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Abstract

This paper proposes a bivariate long term fuzzy inference system for time
series forecasting task in the field of freight market. Fuzzy time series methods
are applied by many scholars and it is broadly accepted pattern recognition
and forecasting tool. Previous studies mainly establish algorithms for high
frequency time series data such as daily and monthly intervals. The proposed
model performs similar techniques for long term annual base data and also
extends the conventional method with multi-variate heuristic algorithm.

Empirical work is accomplished on shipping freight rate data and life
expectancy is used as a leading indicator in the bivariate fuzzy time series

model.
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Bivariate Long Term Fuzzy Time Series Forecasting of Dry Cargo Freight Rates

I. Introduction

Importance of forecasting is unavoidable in business administration and
also in shipping business. Planning and strategy developing tasks are directly
depended on a prediction of future events. The traditional forecasting science
provided various methods including both extrapolation and causal reasoning
approaches. Many scholars suggest improvements of prediction accuracy
by moving average, auto regression, smoothing methods etc.."” One of the
critical drawbacks of statistical technique is arisen from several diagnostic
preconditions such as normality, stationarity etc. In practical business life,
most of the data is non-stationary and these data should be transformed
anyhow. Non-stationary forecasting studies deal with such problems.

Computer sciences improved prediction task by various approaches.

Artificial neural networks (ANNs) and fuzzy integrated studies are typical
computer pattern recognition techniques. After the development of the fuzzy
set theory (FST), a new generation of time series methodology is implemented
by fuzzy time series (FTS) approach.” FTS method does not require a
large sample data (but if it is available, recognition will be more accurate),
stationarity, normality, or a pure quantitative data. FTS can execute linguistic
variables, and the traditional fuzzification of time series is a transformation
of quantitative data to linguistic terms. It is generally based on the data
consolidation in intervals by a procedure.”

FTS method fundamentally combines two conventional tools; time series
clustering and rule-based forecasting. Time series clustering is used for
grouping large datasets and decreasing uncertainty. Rule-based forecasting
(RBF) is well suggested and applied by Collopy and Armstrong.” RBF is
designed as an expert system which is based on IF-THEN rules. In the FTS
method, dataset is transformed to fuzzy numbers which are connected to a
linguistic term and patterns of historical data is defined by rules of tracing.

If a fuzzy number, say 4, is followed by another fuzzy number, say B; it is a

1) Holt (1957); Winters (1960); Box and Jenkins (1970); Bowerman and O’Connell (1979); Harvey (1990) among others.
2) Zadeh (1965); Song and Chissom (1993a,b).

3) Palit and Popovic (2005).

4) Collopy and Armstrong (1992).
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simple rule that there is a forecasting rule between 4 and B which is B — A.
However, practical use consists of many fuzzy numbers and several rules.
FTS is developed and implemented by various studies”. Song and Chissom

first show the availability of the FST for analysis and forecasting of time

series”. Later, Chen developed the initial study, and improved arithmetic
operations rather than the logic max-min composition methodology of

Song and Chissom”. This method also provides robust predictions when the

historical data are not accurate for forecasting task. Huarng consolidated the

study of Chen with his heuristic rule structure.” Yu suggested a weighting
algorithm for fuzzy logical relationships (FLRs).” This study improves
that the highly probable movements have the higher effect on FLRs. That
process can be performed by an expert judgment, the latest FLR weighting
approach, or it can be calculated from the existence density of FLRs. Liu

extended the literature by trapezoidal design of FTS'”

. Chu et al developed a
model to implement causality of various time-series by fuzzy dual time series
algorithm."” This paper introduced a dual-factor approach to TAIEX (Taiwan
stock exchange capitalization weighted stock index) and NASDAQ (National
association of securities dealers automated quotations) index forecasting task,
and used dynamics of stock markets based on price-volume relationships.
Duru suggested fuzzy integrated logical forecasting model (FILF) and its
extended version (E-FILF) by error correction algorithm.'” FILF and E-FILF
algorithms are based on the first order, univariate FTS and its improvements
are derived from differencing, last value adjustment and error correction.
Both FILF and E-FILF applied to the case of forecasting Baltic Dry Index
(BDI) on monthly frequency and its superiority is presented among Chen and
Yu approaches.'” The present study applies percentage change transformation

and the first order bivariate solution. Tercentenary series of LFI is an

5) Song and Chissom (1993a, 1993b, 1994); Sullivan and Woodall (1994); Chen (1996); Hwang et. al. (1998); Chen and Hwang (2000);
Huarng (2001); Yu (2005); Huarng and Yu (2005, 2006); Liu (2007); Cheng et. al. (2008); Duru (2010).

6) Song and Chissom (1993a,b).
7) Chen (1996).

8) Huarng (2001).

9) Yu (2005).

10) Liu (2007).

11) Chu et. al. (2008).

12) Duru (2010).

13) Chen (1996); Yu (2005).

207



Bivariate Long Term Fuzzy Time Series Forecasting of Dry Cargo Freight Rates

annual frequency data and it should be preferred for long term strategically
extrapolations rather than short term monthly inferences of the FILF family
FTS. Duru and Yoshida improved econometric models of previous scholars
for freight rates and seaborne trade. The present paper applies fuzzy inference

to bivariate relations of LFI and life expectancy.'?

Long term freight rate index (LFI) and Life expectancy

The long term freight index (here after LFI) is first presented by Duru and
Yoshida."” The origin of LFI is based on combinations of 15 different series
of dry cargo freight rate and indices and also deflators are used for extracting
price inflation effects. Both input data and deflators are introduced in table
1. The series is calculated by available data which is collected from various
shipping periodicals and scholarly journal papers. Calculation method is
basically performed by using ratio-to-change deviations year by year and
initial year is assumed to be 100 points (See appendix A).

LFI series is calculated for annual frequency since most of the available data
is organised for yearly periods. Before building LFI, sequential series of data
are tested to be correlated and continuity is confirmed. Correlation matrix
of sequential series indicated over coefficient of 0.90 except a few number
of samples (minimum 0.70). An additional test is performed to investigate
whether the freight indices have ability to reflect real prices of shipping
service. An extensive discussion on this issue is presented by Veenstra and
Dalen.'” By using technical particulars of fleet and hedonic model design,
they tested some freight indices about the representative capability.

Results pointed out disparities among the short run analysis while long
term fluctuations are found broadly identical. The empirical results of Duru
and Yoshida indicated that Baltic Dry Index which is included in the LFI and
market prices of several routes and sizes are absolutely same (correlation
coefficient is over 0.98). Therefore, input data is used for LFI while possible
drawbacks of missing data on construction of input data itself or quality of

data remain since adjustment of the intended dataset is broadly unfeasible.

14) Duru and Yoshida (2009).
15) Supra note 15.
16) Veenstra and Dalen (2008).
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<Table 1> Description of data which is used for building the LFI.

Term Description ‘ Code ‘ Source
Freight rates & indices
1741-1872 | Tyne - London Coal route freight rate series. TLCH | Harley (1988)
1741-1872 | U.S. - British Grain route freight rate series. USGH | Harley (1988)
1790-1815 | British Import Freight Rate Index series. BIFRI | North (1958)
1814-1910 | American Export Freight Rate Index series. AEFRI | North (1958)
1869-1936 | Isserlis Composite Index series. ISSCI | Isserlis (1938)
1869-1913 | New UK Index series. NUKEFI | Klovland (2002)
1898-1913 | Economist’s Freight Index series. ECONI | Yoshimura (1942)
1921-1939 | Economist’s Freight Index series. ECONI | Yoshimura (1942)
. . Isserlis (1938),
1920-1969 | UK Chamber of Shipping Index series. UKCSV H els (1999
1948-1997 IS\Ie;)ir;;/eglan Shipping News Voyage Freight Index NSNVI | Hummels (1999)
1948-1990 Is\i?irevsvegmn Shipping News Time Charter Index NSNTI | Hummels (1999)
19521989 ilr(ieSChamber of Shipping Time Charter Index UKCST | H els (1999)
. . . . BFI/ Baltic Exchange Co.,
1986-2008 | Baltic Freight Index / Baltic Dry Index series. BDI London:
Hummels (1999).
1988-1996 Seilglslan Ministry of Transport Time Charter Index GMTTI | H els (1999)
1991-2007 quyd s Shipping Economist (LSE) Tramp Index LSEFI LSE Magazme
series. various issues.
Deflator series
1741-1954 | Price of Composite Unit of Consumables. PUCON ](31?521)1 & Hopkins
1954-2008 | RPI: Retail Price Index of U.K. rpruk | Office for national
statistics, U.K.

Source: Duru and Yoshida.!?)

In the bivariate model of the present paper, the long term freight index

(LFI) is proposed to be predicted and life expectancy is used as a leading

indicator. LFI is first presented by Duru and Yoshida and it is a combined

freight index for dry cargo shipments. Duru and Yoshida also denoted long

term relationship between LFI and life expectancy at age 10 (U.S. data is used

because of availability). Fogel indicates that life expectancy and physical size

. . . . . 18 . .
of humankind affect various issues in economics.'” Fig. 1 shows LFI series

17) Supra note 15.
18) Fogel (1986).
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together with life expectancy data at age 10 in period of 1741 and 2002 for
U.S. population (life expectancy data is available till 2005).

<Figure 1> LFI and Life expectancy (at age 10, U.S.) between 1741 and 2008
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I1. Methodology

1. Fuzzy Time Series

Song and Chissom proposed FTS to model fuzzy logical relationships
(FLRs) among the data.'” A fuzzy set is a group of data which has a grade
of membership through the mentioned fuzzy set. Let U be the universe of
discourse with U= (u,, u,,...,un) where ui are linguistic variables. The basic

definitions of FTS are as follows:

Definition 1. Y(#)(¢ =...,0,1,2,...), is a subset of real numbers. Let Y(f) be the
universe of discourse defined by the fuzzy set u,(f). If F(f) consists of w,(f)(i
=1,2,...), F(?) is called a fuzzy time series on Y(¢).

Definition 2. If there exists a fuzzy relationship R(z-1, ), such that F(¢)
=F(t-1) » R(¢-1, f), where ° is an arithmetic operator, then F(#) is said to be
caused by F(z-1). The relationship between F(¢) and F(¢-1) can be denoted by
F(t-1) - F(7).

19) Song and Chissom (1993a,b).
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Definition 3. Suppose F(¢) is calculated by F(#-1) only, and F(f) = F(t-1) °
R(t-1, f). For any ¢, if R(#-1, ¢) is independent of t, then F(#) is considered a

time-invariant fuzzy time series. Otherwise, F(¢) is time-variant.

Definition 4. Suppose F(t-1) = A4, and F(¢) = Aj, a fuzzy logical

relationship can be defined as ;ll. — A]- where zzll. and Aj are called the left-
hand side (LHS) and right-hand side (RHS) of the FLR, respectively.

Chen developed the method of Song and Chissom, and ensured more
accurate results.”” As a benchmark of the proposed model, the procedure of

Chen’s methodology is as follows:

Step 1. Partition of the universe of discourse U into equal-length intervals.
Step 2. Define the fuzzy sets on U, fuzzify the historical data,

and derive the FLRs.
Step 3. Allocate the derived fuzzy logical relationships into groups.

Step 4. Calculate the forecasted values under the three defuzzification rules.

An additional definition indicates difference of Chen (1996)’s method as

follows:

Definition 5. The forecasted value at time #, Fv,, is determined by the

following three IF-THEN rules.

Rule 1. IF the FLRG of 4; is not existing; 4, — ¢, THEN the value of Fv; is
A, and calculate centroid of the fuzzy set A4;, which is located on midpoint, for

inference point forecast.

Rule 2. IF the FLRG of 4; is 4; — A, , THEN the value of Fv, is 4, , and

calculate centroid of the fuzzy set A, , which is located on midpoint, for
inference point forecast.

Rule 3. IF the FLRG of 4; is A— A, , A Ay, A— A,...., 4i— A4, , and
THEN the value of Fv, is calculated as follows:

20) Chen (1996).
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Ag+ A, +.+ 4,
p

and calculate centroid of the resulting fuzzy set, which is the arithmetic

Fv, =

average of my,, my,,...,my,, the midpoints of u, u,,...,ukp, respectively.

A bivariate fuzzy time series is defined as follows:

Definition 6. Let /" and G be two fuzzy time series. Suppose that F(#-1)=4,,
G(t-1)=By, and F(¢)=4;. A bivariate FLR is defined as 4, B, — 4, , where 4,
By are referred to as the LHS and 4; as the RHS of the bivariate FLR.

In the present paper, the first order bivariate FLRs are constructed with life

expectancy and LFI series for forecasting one period ahead LFI.

2. Bivariate long term fuzzy inference
The current fuzzy time series models utilize discrete fuzzy sets to define
their fuzzy time series. Their discrete fuzzy sets are defined as follows:

Assume there are m intervals, which are u, = [d,,d,], u, = [d,,d3], u; =
[dydy], uy = [dyds]...., Uy = [dyy3,dyo], Uy = [dyodyi], ey = [dyrsdy],
and u,, = [d,,d,,...].

Let ;11, 212,...,1:1k be fuzzy sets which are linguistic values of the data
set. Define fuzzy sets ;11,;12,...,;1,{ on the universe of discourse U as
follows:

1:11= ayuta/uytaslust.tag,/u,

1:12 = ay,/u Fay/uytay/ust. tay,/,,

lek = ay,/u Taplutalust.tag,/u,

where a;€[0,1], 1 <i <k, and 1 <i<m. The value of a; indicates the

grade of membership of «; in the fuzzy set ;ll-. The degree of each data
is found out according to their membership grade to fuzzy sets. When

the maximum membership grade is existed in ;lk , the fuzzified data

is treated as ;lk . Our empirical study about dry bulk shipping index is
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based on gradients rather than raw data. Using the raw data has several
drawbacks such as non-stationarity which decreases generality of

proposed study. The percentage changes of both variables are used for

. . t AGt
inference which are——and ——. For
F;—l Gt—l
the LFI data, eight fuzzy sets are defined (}11 ,212 yerns ‘le) and for life

expectancy data seven fuzzy sets are defined (4, 4, ,..., 4;) by equal fuzzy
intervals which are assumed length of standard deviations of transformed

datasets.

The fuzzy sets ;1] , 1212,..., A, are defined by
A = 14, 40.5/u,+0/us+0/u g+ +0/u,,
A, = 0.5/u+1/uy+0.5/us+0/ug+..+0/u
Ay = 0/u+0.5/u,+1/u3+0.5/ug+..+0/u,,

m>

A, _, = 0/u+0/u+.. +0/u,, ++0.5/u,, +1/u, 0.5/,
A, = 0/u,+0/uy+.. +0/u,, +0/,, 0.5/, +1/u,,

The root mean squared error (RMSE), mean absolute error (MAE) and
mean absolute percentage error (MAPE) metrics are used for performance
evaluation. The RMSE metric gives an average deviation interval, and

increases effects of larger errors by squares of them. Eq. (1) indicates the
RMSE function.

RMSE = \/Zj—l(DVt —F, )2

n (i=1,2,...,n) (1)

MAPE is defined by:

X=X 100

1 n
MAPE =~ >

(i=1,2,...,n) )

i

MAE is defined by:
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1 n
MAE:;ZM Xi_Yi| (=1,2,...,n) ®

An additional error metrics is normalised RMSE (NRMSE) which is ratio of
RMSE over range of observed values. NRMSE is also reported in results.

RMSE
X ~ Xmin (4)

max

NRMSE =

The detailed application steps can be described as follows:

Step 1. Collect and arrange the historical data. Transform to percentage
change series, Dv;. Define the universe of discourse U. Find the mean Dmean
and the standard deviation c.

Step 2. Calculate fuzzy sets which are in equal lengths of standard
deviations. Mean of data is located in the middle of fuzzy set and upper
bound and lower bound is in distance of ¢/2. Other fuzzy sets are defined in
¢ intervals from mean value. Mean of LFI gradient series is 0.03 and fuzzy
intervals are u,=[-0.57, -0.33], u,=[-0.33, -0.09], u;=[-0.09, 0.15], u,=[0.15,
0.39], us=[0.39, 0.63], us=[0.63, 0.87], u;, =[0.87, 1.11] and ug = [1.11, 1.35].

Mean of life expectancy gradient series is 0.001 and fuzzy intervals are
1,=[-0.0095, -0.0065], u,=[-0.0065, -0.0035], u;=[-0.0035, -0.0005], u,=[-
0.0005, 0.0025], us=[0.0025, 0.0055], us=[0.0055, 0.0085] and u,; = [0.0085,
0.0115].

Step 3. Fuzzification of the series.

Step 4. Generate the bivariate FLRs. For all fuzzified data, derive the FLRs
according to Definition 5 such as

vy A3, By = Ay A3, By — A, ...

Step 5. Organize the bivariate FLRs into groups of same LHS fuzzy sets
named the FLR Group (FLRG). LHSs of groups indicate input value of one
period previous data. RHS is variety of outputs that experienced in estimation
period.

Step 6. Calculate the forecasted outputs. The forecasted value at time ¢, Fv,,
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is determined by the following three IF-THEN rules. Assume the bivariate

inputs at time #-1 is 4;, B,.

Rule 1. IF the FLRG of 4,, B, is not existing; 4i, B, — @, THEN the value
of Fvt is A,, and calculate centroid of the fuzzy set 4; ,which is located on

midpoint, for inference point forecast.

Rule 2. IF the FLRG of 4;, B, is 4,, B, — ;lk , THEN the value of Fv; is A ,

and calculate centroid of the fuzzy set A4, ,which is located on midpoint, for
inference point forecast.

Rule 3. IF the FLRG of 4,, B, is 4, B, — A,,, A, B, — A, . A, B, — A,
yeees Ay By — Zlkp , and THEN the value of Fv; is calculated as follows:

Ay + A4, +.+ 4,

p

and calculate centroid of the resulting fuzzy set, which is the arithmetic

Fv, =

average of my,, my,,...,my,, the midpoints of u,, uy,,...,uy,, respectively.

3. Brief description of benchmark methods

The present paper consists of five empirical calculations. One of them is the
proposed method, BiFTS, which already defined in the previous section.

The method of Chen is the conventional univariate case of the proposed
method which is also described in the process of fuzzy time series. The main
contribution of Chen is to improve calculations and make it simpler.

As statistical benchmarks of the tested methods, Box-Jenkins type ARIMA
(autoregressive integrated moving average) and Holt-Winters exponential
smoothing methods are applied to univariate LFI series. An additional method
which is known as Naive I is also applied for no change case. Ndive I refer to
forecasted value at time 7 is the actual value of time #-1. It is conventionally
used in forecasting science as a base alternative since the method is the most
basic approach.

Autoregressive moving average (ARMA) approach is first suggested by
Wold.*"” Wold combined AR and MA forms into ARMA process and indicated

21) Wold (1938).
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that it is very useful in many stationary time series. ARMA process is defined

as:
X=Dx, + Px,ot...+ Dx,,Te e - Oe. .- Oe, &)
where x, is the stationary time series and et is the error term.

Box and Jenkins developed ARMA by providing differencing operation to
ensure stationarity of time series.”” The term ‘Integrated’ is inserted to the
model by means of order of differencing (ARIMA). Thereafter, ARIMA is
mentioned with the name of Box and Jenkins. ARIMA method provided an
additional function that uses autocorrelation and partial autocorrelation for
definition of order of ARMA terms. Finally, outline of the procedure is defined

as follows:

(1) Testing for stationarity and definition of order of differencing,

(2) Testing for seasonality and definition of order of seasonal differencing,
(3) Definition of order of ARMA model,

(4) Estimating model parameters,

(5) Diagnostic checks for residual white noise assumption.

For example, first order autoregressive and first order moving average terms
under the first order differencing are figured out as ARIMA (1,1,1).

Another benchmark method is Holt-Winters’s exponential smoothing
algorithm. Holt and Winters® extended traditional exponential smoothing
and improved forecasting performance. The structure of the Holt-Winters
exponential smoothing is made up by local trend (Tt), level of series (Ft)
(smoothed value) and seasonality (St). Eq. (6) shows the level of series
smoothed by the constant a. Eq. (7) shows the seasonality component

smoothed by the constant B. Eq. (8) shows the trend component smoothed by

22) Box and Jenkins (1970).
23) Holt (1957); Winters (1960),pp.324-342.
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the constanty. Eq. (9) is the Winters’s forecasting function that includes the

components as follows:

F=aX /S_,+(-a)F_+T_) (6)
St :ﬂXt/F;+(1_IB)St—p (7)
Tt:7(F;_F;71)+(1_7)7;71 (8)
Wiw =(E +mI)S,,,_, )

where X, is actual value for period ¢, m is the number of period ahead to be
forecasted and p is the number of periods in the seasonal cycle. Smoothing

constants are based on ordinary least squares estimates.

II1. The empirical results and validation

Empirical works are carried out on univariate and bivariate cases. The
univariate LFI transformed series is estimated by Chen’s method and the
bivariate LFI-Life expectancy transformed series is estimated by the first
order bivariate FTS (BiFTS). As benchmark, Nédive I (no change model),
Box-Jenkins type ARIMA and Holt-Winters exponential smoothing results
are presented.”” LFI series is tested for stationarity and first order differencing
applied since the levels of LFI have unit roots (Augmented Dickey-Fuller test,
p: 0.000).”> Specification of ARIMA is defined ARIMA (2, 1, 3) by review
of autocorrelations, partial autocorrelations and significance of coefficients
(»<0.05). Non-seasonal Holt-Winters model (non-f) is based on a=0.87 and
y=0.03 according to the best fit. Since the LFI series is annual base, non-
seasonal data (except probable business cycles), seasonality is out of scope.

Results for ARIMA and Holt-Winters method are calculated by E Views
6.00QMS LLC software. Table 2 indicates results for five methods.

According to RMSE, NRMSE and MAE metrics, BiFTS exposes superiority

24) Box and Jenkins (1970); Holt (1957); Winters (1960), pp.324-342.
25) Dickey and Fuller (1979).
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among the benchmark methods (See table 2). However, MAPE metric
indicates simple no change model can outperform several complicated
methods while the difference between Néive I and BiFTS is just 1%. Use of
MAPE is discussed by many scholars and it is noted that MAPE may cause
incomparable deviations.”” Therefore, the present study introduces results
for MAPE as a benchmark, but priority will be based on RMSE, MAE and
particularly NRMSE metrics.

<Table 2> RMSE, MAE, MAPE and NRMSE results of empirical works.

Niive [ Chen (1996) BiFTS ?21,1111’\/13? lel?tgrs
RMSE 107.1 101.24 82.41% 99.30 112.24
MAE 39.51 41.55 36.62* 50.06 43.85
MAPE 15% 17 16 20 16
NRMSE 0.0492 0.0467 0.0421* 0.0433 0.0489

* The most accurate.

RMSE for BiFTS is around one forth of standard deviation of LFI series
(o: 246). The size of error is quite less than average deviation from long term
mean. About the rate of error metrics, Makridakis et al suggests comparative
analysis with alternative methods rather than analysing simply size of them.””

Especially on long term series, size of deviation has different meanings over
the different levels of dataset. In case of BiFTS, 82.41 has crucial importance
in the end of 1800s, but it has relatively small size for the end of 1900s. As
a cumulative result, size of average error metrics is not straightforward for
interpretation.

NRMSE is an adjusted version of RMSE and explicitly indicates superior
results of BiFTS for LFI series. BiFTS can be selected for practical use in
long term inference by noting that reference methods may outperform in some
parts of the term according to different error perceptions (absolute errors vs.

squared errors) which is very common among the prediction science.

26) Armstrong (1985); Flores (1986); among others.
27) Makridakis et al (1998).
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IV. Conclusions

In this paper, the first order BiFTS is applied to a long term forecasting
problem. The LFI is the objective series and life expectancy data is used as a
leading indicator. According to results, bivariate FTS indicated more accurate
outcome over benchmark methods. Bivariate FTS provides co-trended pattern
recognition and its major advantages lie on the data pre-conditions such as
needless of stationarity, normality and other diagnostic particulars. Although,
it is expressed that there is no requirement for stationarity in the conventional
FTS, theoretically it should be obtained.”” Such a diagnostic test is still
not embedded to traditional FTS methodology. The present paper does not
compile raw data and transforms to percentage changes to reduce possible
non-linearity.

Although, the present paper utilises LFI, various alternative dataset can
easily be applied by FTS and BiFTS. Non-stationarity and non-linearity
are two major problems of conventional time series analysis. Computer
intelligence such as FTS may simply cope with such complications.

Future works should be based on high order BiFTS case because of that long
term LFI data carries signal of long memory cycles. High order model may

improve consistency and accuracy.”
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Appendix A. Long term Freight Index series (LFI)29)

Year LFI Year LFI Year LFI Year LFI Year LFI
1741 89.44 1796 213.51 1851 128.44 1906 80.62 1961 140.93
1742 95.71 1797 221.60 1852 139.09 1907 82.91 1962 116.97
1743 143.76 1798 294.47 1853 155.53 1908 71.53 1963 141.59
1744 124.35 1799 295.06 1854 177.66 1909 73.53 1964 149.64
1745 88.88 1800 177.91 1855 179.29 1910 82.00 1965 162.91
1746 69.73 1801 219.70 1856 175.83 1911 93.23 1966 153.76
1747 72.68 1802 302.32 1857 143.15 1912 120.66 1967 156.88
1748 83.69 1803 303.04 1858 146.76 1913 104.82 1968 157.93
1749 92.18 1804 279.54 1859 145.20 1914 92.57 1969 150.67
1750 82.17 1805 240.38 1860 159.72 1915 267.16 1970 231.59
1751 80.24 1806 308.73 1861 195.49 1916 428.95 1971 148.67
1752 65.52 1807 345.09 1862 169.82 1917 887.86 1972 153.13
1753 68.98 1808 383.07 1863 165.22 1918 863.20 1973 347.12
1754 105.25 1809 350.87 1864 124.79 1919 847.46 1974 403.78
1755 160.68 1810 362.93 1865 156.26 1920 501.34 1975 201.94
1756 152.76 1811 344.43 1866 151.96 1921 292.64 1976 222.04
1757 127.08 1812 291.81 1867 156.15 1922 223.60 1977 204.69
1758 154.80 1813 365.89 1868 175.04 1923 170.79 1978 271.21
1759 138.01 1814 369.19 1869 168.08 1924 178.98 1979 374.98
1760 158.46 1815 297.23 1870 160.71 1925 162.92 1980 466.47
1761 183.96 | 1816 | 215.78 1871 157.50 | 1926 193.11 1981 | 425.56
1762 121.59 1817 159.16 1872 174.05 1927 184.53 1982 285.19
1763 137.38 1818 | 265.53 1873 | 210.05 1928 161.55 1983 | 296.01
1764 110.39 1819 224.32 1874 185.68 1929 156.27 1984 312.36
1765 107.60 1820 | 260.16 1875 188.07 1930 | 146.29 1985 | 289.37
1766 98.16 1821 242.72 1876 168.40 1931 140.38 1986 263.36
1767 95.63 1822 | 244.68 1877 | 175.84 | 1932 | 130.75 1987 | 359.82
1768 92.85 1823 220.50 1878 170.51 1933 113.31 1988 500.73
1769 118.50 1824 | 212.90 | 1879 16520 | 1934 | 121.32 1989 | 532.81
1770 134.25 1825 194.16 1880 168.08 1935 116.40 1990 469.59
1771 113.43 1826 | 216.28 1881 145.87 1936 137.62 1991 545.88
1772 89.17 1827 206.85 1882 151.94 1937 184.11 1992 454.38
1773 105.06 1828 185.97 1883 123.84 1938 173.59 1993 539.41
1774 108.50 1829 182.98 1884 122.36 1939 174.17 1994 536.07
1775 158.12 1830 182.68 1885 110.53 1940 100.11 1995 646.39
1776 162.98 1831 174.37 1886 111.38 1941 124.27 1996 474.79
1777 177.84 | 1832 185.25 1887 99.47 1942 115.59 1997 | 472.53
1778 155.58 1833 169.36 1888 114.30 1943 134.48 1998 336.04
1779 177.87 1834 178.42 1889 121.80 1944 123.25 1999 373.64
1780 212.96 1835 169.32 1890 111.93 1945 142.23 2000 555.39
1781 226.95 1836 163.23 1891 103.45 1946 168.97 2001 410.72
1782 179.59 1837 187.84 1892 96.56 1947 166.50 2002 339.55
1783 120.99 1838 199.07 1893 104.12 1948 146.92 2003 785.30
1784 134.91 1839 178.40 1894 81.40 1949 117.47 2004 1488.67
1785 128.44 1840 203.46 1895 89.80 1950 137.36 2005 1212.41
1786 119.84 1841 167.74 1896 97.62 1951 263.86 2006 1093.29
1787 120.02 1842 158.64 1897 97.93 1952 173.26 2007 2360.94
1788 120.71 1843 166.27 1898 110.87 1953 139.62 2008 2120.39
1789 142.99 1844 154.37 1899 106.99 1954 145.61

1790 141.54 1845 152.87 1900 116.40 1955 227.99

1791 140.78 1846 168.63 1901 87.05 1956 291.82

1792 172.18 1847 187.14 1902 77.02 1957 216.76

1793 218.34 1848 168.23 1903 72.71 1958 117.07

1794 222.47 1849 147.45 1904 75.85 1959 123.14

1795 214.79 1850 138.96 1905 80.07 1960 133.71

29) Duru and Yoshida (2009).
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