4. Elliptic curves over K with conductor of type (2, 2) exist
if and only if K contains the field F4 .

Every such field has an Fq -automorphism that places the supersingular
reduction at � and transforms the conductor into (T 2+T+v)(T 2+T+
v+1), where v is a fixed element of Fq&^(Fq). There are 4 isogeny classes
of such curves, represented by the equations in Table 7 and their twists by the
quadratic constant field extension of K.

The curve (1155)" obtained from (5511)" by v [ v+1 is isogenous to
(5511)" or its unramified quadratic twist.

Proof. If we place the supersingular reduction at �, then by Lemma
4.3 the conductor is of the form (T 2+aT+e)(T 2+aT+e+a2). This is
easily transformed to (T 2+T+v)(T 2+T+v+1). As v � ^(Fq) and
v+1 � ^(Fq), we have 1 # ^(Fq), which is equivalent to F4 �Fq .

TABLE 7

No. Equation

(3333)" Y 2+XY=X 3+(T 3+(v2+v) T 2) X 2+(T 2+T+v)3 (T 2+T+v+1)3

(5511)" Y 2+XY=X 3+(T 3+(v2+v+1) T 2) X 2+(T 2+T+v)5 (T 2+T+v+1)
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Using the transformation T [ 1
T+* where *2+*=v, the divisors

(T 2+T+v) and (T 2+T+v+1) change to � } (T&1) and (T 2+T+1),
respectively. For example, from the curve (3333)" we obtain the *3-twist of
(3333) and from (5511)" we obtain the (*3+*2)-twist of (5511).

Every elliptic curve over K with conductor (T 2+T+v)(T 2+T+v+1)
must be isogenous to one of these two curves over the quadratic constant
field extension of K(*) and hence already over K(*). Thus we see that there
exist precisely the four isogeny classes described in the theorem. K

Lemma 4.5. Fq[T ] contains irreducible polynomials of the form T 4+
cT+d if and only if Fq doesn't contain F4 .

Proof. Suppose T 4+cT+d is irreducible. We can assume that Fq

contains a 3rd root of c. (If not we go over to the cubic extension of Fq ;
the polynomial remains irreducible.) So we can transform to T 4+T+d
(with a new d ).

Easy calculation shows that T 4+T+d can be written as a product of
two (not necessarily irreducible) quadratic polynomials if and only if this
decomposition is T 4+T+d=(T 2+aT+b)(T 2+aT+c) with d=bc,
b+c=a2, and a3=1.

If F4 �Fq and s # Fq is a primitive 3-rd root of unity, at least one of the
elements d, sd, or s2d=d+sd must lie in ^(Fq). So we can write
d=b2+a2b with a3=1 and consequently T 4+T+d is not irreducible.

If F4 �3 Fq , the criterion for T 4+T+d to split into two quadratic
polynomials is that d be of the form b2+b. There exists a d in Fq which is
not of this form. A fortiori d is not of the form x4+x=(x2+x)2+(x2+x).
Hence T 4+T+d has no linear factor either. So T 4+T+d is irreducible. K

Theorem 4.6. Elliptic curves over K with conductor a prime divisor of
degree 4 exist if and only if K doesn't contain the field F4 . Every such field
K has an Fq-automorphism that places the supersingular reduction at � and
transforms the conductor to T 4+T+d, where d is a fixed element in
Fq&^(Fq).

There are 2 isogeny classes of such curves, represented by Table 8.

TABLE 8

No. Equation

(3333)" Y 2+XY=X 3+(T 3+dT 2) X 2+(T 4+T+d )3

K(F4)-twist of (3333)" Y 2+XY=X 3+(T 3+dT 2+1) X 2+(T 4+T+d )3
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Proof. If E is such a curve, we see from Lemma 4.3 and 4.5 that
F4 �3 Fq . So we can transform the conductor to T 4+T+d. Over the quad-
ratic constant field extension, E must be isomorphic to the curve (3333)"
of Theorem 4.4. (Note that the K(F16)-twist of (3333)" is not defined
over K.) K

5. CURVES WITH MULIPLICATIVE AND ADDITIVE REDUCTION

If the conductor is of type (1, 13) we can transform it into � } T 3. More
generally, elliptic curves with conductor � } T n have been classified in
[Ge3] and [Ge4]. As a special case we have

Theorem 5.1. Over K=Fq(T ) there are 2(q&1) isogeny classes of
elliptic curves with conductor � } T 3. The q&1 different curves

Y 2+TXY=X 3+=T 5, = # F_
q

are the Frobenius-minimal curves of the q&1 different isogeny classes with
split multiplicative reduction at �. Their twists by the quadratic constant
field extension give the other q&1 classes.

Proof. [Ge4], Theorem (6.3) and Corollary (6.4). K

Next we are interested in curves with conductors of type (1, 1, 12). After
Mo� bius transformation we may assume that the conductor is
� } T 2(T+1). Combining the Propositions 1.3 and 2.3, we see that the
j-invariant of such a curve must be T k

=(T+1)l with = # F_
q and k>l>0.

The curve is Frobenius minimal if k or l is odd.

Lemma 5.2. Let k>l>0, not both even, and let = # F_
q . Then the elliptic

curve

Y 2+XY=X 3+=
(T+1) l

T k

has conductor � } T n(T+1) with

k+2 if 2 |% k,

n={k if 2 | k and k{2,

3 if k=2.

Proof. Tate's algorithm ([Ta]). K
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Lemma 5.3. Let E be an elliptic curve as in Lemma 5.2 with 4 | k and
k>4. Then the twisted curve

E: : Y 2+XY=X 3+
$

T k�2&1 X 2+=
(T+1) l

T k

has conductor

cond(E:)={� } T k&1(T+1)
� } T k(T+1)

if $ 2==,
if $2{=.

Proof. We shortly describe the case k=12e; the other two cases are
treated in the same way.

We start with the integral model

Y 2+T 3eXY=X 3+$TX 2+=T 6e(T+1) l

with 2=T 24e(T+1) l. Executing Tate's algorithm ([Ta]) in order to deter-
mine the exponent f of T in the conductor, we end up in the branch where
the cubic polynomial W3+a2, 1W 2+a4, 2W+a6, 3 (#W3+$W 2) has one
single and one double root modulo T. Thus f =24e&4&&.

Running through this branch we have to make the transformations

Y [ Y+_T 3e with _2== and

X [ X+{T 3e with ${2==.

The equation is now

Y 2+T 3eXY+{T 6eY=X 3+($T+{T 3e) X 2+(_+{2) T 6eX+=T 6e+2h(T )

with some h(T ) # A. The congruences

a3#{T 6e mod T 6e+1,

a4#(_+{2) T 6e mod T 6e+1

remain valid during the subsequent transformations.
If _{{2 (which is easily seen to be equivalent to $2{=), the polynomial

a2, 1X 2+a4, 6eX+a6, 12e&1 has distinct roots mod T. So in this case the
algorithm ends with &=12e&4 and hence f =12e=k.

If _={2 (i.e. if $2==) the algorithm stops at the next step with
&=12e&3 and f =k&1, because then Y 2+a3, 6eY&a6, 12e has distinct
roots mod T. K
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The Tate algorithm also shows that the curve

Y 2+XY=X 3+
$
T

X 2+=
(T+1) l

T 4

with l # [1, 3] and =, $ # F_
q has conductor � } T n(T+1) where

2 if $2===1,

n={3 if $2=={1,

4 if $2{=.

Combining the previous results with Theorem 1.2, we know the conductors
of all the twists of the curves in Lemma 5.2. In particular we obtain

Theorem 5.4. There are two isogeny classes of elliptic curves over K
with conductor � } T 2(T+1). The class with split multiplicative reduction at
� contains two Frobenius-minimal curves, namely

(31) Y 2+TXY=X 3+TX 2+T 2(T+1),

(13) Y 2+TXY=X 3+TX 2+T 2(T+1)3.

The other class is represented by their unramified quadratic twists.
The points 0, (T, T ), (T, T 2+T ) form the kernel of a K-rational 3-isogeny

from (31) to (13). (Compare the proof of Proposition 3.5.)

Corollary 5.5. There are no elliptic curves over K with conductor of
type (12, 2).

Proof. Over the quadratic constant field extension such a curve would
have a conductor of type (12, 1, 1) and its j-invariant would have the same
pole order at both places of multiplicative reduction. By Theorem 5.4 this
is impossible. K

Remark 5.6. Replacing T by =T in Theorem 5.1 one obtains the surface
VI from page 435 of [La2]. Moreover, applying the Frobenius once, twice,
or three times and making the equation minimal gives the surfaces V, IV,
III, respectively.

Equation (31) of Theorem 5.4 is isomorphic to the surface IX whereas its
image under Frobenius is a non-minimal model of surface VIII. The curve
(13) is the K(F4)-twist of the image of (31) under the transformation
T [ T

T+1 .
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6. CURVES WITH PURELY ADDITIVE REDUCTION

Finally we treat the remaining 3 types of conductors. The corresponding
curves are essentially different from those in the preceding three sections as
they will turn out to be (not necessarily quadratic) twists of constant
elliptic curves. Thus the results of this section do not depend on Section 2.

Theorem 6.1. Elliptic curves over K with conductor of type (12, 12) have
j-invariant 0.

More precisely, the curves with conductor �2 } T 2 are of the form

Y 2+=T 2Y=X 3+*T 4 or

Y 2+=TY=X 3+*T 2

with = # F_
q and * # Fq .

Proof. Let E be an elliptic curve over K with conductor �2 } T 2.
If E is not a twisted constant curve, j(E ) has a pole at � or T; lets say

at �. Consider the model

Y 2+XY=X 3+a2 X 2+
1

j(E )
.

Write a2=:+ a2
t with : # Fq[T ] and a2

t # 1
T Fq[[ 1

T]]. The twisted curve

E: : Y 2+XY=X 3+ a2
t X 2+

1
j(E )

is a Tate curve at � and the quadratic twist : is unramified outside �.
Thus E: has conductor � } T 2, which is impossible.

We could also argue that E is a quadratic twist of E: and hence by
Theorem 1.2 the exponent of � in cond(E ) cannot be 2. For the same
reason we cannot have j(E ) # F_

q , because then E would be a quadratic
twist of an elliptic curve with conductor 1.

So j(E )=0 and we can find a model

Y 2+a3 Y=X 3+a4 X+a6

as in Proposition 1.1. Thus a3==T e with = # F_
q .

The Tate algorithm shows that e # [1, 2] is a necessary condition for T
to have exponent 2 in cond(E ). Similarly ord1�T (T e&3d) must be 1 or 2.
Hence d=1 and consequently deg(a4)�4 and deg(a6)�6.
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Let's say e=2; the case e=1 will then show up by mapping T to 1
T .

Applying the Tate algorithm for the place T we see that E has a model

Y 2+=T 2Y=X 3+(;T 3+#T 4) X+*T 4++T 5+&T 6.

Applying the Tate algorithm for the place � to this equation, we see that
E even has a model

Y 2+
=
T

Y=X 3+
*

T 2 ,

which gives us the first equation of Theorem 6.1. K

Corollary 6.2. There are no elliptic curves over K with conductor of
type (22).

Proof. Over the constant field extension Fq2(T) such a curve would
have a conductor (T&u)2(T&v)2 and the exponents of (T&u) and (T&v)
in the discriminant would be equal. By Theorem 6.1 this is not possible. K

It was proved in [Ge3] that elliptic curves with conductor of type (1n)
are twisted constant. Proceeding as in the proof of Theorem 6.1 we obtain
the following more explicit result for n=4.

Theorem 6.3. There are two types of elliptic curves over K with conduc-
tor �4:

(a) curves with nonzero j-invariant, given by equations

Y 2+XY=X 3+$TX 2+
1
j

with j, $ # F_
q and their unramified quadratic twists (all together 2(q&1)2

isomorphism classes over K),

(b) curves with j-invariant 0. These are of the form

Y 2+=Y=X 3+*X++T+&

with =, + # F_
q and *, & # Fq .

Remark 6.4. Over the algebraic closure of F2 the first equation in
Theorem 6.1 is isomorphic to the surface VII on page 435 of [La2].

Mapping T to 1
T (i.e. changing the conductor to T 4) we see that the

equations in Theorem 6.3 give the surface II and among the one parameter
family of surfaces I those with j-invariant in F_

q .
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