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Abstract In this article, we investigate the nonlinear steady boundary layer flow and heat transfer

of an incompressible Tangent Hyperbolic fluid from a sphere. The transformed conservation equa-

tions are solved numerically subject to physically appropriate boundary conditions using implicit

finite-difference Keller Box technique. The numerical code is validated with previous studies. The

influence of a number of emerging non-dimensional parameters, namely Weissenberg number

(We), power law index (n), Prandtl number (Pr), Biot number (cÞ and dimensionless tangential

coordinate (nÞ on velocity and temperature evolution in the boundary layer regime is examined

in detail. Furthermore, the effects of these parameters on heat transfer rate and skin friction are also

investigated. Validation with earlier Newtonian studies is presented and excellent correlation is

achieved. It is found that the velocity, Skin friction and the Nusselt number (heat transfer rate)

are decreased with increasing Weissenberg number (We), whereas the temperature is increased.

Increasing power law index (n) increases the velocity and the Nusselt number (heat transfer rate)

but decreases the temperature and the Skin friction. An increase in the Biot number (cÞ is observed
to increase velocity, temperature, local skin friction and Nusselt number. The study is relevant to

chemical materials processing applications.
ª 2015 Faculty of Engineering, Alexandria University. Production and hosting by Elsevier B.V. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Nomenclature

a radius of the sphere

Cf skin friction coefficient
f non-dimensional steam function
Gr Grashof number
g acceleration due to gravity

k thermal conductivity of fluid
n power law index
Nu local Nusselt number

Pr Prandtl number
rðxÞ radial distance from symmetrical axis to surface of

the sphere

T temperature of the fluid
u; v non-dimensional velocity components along the x-

and y-directions, respectively
V velocity vector

We Weissenberg number
x stream wise coordinate
y transverse coordinate

Greek
a thermal diffusivity

g the dimensionless radial coordinate
l dynamic viscosity
m kinematic viscosity

h non-dimensional temperature
q density of non-Newtonian fluid
n the dimensionless tangential coordinate

w dimensionless stream function
c Biot number
C time dependent material constant
P second invariant strain tensor

Subscripts
w conditions at the wall (sphere surface)
1 free stream conditions
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1. Introduction

The dynamics of non-Newtonian fluids has been a popular
area of research owing to ever-increasing applications in chem-
ical and process engineering. Examples of such fluids include

coal-oil slurries, shampoo, paints, clay coating and suspen-
sions, grease, cosmetic products, custard, and physiological
liquids (blood, bile, synovial fluid). The classical equations
employed in simulating Newtonian viscous flows i.e. the

Navier–Stokes equations fail to simulate a number of critical
characteristics of non-Newtonian fluids. Hence several consti-
tutive equations of non-Newtonian fluids have been presented

over the past decades. The relationship between the shear
stress and rate of strain in such fluids is very complicated in
comparison with viscous fluids. The viscoelastic features in

non-Newtonian fluids add more complexities in the resulting
equations when compared with Navier–Stokes equations.
Significant attention has been directed at mathematical and

numerical simulation of non-Newtonian fluids. Recent investi-
gations have implemented, respectively the Casson model [1],
second-order Reiner–Rivlin differential fluid models [2],
power-law nanoscale models [3], Eringen micro-morphic mod-

els [4] and Jeffreys viscoelastic model [5].
Convective heat transfer has also mobilized substantial

interest owing to its importance in industrial and
environmental technologies including energy storage, gas

turbines, nuclear plants, rocket propulsion, geothermal reser-

voirs, and photovoltaic panels. The convective boundary

condition has also attracted some interest and this usually

is simulated via a Biot number in the wall thermal boundary

condition. Recently, Ishak [6] discussed the similarity solu-

tions for flow and heat transfer over a permeable surface

with convective boundary condition. Aziz [7] provided a

similarity solution for laminar thermal boundary layer over

a flat surface with a convective surface boundary condition.

Aziz [8] further studied hydrodynamic and thermal slip flow

boundary layers with an iso-flux thermal boundary condi-

tion. The buoyancy effects on thermal boundary layer over

a vertical plate subject with a convective surface boundary

condition were studied by Makinde and Olanrewaju [9].

Further recent analyses include Makinde and Aziz [10].

Gupta et al. [11] used a variational finite element to simulate

mixed convective–radiative micropolar shrinking sheet flow

with a convective boundary condition. Makinde et al. [12]

studied cross diffusion effects and Biot number influence

on hydromagnetic Newtonian boundary layer flow with

homogenous chemical reactions and MAPLE quadrature

routines. Bég et al. [13] analyzed Biot number and buoyancy

effects on magnetohydrodynamic thermal slip flows.

Subhashini et al. [14] studied wall transpiration and cross
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diffusion effects on free convection boundary layers with a
convective boundary condition.

An interesting non-Newtonian model developed for chemi-

cal engineering systems is the Tangent Hyperbolic fluid model.
This rheological model has certain advantages over the other
non-Newtonian formulations, including simplicity, ease of

computation and physical robustness. Furthermore it is
deduced from kinetic theory of liquids rather than the empiri-
cal relation. Several communications utilizing the Tangent

Hyperbolic fluid model have been presented in the scientific lit-
erature. There is no single non-Newtonian model that exhibits
all the properties of non-Newtonian fluids. Among several
non-Newtonian fluids, hyperbolic tangent model is one of

the non-Newtonian models presented by Pop and Ingham
[15]. Nadeem and Akram [16] made a detailed study on the
peristaltic transport of a hyperbolic tangent fluid in an asym-

metric channel. Nadeem and Akram [17] investigated the peri-
staltic flow of a MHD hyperbolic tangent fluid in a vertical
asymmetric channel with heat transfer. Akram and Nadeem

[18] analyzed the influence of heat and mass transfer on the
peristaltic flow of a hyperbolic tangent fluid in an asymmetric
channel. Akbar et al. [19] analyzed the numerical solutions of

MHD boundary layer flow of tangent hyperbolic fluid on a
stretching sheet. Akbar et al. [20] studied the peristaltic flow
of tangent hyperbolic fluid with convective boundary condi-
tion. Peristaltic flow of hyperbolic tangent fluid in a diverging

tube with heat and mass transfer is studied by Nadeem et al.
[21]. Akbar et al. [22] investigated the peristaltic flow of a tan-
gent hyperbolic fluid in an inclined asymmetric channel with

slip and heat transfer. Akbar et al. [23] also made a detailed
study on the effects of heat and mass transfer on the peristaltic
flow of hyperbolic tangent fluid in an annulus.

In many chemical engineering and nuclear process systems,
curvature of the vessels employed is a critical aspect of optimiz-
ing thermal performance. Examples of curved bodies featuring

in process systems include torus geometries, wavy surfaces,
cylinders, cones, ellipses, oblate spheroids and in particular,
spherical geometries, the latter being very popular for storage
of chemicals and also batch reactor processing. Heat transfer

from spheres has therefore mobilized much attention among
chemical engineering researchers who have conducted both
experimental and computational investigations for both

Newtonian and non-Newtonian fluids. Amato and Chi [24]
studied experimentally natural convection from heated spheres
in water for an extensive range of Rayleigh numbers and for

laminar, transitional and early turbulent flow using hot-film
anemometry techniques. Liew and Adelman [25] conducted
experiments on free convection heat transfer from an isother-
mal sphere to water and various aqueous polymer solutions

(power-law fluids), elucidating the influence of flow behavior
index and consistency index. Further empirical investigations
were reported by Amato and Chi [26] for aqueous polymer

solutions using hot-film anemometry and Churchill [27], the
latter deriving expressions for local and mean Nusselt number
for natural convection from an isothermal sphere as a function

of the Rayleigh and Prandtl numbers valid for laminar bound-
ary layers. Lien and Chen [28] used a finite difference code to
simulate laminar mixed (forced and free) convection flow of an

Eringen micropolar fluid from a permeable sphere with surface
suction/injection effects. Jia and Gogos [29] analyzed compu-
tationally the steady free convection from a sphere for an
extensive range of Grashof (buoyancy) numbers, identifying
a mushroom-shaped plume which was observed to detract in
length and thickness with increasing Grashof number. He fur-
ther computed flow separation at high Grashof number and an

associated recirculation vortex arising in the wake of the
sphere. Furthermore this study showed that local Nusselt num-
ber along the sphere surface initially falls, attaining a mini-

mum, and thereafter rises markedly in the vicinity of sphere
rear. Sharma and Bhatnagar [30] used the Van Dyke method
of matched asymptotic expansions to obtain solutions for

creeping heat transfer (viscous-dominated flow) from a spher-
ical body to power-law fluids. Bég et al. [31] examined the free
convection magnetohydrodynamic flow from a sphere in por-
ous media using network simulation, showing that tempera-

tures are boosted with magnetic field and heat transfer is
enhanced from the lower stagnation point towards the upper
stagnation point. Potter and Riley [32] used a perturbation

expansion approach to evaluate analytically the eruption of
boundary layer into plume arising from free convection
boundary layers on a sphere with strong buoyancy effects.

Prhashanna and Chhabra [33] obtained numerical solutions
for streamline and temperature contours in heat transfer from
a heated sphere immersed in quiescent power-law fluids, show-

ing that shear-thinning behavior may elevate heat transfer
rates by 300%, whereas shear-thickening depletes heat transfer
rates by 30–40% compared with Newtonian fluids. Further
interesting investigations of heat transfer from spheres have

been presented by Chen and Chen [34] for power-law fluids
in porous media, Dhole et al. [35] for forced convection in
power-law fluids using the finite volume method and by Bég

et al. [36] for combined heat and species diffusion in micropo-
lar fluids with cross-diffusion effects. Prasad et al. [37] have
also studied radiative heat flux effects on magneto-convective

heat and species diffusion from a sphere in an isotropic perme-
able medium.

The objective of the present study was to investigate the

laminar boundary layer flow and heat transfer of a Tangent
Hyperbolic non-Newtonian fluid from a sphere. The non-
dimensional equations with associated dimensionless bound-
ary conditions constitute a highly nonlinear, coupled two-

point boundary value problem. Keller’s implicit finite differ-
ence ‘‘box’’ scheme is implemented to solve the problem [37].
The effects of the emerging thermophysical parameters,

namely the Weissenberg number (We), power law index (n),
Biot number (c) and Prandtl number (Pr), on the velocity, tem-
perature, Skin friction number, and heat transfer rate (local

Nusselt number) characteristics are studied. The present prob-
lem has to the authors’ knowledge not appeared thus far in the
scientific literature and is relevant to polymeric manufacturing
processes in chemical engineering.
2. Non-Newtonian constitutive Tangent Hyperbolic fluid model

In the present study a subclass of non-Newtonian fluids known

as the Tangent Hyperbolic fluid is employed owing to its sim-
plicity. The Cauchy stress tensor, in the Tangent Hyperbolic
non-Newtonian fluid [15] takes the following form:

s ¼ l1 þ l0 þ l1ð Þ tanh C _c
� �n� �

_c ð1Þ

where �s is extra stress tensor, l1 is the infinite shear rate vis-
cosity, l0 is the zero shear rate viscosity, C is the time
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dependent material constant, n is the power law index i.e. flow

behavior index and _c is defined as

_c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2

X
i

X
j

_cij _cji

r
¼

ffiffiffiffiffiffiffiffi
1

2
P

r
ð2Þ

where P ¼ 1
2
tr gradVþ gradVð ÞT
� �2

. We consider Eq. (1), for

the case when l1 = 0 because it is not possible to discuss
the problem for the infinite shear rate viscosity and since we

are considering tangent hyperbolic fluid that describes shear

thinning effects so C _c� 1. Then Eq. (1) takes the form

s ¼ l0 C _c
� �n� �

_c ¼ l0 1þ C_c� 1
� �n� �

_c

¼ l0 1þ n C_c� 1
� �� �

_c ð3Þ

The introduction of the appropriate terms into the flow
model is considered next. The resulting boundary value prob-
lem is found to be well-posed and permits an excellent mecha-

nism for the assessment of rheological characteristics on the
flow behavior.

3. Mathematical flow model

Steady, double-diffusive, laminar, incompressible flow of a
Tangent Hyperbolic fluid from an sphere, is considered, as

illustrated in Fig. 1. The x-coordinate (tangential) is measured
along the surface of the sphere from the lowest point and the y-
coordinate (radial) is directed perpendicular to the surface,

with a denoting the radius of the sphere. rðxÞ ¼ a sin x=að Þ is
the radial distance from the symmetrical axis to the surface
Figure 2 Keller Box co
of the sphere. The gravitational acceleration g, acts down-
wards. We also assume that the Boussinesq approximation

holds i.e. that density variation is only experienced in the
buoyancy term in the momentum equation.

Both sphere and the Tangent Hyperbolic fluid are main-

tained initially at the same temperature. Instantaneously they
are raised to a temperature Tw > T1, the ambient temperature
of the fluid which remains unchanged. In line with the
approach of Yih [38] and introducing the boundary layer

approximations, the equations for mass, momentum, and
energy, can be written as follows:

@ ruð Þ
@x
þ @ rvð Þ

@y
¼ 0 ð4Þ

u
@u

@x
þ v

@u

@y
¼ m 1� nð Þ @

2u

@y2
þ

ffiffiffi
2
p

mnC
@u

@y

� �
@2u

@y2

þ gb sin
x

a

	 

T� T1ð Þ ð5Þ

u
@T

@x
þ v

@T

@y
¼ a

@2T

@y2
ð6Þ

where u and v are the velocity components in the x- and y-

directions respectively, m ¼ l=q is the kinematic viscosity of
the Tangent Hyperbolic fluid, b is the coefficient of thermal
expansion, a is the thermal diffusivity, b is the temperature,
and q is the density of the fluid. The Tangent Hyperbolic fluid

model therefore introduces a mixed derivative (second order,
first degree) into the momentum boundary layer Eq. (5). The
mputational domain.



Table 1 Values of f 00ðn; 0Þ and �h 0ðn; 0Þ for different We, n, and n ðPr ¼ 7:0; c ¼ 0:2Þ.
We n n ¼ 0 n ¼ p=6 n ¼ p=4

f 00ðn; 0Þ �h 0ðn; 0Þ f 00ðn; 0Þ �h 0ðn; 0Þ f 00ðn; 0Þ �h 0ðn; 0Þ
0.0 0.3 0 0.1098 0.0573 0.1074 0.0781 0.1053

0.5 0 0.1095 0.0555 0.1071 0.0758 0.1050

1.0 0 0.1093 0.0539 0.1069 0.0736 0.1048

2.0 0 0.1088 0.0508 0.1064 0.0696 0.1044

3.0 0 0.1083 0.0481 0.1060 0.0659 0.1039

4.0 0 0.1079 0.0455 0.1056 0.0624 0.1035

5.0 0 0.1074 0.0432 0.1052 0.0593 0.1032

0.3 0.0 0 0.1020 0.0637 0.0998 0.0896 0.0978

0.1 0 0.1042 0.0615 0.1020 0.0839 0.1000

0.2 0 0.1068 0.0590 0.1044 0.0805 0.1024

0.4 0 0.1129 0.0529 0.1105 0.0723 0.1083

0.5 0 0.1169 0.0490 0.1143 0.0669 0.1121

0.6 0 0.1216 0.0440 0.1190 0.0601 0.1166

Table 2 Values of f 00ðn; 0Þ and �h 0ðn; 0Þ for different We, n, and n ðPr ¼ 7:0; c ¼ 0:2Þ.
We n n ¼ p=3 n ¼ p=2 n ¼ 2p=3

f 00ðn; 0Þ �h 0ðn; 0Þ f 00ðn; 0Þ �h 0ðn; 0Þ f 00ðn; 0Þ �h 0ðn; 0Þ
0.0 0.3 0.1057 0.1008 0.1379 0.0898 0.1479 0.0733

0.5 0.1027 0.1006 0.1345 0.0896 0.1449 0.0732

1.0 0.0999 0.1002 0.1313 0.0895 0.1421 0.0732

2.0 0.0946 0.1000 0.1252 0.0892 0.1367 0.0730

3.0 0.0898 0.0996 0.1196 0.0889 0.1317 0.0728

4.0 0.0854 0.0993 0.1144 0.0886 0.1269 0.0726

5.0 0.0813 0.0989 0.1095 0.0883 0.1224 0.0725

0.3 0.0 0.1176 0.0937 0.1535 0.0835 0.1649 0.0683

0.1 0.1135 0.0958 0.1483 0.0853 0.1593 0.0698

0.2 0.1090 0.0981 0.1424 0.0874 0.1531 0.0714

0.4 0.0979 0.1038 0.1282 0.0924 0.1380 0.0755

0.5 0.0907 0.1074 0.1191 0.0952 0.1285 0.0780

0.6 0.0817 0.1117 0.1076 0.0995 0.1167 0.0812

Table 3 Values of f 00ðn; 0Þ and �h 0ðn; 0Þ for different c, Pr and n (We= 0.3, n= 0.3).

c Pr n ¼ 0:0 n ¼ p=6 n ¼ p=4

f 00ðn; 0Þ �h 0ðn; 0Þ f 00ðn; 0Þ �h 0ðn; 0Þ f 00ðn; 0Þ �h 0ðn; 0Þ
0.2 7 0 0.1096 0.0562 0.1072 0.0767 0.1051

0.3 0 0.3730 0.1150 0.3649 0.1571 0.3577

0.4 0 0.5237 0.1398 0.5122 0.1910 0.5022

0.5 0 0.6185 0.1538 0.6051 0.2101 0.5933

0.7 0 0.7306 0.1691 0.7147 0.2310 0.7008

0.8 0 0.7663 0.1737 0.7497 0.2374 0.7351

1.0 0 0.8169 0.1802 0.7992 0.2462 0.7836

0.2 10 0 0.1185 0.0549 0.1152 0.0750 0.1136

15 0 0.1330 0.0505 0.1301 0.0689 0.1276

25 0 0.1534 0.0453 0.1500 0.0618 0.1471

50 0 0.1851 0.0388 0.1811 0.530 0.1776

75 0 0.2062 0.0354 0.2018 0.0504 0.1979

100 0 0.2225 0.0331 0.2177 0.0452 0.2135

Numerical study of flow and heat transfer 833



Table 4 Values of f 00ðn; 0Þ and �h 0ðn; 0Þ for different c, Pr and n (We= 0.3, n= 0.3, M= 1.0).

c Pr n ¼ p=3 n ¼ p=2 n ¼ 2p=3

f 00ðn; 0Þ �h 0ðn; 0Þ f 00ðn; 0Þ �h 0ðn; 0Þ f 00ðn; 0Þ �h 0ðn; 0Þ
0.2 7 0.1039 0.1007 0.1359 0.0897 0.1461 0.0733

0.3 0.2128 0.3428 0.2790 0.3053 0.3009 0.2495

0.4 0.2589 0.4812 0.3398 0.4287 0.3669 0.3504

0.5 0.2849 0.5684 0.3741 0.5064 0.4043 0.4140

0.7 0.3134 0.6714 0.4117 0.5982 0.4453 0.4891

0.8 0.3220 0.7043 0.4231 0.6275 0.4578 0.5131

1.0 0.3340 0.7508 0.4389 0.6690 0.4751 0.5470

0.2 10 0.1015 0.1089 0.1327 0.0970 0.1428 0.0794

15 0.0933 0.1223 0.1220 0.1090 0.1315 0.0893

25 0.0836 0.1410 0.1094 0.1258 0.1181 0.1033

50 0.0717 0.1702 0.0939 0.1519 0.1015 0.1249

75 0.0654 0.1897 0.0857 0.1693 0.0926 0.1393

100 0.0612 0.2046 0.0802 0.1827 0.0867 0.1504
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non-Newtonian effects feature in the shear terms only of Eq.
(5) and not the convective (acceleration) terms. The third term
on the right hand side of Eq. (5) represents the thermal buoy-
ancy force and couples the velocity field with the temperature

field Eq. (6).

At y ¼ 0; u ¼ 0; v ¼ 0; �k @T
@y
¼ hw Tw � Tð Þ

As y!1; u! 0; T! T1 ð7Þ

Here T1 is the free stream temperature, k is the thermal con-
ductivity, hw is the convective heat transfer coefficient, and Tw

is the convective fluid temperature. The stream function w is

defined by ru ¼ @ rwð Þ
@y

and rv ¼ � @ rwð Þ
@x

, and therefore, the conti-

nuity equation is automatically satisfied. In order to render
the governing equations and the boundary conditions in
dimensionless form, the following non-dimensional quantities

are introduced:

n ¼ x

a
; g ¼ y

a
Gr1=4; f ¼ w

mn
Gr�1=4; h n; gð Þ ¼ T� T1

Tw � T1

Pr ¼ m
a
; Gr ¼ gb1 Tw � T1ð Þa3

m2
; We ¼

ffiffiffi
2
p

mCxGr3=4

a3
ð8Þ

All terms are defined in the nomenclature. In view of the
transformation defined in Eq. (8), the boundary layer Eqs.
(5)–(7) are reduced to the following coupled, nonlinear, dimen-

sionless partial differential equations for momentum and
energy for the regime:

1� nð Þf000 þ 1þ n cot nð Þff 00 � f 0ð Þ2 þ nWef 00f 000 þ h
sin n

n

¼ n f 0
@f 0

@n
� f 00

@f

@n

� �
ð9Þ

h 00

Pr
þ 1þ n cot nð Þfh 0 ¼ n f 0

@h
@n
� h 0

@f

@n

� �
ð10Þ

The transformed dimensionless boundary conditions are as
follows:

At g ¼ 0; f ¼ 0; f 0 ¼ 0; h ¼ 1þ h 0

c

As g!1; f 0 ! 0; h! 0 ð11Þ

Here primes denote the differentiation with respect to g. The
wall thermal boundary condition in (11) corresponds to con-
vective cooling. The skin-friction coefficient (shear stress at
the sphere surface) and Nusselt number (heat transfer rate)

can be defined using the transformations described above with
the following expressions:

Gr�3=4Cf ¼ 1� nð Þnf 00ðn; 0Þ þ n

2
Wen f 00ðn; 0Þð Þ2 ð12Þ

Gr�1=4Nu ¼ �h 0ðn; 0Þ ð13Þ

The location, n � 0, corresponds to the vicinity of the lower
stagnation point on the sphere.

Since sin n
n ! 0=0 i.e., 1. For this scenario, the model defined

by Eqs. (9) and (10) contracts to an ordinary differential
boundary value problem:

1� nð Þf000 þ ff 00 � f 0ð Þ2 þ nWef 00f 000 þ h ¼ 0 ð14Þ

1

Pr
h 00 þ fh 0 ¼ 0 ð15Þ

The general model is solved using a powerful and uncondi-

tionally stable finite difference technique introduced by Keller
[39]. The Keller-box method has a second order accuracy with
arbitrary spacing and attractive extrapolation features.

4. Numerical solution with Keller Box implicit method

The Keller-Box implicit difference method is implemented to

solve the nonlinear boundary value problem defined by Eqs.
(9) and (10) with boundary conditions (11). This technique,
despite recent developments in other numerical methods,
remains a powerful and very accurate approach for parabolic

boundary layer flows. It is unconditionally stable and achieves
exceptional accuracy [39]. Recently this method has been
deployed in resolving many challenging, multi-physical fluid

dynamic problems. These include hydromagnetic Sakiadis flow
of non-Newtonian fluids [40], nanofluid transport from a
stretching sheet [41], radiative rheological magnetic heat trans-

fer [42], water hammer modeling [43], porous media
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convection [44] and magnetized viscoelastic stagnation flows
[32]. The Keller-Box discretization is fully coupled at each step
which reflects the physics of parabolic systems – which are also

fully coupled. Discrete calculus associated with the Keller-
Box scheme has also been shown to be fundamentally different
from all other mimetic (physics capturing) numerical methods,

as elaborated by Keller [39]. The Keller Box Scheme comprises
four stages as follows:

(1) Decomposition of the N th order partial differential
equation system to N first order equations.

(2) Finite Difference Discretization.
(3) Quasilinearization of Non-Linear Keller Algebraic

Equations and finally.
(4) Block-tridiagonal Elimination solution of the Linearized

Keller Algebraic Equations

Stage 1: Decomposition of Nth order partial differential

equation system to N first order equations

Eqs. (9) and (10) subject to the boundary conditions (11)
are first cast as a multiple system of first order differential
equations. New dependent variables are introduced:

uðx; yÞ ¼ f 0; vðx; yÞ ¼ f 00; sðx; yÞ ¼ h; tðx; yÞ ¼ h 0 ð16Þ

These denote the variables for velocity, temperature and con-
centration respectively. Now Eqs. (9) and (10) are solved as
a set of fifth order simultaneous differential equations:
Figure 3 (a) Influence ofWe on velocity profiles. (b) Influence of

We on temperature profiles.
f 0 ¼ u ð17Þ

u 0 ¼ v ð18Þ

h 0 ¼ t ð19Þ

1� nð Þv 0 þ 1þ n cot nð Þfv� u2 þ nWevv 0 þ s
sin n

n

¼ n u
@u

@n
� v

@f

@n

� �
ð20Þ

t 0

Pr
þ 1þ n cot nð Þft ¼ n u

@s

@n
� t

@f

@n

� �
ð21Þ

where primes denote differentiation with respect to the vari-
able, g. In terms of the dependent variables, the boundary con-
ditions assume the following form:

At g ¼ 0; f ¼ 0; f 0 ¼ 0; h ¼ 1þ h 0

c
ð22Þ

As g!1; f 0 ! 0; h! 0 ð23Þ

Stage 2: Finite Difference Discretization

A two dimensional computational grid is imposed on the n–
g plane as depicted in Fig. 2. The stepping process is defined by

g0 ¼ 0; gi ¼ gi�1 þ hj; j ¼ 1; 2; . . . ; J; gJ � g1 ð24Þ

n0 ¼ 0; nn ¼ nn�1 þ kn; n ¼ 1; 2; . . . ;N ð25Þ
Figure 4 (a) Influence of n on velocity profiles. (b) Influence of n

on temperature profiles.



Figure 5 (a) Influence of c on velocity profiles. (b) Influence of c
on temperature profiles.

Figure 6 (a) Influence of Pr on velocity profiles. (b) Influence of

Pr on temperature profiles.

836 S.A. Gaffar et al.
where kn is the Dn� spacing and hj is the Dg� spacing.

If gnj denotes the value of any variable at gj; n
n

� �
, then the

variables and derivatives of Eqs. (17)–(21) at gj�1=2; n
n�1=2

	 

are replaced by

g
n�1=2
j�1=2 ¼

1

4
gnj þ gnj�1 þ gn�1j þ gn�1j�1

	 

ð26Þ

@g

@g

� �n�1=2

j�1=2
¼ 1

2hj
gnj � gnj�1 þ gn�1j � gn�1j�1

	 

ð27Þ

@g

@n

� �n�1=2

j�1=2
¼ 1

2kn
gnj � gnj�1 þ gn�1j � gn�1j�1

	 

ð28Þ

The finite-difference approximation of Eqs. (17)–(21) for the

mid-point gj�1=2; n
n

	 

, is

h�1j fnj � fnj�1

	 

¼ unj�1=2 ð29Þ

h�1j unj � unj�1

	 

¼ vnj�1=2 ð30Þ

h�1j snj � snj�1

	 

¼ tnj�1=2 ð31Þ
1� nð Þ vj � vj�1
� �

þ 1þ aþ n cot nð Þ hj
4

fj þ fj�1
� �

vj þ vj�1
� �

� 1þ að Þ hj
4

uj þ uj�1
� �2 þ Bhj

2
sj þ sj�1
� �

þ nWe

2
vj þ vj�1
� �

vj � vj�1
� �

þ ahj
2

vn�1j�1 fj þ fj�1
� �

� ahj
2

fn�1j�1 vj þ vj�1
� �

¼ R1½ �n�1j�=12 ð32Þ

1

Pr
tj � tj�1
� �

þ 1þ aþ n cot nð Þ hj
4

fj þ fj�1
� �

tj þ tj�1
� �

� ahj
4

uj þ uj�1
� �

sj þ sj�1
� �

þ ahj
2

sn�1j�1=2 uj þ uj�1
� �

� ahj
2

un�1j�1=2 sj þ sj�1
� �

� ahj
2

fn�1j�1=2 tj þ tj�1
� �

þ ahj
2

tn�1j�1=2 fj þ fj�1
� �

¼ R2½ �n�1j�1=2 ð33Þ

where we have used the abbreviations

a ¼ nn�1=2

kn ;

B ¼
sin nn�1=2
	 

nn�1=2 ð34Þ

R1½ �n�1j�1=2¼�hj
1�nð Þ v 0ð Þn�1j�1=2þ 1�aþncotnð Þfn�1j�1=2v

n�1
j�1=2

� 1�að Þ un�1j�1=2

	 
2
þBsn�1j�1=2þnWevn�1j�1=2 v 0ð Þn�1j�1=2

2
4

3
5

ð35Þ



Figure 7 (a) Influence of n on velocity profiles. (b) Influence of n
on temperature profiles. Figure 8 (a) Influence of We on Skin friction number.

(b) Influence of We on local Nusselt number.

Numerical study of flow and heat transfer 837
R2½ �n�1j�1=2¼�hj
1

Pr
t 0ð Þn�1j�1=2þ 1�aþncotnð Þfn�1j�1=2t

n�1
j�1=2þaun�1j�1=2s

n�1
j�1=2

� �

ð36Þ

The boundary conditions are as follows:

fn0 ¼ un0 ¼ 0; sn0 ¼ 1; unJ ¼ 0; vnJ ¼ 0; snJ ¼ 0 ð37Þ

Stage 3: Quasilinearization of Non-Linear Keller Algebraic

Equations

Assuming fn�1j ; un�1j ; vn�1j ; sn�1j ; tn�1j to be known for

0 6 j 6 J, then Eqs. (29)–(33) constitute a system of 5Jþ 5
equations for the solution of 5Jþ 5 unknowns fnj ; u

n
j ; v

n
j ; s

n
j ; t

n
j ,

j= 0,1,2 . . . ,J. This non-linear system of algebraic equations

is linearized by means of Newton’s method as explained in
[37,39].

Stage 4: Block-tridiagonal Elimination Solution of Linear

Keller Algebraic Equations

The linearized system is solved by the block-elimination
method, since it possesses a block-tridiagonal structure. The

block-tridiagonal structure generated consists of block matri-
ces. The complete linearized system is formulated as a block
matrix system, where each element in the coefficient matrix is
a matrix itself, and this system is solved using the efficient

Keller-box method. The numerical results are strongly influ-
enced by the number of mesh points in both directions.
After some trials in the g-direction (radial coordinate) a larger

number of mesh points are selected whereas in the n direction
(tangential coordinate) significantly less mesh points are
utilized. gmax has been set at 25 and this defines an adequately
large value at which the prescribed boundary conditions are

satisfied. nmax is set at 3.0 for this flow domain. Mesh indepen-
dence is achieved in the present computations. The numerical
algorithm is executed in MATLAB on a PC. The method

demonstrates excellent stability, convergence and consistency,
as elaborated by Keller [39].

5. Numerical results and interpretation

Comprehensive solutions have been obtained and are pre-
sented in Tables 1–4 and Figs. 3–9. The numerical problem

comprises two independent variables (n; g), two dependent
fluid dynamic variables (f, h) and five thermo-physical and
body force control parameters, namely,We; n; c, Pr, n. The fol-
lowing default parameter values i.e. We= 0.3, n = 0.3,
c = 0.2, Pr = 0.71, n = 1.0 are prescribed (unless otherwise
stated). Furthermore the influence of stream-wise (transverse)
coordinate on heat transfer characteristics is also investigated.

In Tables 1 and 2, we present the influence of the
Weissenberg number (We) and the power law index (n), on
the Skin friction and heat transfer rate (Nusselt number),

along with a variation in the traverse coordinate (nÞ.
Increasing We is found to reduce both the Skin friction and
local Nusselt numbers. Furthermore an increase in the power

law index (n) decreases the skin friction but increases the



Figure 9 (a) Influence of n on Skin friction number. (b) Influence

of n on local Nusselt number.
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Nusselt number. Increasing n increases the Skin friction

whereas the local Nusselt number is decreased.
Tables 3 and 4, document results for the influence of the

Biot number ðcÞ and the Prandtl number (Pr) on skin friction

and heat transfer rate along with a variation in the traverse
coordinate (nÞ. Both Skin friction and Nusselt number are
increased with increasing c, whereas increasing n, increases
the Skin friction but decreases the Nusselt number. These

tables also show that with an increase in the Prandtl number,
Pr, the skin friction is depressed but the heat transfer rate is
elevated.

Fig. 3(a) and (b) depicts the velocity ðf; 0Þ and temperature
ðhÞ distributions with increasing Weissenberg number, We.
Very little tangible effect is observed in Fig. 3(a), although

there is a very slight decrease in velocity with increase inWe.
Conversely, there is only a very slight increase in temperature
magnitudes in Fig. 3(b) with a rise in We. The mathematical

model reduces to the Newtonian viscous flow model as
We fi 0 and n fi 0. The momentum boundary layer equation
in this case contracts to the familiar equation for Newtonian

mixed convection from a plate, viz. f000 þ 1þ n cot nð Þff 00�
f=2 þ h sin n

n ¼ n f 0 @f
0

@n � f 00 @f
@n

	 

. The thermal boundary layer

Eq. (10) remains unchanged.
Fig. 4(a) and (b) illustrates the effect of the power law index,

n, on the velocity ðf 0Þ and temperature ðhÞ distributions

through the boundary layer regime. Velocity is significantly
increased with increasing n. Conversely temperature is consis-
tently reduced with increasing values of n.

Fig. 5(a) and (b) depicts the evolution of velocity ðf 0Þ and
temperature ðhÞ functions with a variation in Biot number, c.
Dimensionless velocity component (Fig. 5(a)) is considerably

enhanced with increasing c. In Fig. 5(b), an increase in Biot
number is seen to considerably enhance temperatures through-
out the boundary layer regime. For c < 1 i.e. small Biot num-

bers, the regime is frequently designated as being ‘‘thermally
simple’’ and there is a presence of more uniform temperature
fields inside the boundary layer and the sphere solid surface.
For c > 1 thermal fields are anticipated to be non-uniform

within the solid body. The Biot number effectively furnishes
a mechanism for comparing the conduction resistance within
a solid body to the convection resistance external to that body

(offered by the surrounding fluid) for heat transfer. We also
note that a Biot number in excess of 0.1, as studied in
Fig. 5(a) and (b) corresponds to a ‘‘thermally thick’’ substance

whereas Biot number less than 0.1 implies a ‘‘thermally thin’’
material. Since c is inversely proportional to thermal conduc-
tivity (k), as c increases, thermal conductivity will be reduced
at the sphere surface and this will lead to a decrease in the rate

of heat transfer from the boundary layer to within the sphere,
manifesting in a rise in temperature at the sphere surface and
in the body of the fluid – the maximum effect will be sustained

at the surface, as witnessed in Fig. 5(b). However for a fixed
wall convection coefficient and thermal conductivity, Biot

number as defined in c ¼ xhw
k
Gr�1=4 is also directly inversely

proportional to the local Grashof (free convection) number.
As local Grashof number increases generally the enhancement
in buoyancy causes a deceleration in boundary layer flows [32–

34]; however as Biot number increases, the local Grashof num-
ber must decrease and this will induce the opposite effect i.e.
accelerate the boundary layer flow, as shown in Fig. 5(a).

Fig. 6(a) and (b) depicts the velocity ðf 0Þ and temperature
ðhÞ distributions with dimensionless radial coordinate, for var-
ious transverse (stream wise) coordinate values, n. Generally

velocity is noticeably lowered with increasing migration from
the leading edge i.e. larger n values (Fig. 6(a)). The maximum
velocity is computed at the lower stagnation point (n � 0) for

low values of radial coordinate (g). The transverse coordinate
clearly exerts a significant influence on momentum develop-
ment. A very strong increase in temperature (h), as observed
in Fig. 6(b), is generated throughout the boundary layer with

increasing n values. The temperature field decays monotoni-
cally. Temperature is maximized at the surface of the spherical
body (g = 0, for all n) and minimized in the free stream

(g = 25). Although the behavior at the upper stagnation point
(n � p) is not computed, the pattern in Fig. 6(b) suggests that
temperature will continue to progressively grow here com-

pared with previous locations on the sphere surface (lower val-
ues of n).

Fig. 7(a) and (b) shows the influence of Weissenberg num-
ber, We, on the dimensionless skin friction coefficient

1� nð Þnf 00 n; 0ð Þ þ nWe
2

n f 00 n; 0ð Þð Þ2
	 


and heat transfer rate

h 0ðn; 0Þ at the sphere surface. It is observed that the dimension-

less skin friction is decreased with the increase in We i.e. the
boundary layer flow is accelerated with decreasing viscosity
effects in the non-Newtonian regime. The surface heat transfer

rate is also substantially decreased with increasing We values.



Figure 10 (a) Influence of c on Skin friction number.

(b) Influence of c on local Nusselt number.

Table 5 Numerical values of �h0 n; 0ð Þ for different values of n
with We= 0.0, n= 0.0, c = 0.0.

n Pr= 0.7 Pr= 7.0

Nazar

et al.

[45]

Huang

and Chen

[46]

Present Nazar

et al.

[45]

Huang

and Chen

[46]

Present

0� 0.4576 0.4574 0.4571 0.9595 0.9581 0.9590

10� 0.4565 0.4563 0.4562 0.9572 0.9559 0.9555

20� 0.4533 0.4532 0.4537 0.9506 0.9496 0.9501

30� 0.4480 0.4480 0.4483 0.9397 0.9389 0.9380

40� 0.4405 0.4407 0.4410 0.9239 0.9239 0.9238

50� 0.4308 0.4312 0.4310 0.9045 0.9045 0.9044

60� 0.4189 0.4194 0.4392 0.8801 0.8805 0.8802

70� 0.4046 0.4053 0.4050 0.8510 0.8518 0.8516

80� 0.3879 0.3886 0.3884 0.8168 0.8182 0.8175

90� 0.3684 0.3694 0.3690 0.7774 0.7792 0.7782
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Fig. 8(a) and (b) illustrates the influence of the power law
index, n, on the dimensionless skin friction coefficient

1� nð Þnf 00 n; 0ð Þ þ nWe
2

n f 00 n; 0ð Þð Þ2
	 


and heat transfer rate

h 0 n; 0ð Þð Þ. The skin friction (Fig. 8(a)) at the sphere surface is

reduced with increasing n, however only for very large values
of the transverse coordinate, n. However, heat transfer rate
(local Nusselt number) is enhanced with increasing n, again

at large values of n, as computed in Fig. 8(b).
Fig. 9(a) and (b) presents the influence of the Biot number, c,
on the dimensionless skin friction coefficient 1� nð Þnf 00 n; 0ð Þþð
nWe
2

n f 00 n; 0ð Þð Þ2Þ and heat transfer rate h 0 n; 0ð Þð Þ at the sphere

surface. The skin friction at the sphere surface is found to be

greatly increased with rising Biot number, c. This is principally
attributable to the decrease in Grashof (free convection) num-
ber which results in an acceleration in the boundary layer flow,

as elaborated by Chen and Chen [34]. Heat transfer rate (local
Nusselt number) is enhanced with increasing c, at large values
of n, as computed in Fig. 9(b).

Figs. 10(a) and 10(b) presents the influence of the Biot num-
ber, c, on the dimensionless skin friction coefficient and heat
transfer rate at the sphere surface. The skin friction at the

sphere surface is found to be greatly increased with rising
Biot number, c. This is principally attributable to the decrease
in Grashof (free convection) number which results in an accel-
eration in the boundary layer flow, as elaborated by Chen and

Chen [46]. Heat transfer rate (local Nusselt number) is
enhanced with increasing c, at large values of x, as computed
in Fig. 10(b).

6. Conclusions

Numerical solutions have been presented for the buoyancy-

driven flow and heat transfer of Tangent Hyperbolic flow exter-
nal to an sphere. The Keller-box implicit second order accurate
finite difference numerical scheme has been utilized to effi-

ciently solve the transformed, dimensionless velocity and ther-
mal boundary layer equations, subject to realistic boundary
conditions. Excellent correlation with previous studies has been

demonstrated testifying to the validity of the present code as
shown in Table 5. The computations have shown that:

1. Increasing Weissenberg number, We, decreases velocity,

skin friction (surface shear stress) and heat transfer rate,
whereas it increases temperature in the boundary layer.

2. Increasing power law index, n, increases velocity and

Nusselt number for all values of radial coordinate i.e.,
throughout the boundary layer regime whereas it decreases
temperature and skin friction.

3. Increasing Biot number, c, increases velocity, temperature,
skin friction (surface shear stress) and heat transfer rate.

4. Increasing transverse coordinate (n) generally decelerates

the flow near the sphere surface and reduces momentum
boundary layer thickness whereas it enhances temperature
and therefore increases thermal boundary layer thickness
in Tangent Hyperbolic non-Newtonian fluids.

Generally very stable and accurate solutions are obtained
with the present finite difference code. The numerical code is

able to solve nonlinear boundary layer equations very effi-
ciently and therefore shows excellent promise in simulating
transport phenomena in other non-Newtonian fluids.
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