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Abstract

Previously the two of the authors defined a notion of dual Calabi–Yau manifolds in a G2 manifold, and
described a process to obtain them. Here we apply this process to a compact G2 manifold, constructed by
Joyce, and as a result we obtain a pair of Borcea–Voisin Calabi–Yau manifolds, which are known to be
mirror duals of each other.
© 2009 Elsevier Inc. All rights reserved.
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1. Introduction

Recall that G2 is the simple Lie group which can be identified with the subgroup

G2 = {
A ∈ GL(7,R)

∣∣ A∗ϕ0 = ϕ0
}

where ϕ0 = e123 + e145 + e167 + e246 − e257 − e347 − e356 with eijk = dxi ∧dxj ∧dxk (for more
information on G2 manifolds the reader can consult [3,5,6,9,10]). We say a 7-manifold M7 has
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a G2 structure if there is a 3-form ϕ ∈ Ω3(M) such that at each p ∈ M the pair (Tp(M),ϕ(p)) is
(pointwise) isomorphic to (T0(R

7), ϕ0) (this condition is equivalent to reducing the tangent frame
bundle to a G2-bundle). A manifold with G2 structure (M,ϕ) is called a G2 manifold (integrable
G2 structure) if at each point p ∈ M there is a chart (U,p) → (R7,0) on which ϕ equals to ϕ0 up
to second order term, i.e. on the image of the open set U we can write ϕ(x) = ϕ0 +O(|x|2). Also
the form ϕ ∈ Ω3(M) of a manifold with a G2 structure (M,ϕ) induces an orientation, a metric
g = 〈 , 〉, and a cross product operation T M × T M �→ T M : (u, v) �→ u × v via the relation
ϕ(u, v,w) = 〈u × v,w〉. Then the condition that (M,ϕ) be a G2 manifold is equivalent to the
condition dϕ = d∗ϕ = 0. A 4-dimensional submanifold X ⊂ (M,ϕ) is called coassociative if
ϕ|X = 0, and a 3-dimensional submanifold Y ⊂ M is called associative if ϕ|Y ≡ vol(Y ); this last
condition is equivalent to the condition χ |Y ≡ 0, where χ ∈ Ω3(M,T M) is the tangent bundle
valued 3-form defined by the identity: 〈χ(u, v,w), z〉 = ∗ϕ(u, v,w, z).

Now recall the construction of [2]: If (M7, ϕ) is a G2 manifold and ξ is a non-vanishing unit
vector field on an open subset of M , such that the codimension one distribution Vξ := ξ⊥ is
integrable with a leaf Xξ ⊂ M , then on Xξ we can define the following 2-form and a complex
structure:

ωξ = ξ � ϕ and Jξ (X) = X × ξ.

Also we can define a complex (3,0) form Ωξ = ReΩξ + i ImΩξ , where

ReΩξ = ϕ|Vξ and ImΩξ = ξ � ∗ϕ = 〈χ, ξ 〉.

Theorem 1. (See [2].) Xξ induces an almost Calabi–Yau structure (Xξ ,ωξ ,Ωξ , Jξ ), i.e. ωξ

is a nondegenerate 2-form which is co-closed, Jξ is a metric invariant almost complex struc-
ture which is compatible with ωξ , and Ωξ is a non-vanishing (3,0) form with ReΩξ closed.
More specifically ϕ|Xξ = ReΩξ and ∗ϕ|Xξ = �ωξ . Furthermore, if Lξ (ϕ)|Xξ = 0 then dωξ = 0,
and if Lξ (∗ϕ)|Xξ = 0 then Jξ is integrable; when both of these conditions are satisfied then
(Xξ ,ωξ ,Ωξ , Jξ ) is a Calabi–Yau manifold.

Note that from [12] the condition Lξ (∗ϕ)|Xξ = 0 (complex geometry of Xξ ) implies that de-
forming associative submanifolds of Xξ along ξ in M keeps them associative; and Lξ ′(ϕ)|Xξ ′ = 0
(symplectic geometry of Xξ ′ ) implies that deforming coassociative submanifolds of Xξ ′ along
ξ ′ in M keeps them coassociative. Now, if (M7, ϕ,Λ) is a G2 manifold with a non-vanishing
oriented 2-frame field Λ = 〈u,v〉 (every orientable 7-manifold admits such a Λ by [14]), Λ and
ϕ gives an associative/coassociative bundle splitting

T (M) = E ⊕ V,

where E = 〈u,v,u × v〉 and V = E⊥. In [2], when ξ and ξ ′ are two sections lying in V and E
respectively, we called the pairs Xξ and Xξ ′ dual to each other (and strong dual to each other if
ξ and ξ ′ are homotopic through non-vanishing vector fields). To emphasize the dependance on
the choice of Λ (or E), we will refer Xξ and Xξ ′ as dual submanifolds adapted to Λ (or E). Also
it should be noted that, in general the bundle E has always a non-vanishing section (because it is
a trivial bundle), whereas V may not admit a global non-vanishing section.

In [2], as an application of Theorem 1, the simplest case of torus T
7 example was discussed,

getting subtori T
6 and T

6 as dual submanifolds with different complex structures,
123567 234567
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where subscripts denote the circle factors (note that in [2] different circle factors used). In this pa-
per, we apply this theorem to a more nontrivial example of a G2 manifold (MΓ ,ϕ), constructed
by Joyce [10] (described in Section 4), and obtain a pair of Borcea–Voisin Calabi–Yau manifolds
[4,15], which are known to be mirror duals of each other; furthermore they each are singular
fibrations, in one case with a complex K3 surface as the regular fiber (7), in the other case with
special Lagrangian 3-torus as the regular fiber (9). It is a curious question whether the mirror
dual of a quintic in CP4 can also be obtained this way?

Theorem 2. On the Joyce manifold M7
Γ we can choose an oriented 2-framed field Λ and

corresponding vector fields ξ and ξ ′ so that the adapted submanifolds Xξ and Xξ ′ are Borcea–
Voisin Calabi–Yau manifolds. In particular they are mirror duals to each other in the sense that
b1,1(Xξ ) = b2,1(Xξ ′).

More specifically, the Joyce manifold used here is simply connected, and it is constructed
by resolving the quotient of T

7 by a finite group action M → T
7/Γ . Hence if Xξ is a closed

submanifold it has to be separating in M (i.e. the complement has two components) and ξ has to
vanish in the complement of Xξ . In particular, if ξ is non-vanishing on all of M then Xξ cannot
be a closed submanifold. Here it turns out that for two choices of non-vanishing vector fields ξ

and ξ ′ (on open subset of M) we get Xξ and Xξ ′ to be Borcea–Voisin submanifolds (in particular
they are closed manifolds), such that their open dense subsets Xξ(t) ⊂ Xξ and Xξ ′(t) ⊂ Xξ ′
are dual submanifolds of M adapted to an associative distribution E of (M,ϕ). Furthermore, as
t �→ 0, Xξ(t) and Xξ ′(t) converge to T

6
123567/Γ and T

6
234567/Γ , respectively. In short, Borcea–

Voisin manifolds provide natural compactifications of these dual submanifolds inside of the Joyce
manifold, and in the limit they become orbifold quotients of the dual submanifolds of T

7. In
C.-H. Liu’s terminology [11], these are submanifolds that admit asymptotically coassociative
and associative fibrations (Section 4).

Remark 1. The notion of mirror pairs of Calabi–Yau manifolds originated in the early 90s. It is
part of a duality between two 10-dimensional string theories. Some years later 11-dimensional
M-theory appeared, and its compactification on a G2 manifold is meant to be related to 10-
dimensional string theory on a Calabi–Yau. Two different Calabi–Yau manifolds X and X′ may
have the same SCFT and in this case the complex and symplectic invariants of X and X’ are
related. The construction in this paper fits well with these M-theory/string theory dualities.

Much of this paper is based on the previous work of Liu, where he studied various singu-
lar fibration structures of Joyce manifolds; here we are revisiting those examples to turn them
into applications of [2], i.e. finding duals by using Theorem 1. We would like to thank Osvaldo
Santillan for suggesting us [11] to construct Borcea–Voisin duals inside Joyce manifolds. For a
discussion of this example from physics point of view see [13]. Also special thanks to Betul Tan-
bay for inviting us to IMBM math institute in Istanbul, where this work is done in its inspiring
surroundings.

2. Revisiting TTT7 example

Let us start with the G2 structure (T7, ϕ), given by the positive 3-form:

ϕ = e123 + e145 + e167 + e246 − e257 − e347 − e356. (1)
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By using the notation of [2], let us take T (T7) = E ⊕ V, where E = {e1, e2, e3} and
V = {e4, e5, e6, e7} are the associative/coassociative splitting of the tangent bundle, and let us
choose the vector fields ξ = e4 and ξ ′ = e1. Then we get Xξ = T

6
123567 and Xξ ′ = T

6
234567. The

corresponding complex structures Jξ , Jξ ′ on Xξ , Xξ ′ can easily be calculated from (1) by using
the definitions Jξ (X) = X × ξ and 〈x × y, z〉 = ϕ(x, y, z).

Jξ =
⎛
⎝ e1 �→ e5

e2 �→ e6
e3 �→ −e7

⎞
⎠ , Jξ ′ =

⎛
⎝ e2 �→ −e3

e4 �→ −e5
e6 �→ −e7

⎞
⎠ . (2)

These complex structures correspond to the complex coordinates on Xξ and Xξ ′ :

⎛
⎝ z1 = x1 − ix5

z2 = x2 − ix6
z3 = x3 + ix7

⎞
⎠ and

⎛
⎝ w1 = x2 + ix3

w2 = x4 + ix5
w3 = x6 + ix7

⎞
⎠ . (3)

In these expressions the basis of associative bundle E is indicated by bold face letters to indi-
cate the differing complex structures on T

6, and also to empasise how these complex structures
intermingle these bundles.

3. Borcea–Voisin 3-folds

Borcea–Voisin 3-fold [4,15] is a Calabi–Yau 6-manifold Q6, constructed by taking an invo-
lution on a K3 surface j : N4 → N4 which acts nontrivially on H 2,0(N), and an involution i of
an elliptic curve E = C/Z inducing dz �→ −dz, and by taking the “small” resolution Q of the
quotient by product involution k = i × j :

Q → (E × N)/k.

Hodge numbers are b1,1 = 11 + 5a − b, and b2,1 = 11 + 5b − a, where a is the number of
components of the fixed point set Fix(j), and b is the total genus of Fix(j). In particular, when
Fix(j) is a disjoint union of two T

2’s, then Q is self-dual (in “Mirror duality” sense) i.e. b1,1 =
b2,1 = 19 and its Hodge diamond is given by:

1
0 0

0 19 0
1 19 19 1

0 19 0
0 0

1

Also, the projection E × N → E induces a singular fibration N → Q
π→ S2, where

S2 = T
2/i viewed as an orbifold (the “pillow case”) with four singular points. Over each of

these four singular points, the singular fiber consists of transversally intersecting 4-manifolds
N/j � S2 × T 2 � S2 × T 2, where the union is taken along the two disjoint T 2’s which is
Fix(j). This is because the four singular fibers of the projection (T2 × N)/k → S2 are N/j ,
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Fig. 1.

Table 1

x1 x2 x3 x4 x5 x6 x7

α x1 x2 x3 −x4 −x5 −x6 −x7

β x1 −x2 −x3 x4 x5 −x6 + 1
2 −x7

γ −x1 x2 −x3 x4 −x5 + 1
2 x6 −x7 + 1

2

Table 2

x1 x2 x3 x4 x5 x6 x7

γ −x1 x2 −x3 x4 −x5 + 1
2 x6 −x7 + 1

2
β x1 −x2 −x3 x4 x5 −x6 + 1

2 −x7

α x1 x2 x3 −x4 −x5 −x6 −x7

and taking the “small resolution” of (T2 × N)/k amounts to replacing the T
2 × cone(RP3)

neighborhood of each fixed point torus with T
2 × T ∗

CP1 (i.e. the Euler number −2 disk bundle
over S2) (see Fig. 1).

Also since K3/j ∼= CP2 # 9CP̄2 (e.g. [7,8]), by van Kampen theorem Q is simply con-
nected, and hence Q0 := Q − {point} is homotopy equivalent to a 4-complex. Therefore any
two non-vanishing 2-frame fields on Q0 are homotopic to each other, since the obstructions lie
in Hi(Q0,πi(V7,2)) and V7,2 is 4-connected (where V7,2 is the Steifel manifold of the oriented
2-planes in R

7).

4. Joyce manifold

As described in [10], the group Γ = 〈α,β, γ 〉 = Z2 ⊕ Z2 ⊕ Z2 acts on T
7 by the commuting

involutions α, β and γ described in Table 1. This action was also studied in [11]. By writing
the generators in a different order we observe a certain symmetry with respect to x1 and x4 (see
Table 2), which says that the subgroups 〈α,β〉 and 〈γ,β〉 induce actions on the 6-tori Xξ ′ and Xξ ,
respectively (since they act identity on the remaining coordinate).
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Each of these involutions fix 16 disjoint 3-tori, and all of these 48 tori (three groups of sixteen)
are disjoint from each other. Clearly the fix point sets are:

Fix(α) =
{
xj ∈

{
0,

1

2

}
for j = 4,5,6,7

}
× T

3
123,

Fix(β) =
{
xj ∈

{
0,

1

2

}
for j = 2,3,7 and x6 ∈

{
1

4
,

3

4

}}
× T

3
145,

Fix(γ ) =
{
xj ∈

{
0,

1

2

}
for j = 1,3, and xj ∈

{
1

4
,

3

4

}
for j = 5,7

}
× T

3
246.

The components of the fix point set of any one of these involutions are permuted among each
other by the other two in the obvious way; for example there are four tori Sα

1 , Sα
2 , Sα

3 , Sα
4 ∈ Fix(α)

with Fix(α) = {Sα
j ,β(Sα

j ), γ (Sα
j ), βγ (Sα

j ) | j = 1, . . . ,4}. Hence the quotient space T
7/Γ has

singular set consisting of twelve disjoint 3-tori {Sα
j , S

β
j , S

γ

j | j = 1, . . . ,4}, where the neighbor-
hood of each component is described by

T
3 × (

C
2/〈−1〉) = T

3 × cone
(
RP3). (4)

Then by taking a small resolution along the singular set gives a Joyce manifold M7, i.e. replacing
the neighborhood of components of the singular set of T

7/Γ by

N = T
3 × T ∗

CP1 (5)

gives M7. Here T ∗
CP1 denotes the disk bundle over S2 with Euler number −2.

N has a family of torsion free G2 structures depending on a real parameter t ,

ϕt = δ1 ∧ δ2 ∧ δ3 + ω1(t) ∧ δ1 + ω2(t) ∧ δ2 + ω3(t) ∧ δ3 (6)

where {δ1, δ2, δ3} are 1-forms giving the flat structure on T3 and {ω1(t),ω2(t),ω3(t)} are family
of self-dual 2 forms on T ∗

CP1. Joyce glues torsion free G2 structure inherited from T
7 in the

complement of the singular set, with this structure on a small neighborhood N of the divisor,
obtains a G2 structure ϕt which is not torsion free only on a small annular neighborhood of ∂N ,
then he deforms this G2 structure by an exact form ϕt �→ ϕt + dηt , making it a torsion free G2
structure [10]. Dividing T

7 by the action of Γ and resolving process can be performed in several
steps:

T
7

↘
T

7/〈α〉 ← T
3 × K3

↓ ↓ ↓
T

7/〈α,β〉← T
1 × (T2 × K3)/〈β〉 ← S1 × Q′

↙ ↓
T

7/Γ ← (S1 × Q′)/〈γ 〉 ← M

where the horizontal maps are resolutions and vertical maps are quotients by finite group actions.
Clearly T

7/〈α〉 = T
3 × (T4 /Z2) which can be resolved to T

1 × T
2 × K3 where K3 is the
123 4567
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Fig. 2.

Kummer surface, and the middle diagram commutes. The β action on T
7/〈α〉 lifts to an action of

T
1 ×T

2 ×K3, where the action β = id× i × j is identity on the first factor and anti holomorphic
in the other two variables, because by (3) the derivative of induced action on T

2 × K3 is given
by:

(w1,w2,w3) �→ (−w1,w2,−w3).

Hence the resolution of the quotient (T2 × K3)/〈β〉 is a Borcea–Voisin manifold Q′. Then the
Joyce manifold M7 is obtained by first folding S1 × Q′ by the γ action and getting a singular
fibration over the interval [0, 1

2 ], then by resolving the four 3-tori (the fixed points of the induced
action γ on the Borcea–Voisin) that lies over the end points of the interval. So M7 is a fibration
on a closed interval π : M7 → [0, 1

2 ] with two singular fibers over the end points {0, 1
2 }, and

with regular fiber Q′. Each singular fiber is a 6 manifold with boundary (with singular points)
(e.g. [11]) (see Fig. 2).

Note that Q′ is induced from T
2
23 × T

4
4567 inside T

7. More specifically, Γ induces an action
of 〈α,β〉 on a generic slice T

6
234567, fixing 32 disjoint 2-tori (two groups of sixteen: the fixed

point sets of α and β), and hence T
6
234567/〈α,β〉 has singular set consisting of sixteen T

2 (two
groups of eight: since α and β act on each others fix point sets identifying them in pairs). The
neighborhoods of the components of the singular sets are T

2 × cone(RP3), by resolving them by
T

2 × T ∗
CP1 gives Q′. It is easy to check that Fix(j) consists of a disjoint union of two T

2’s,
hence Q′ is self dual (Section 3). As discussed in Section 3 the projection T

2
23 × T

4
4567 → T

2
23

induces a singular fibration of Q′ over S2, where S2 viewed as the “pillowcase” orbifold:

K3 → Q′ → S2
23. (7)

Similarly the projection T
2
23 × T

4
4567 → T

4
4567 induces another singular fibration:

T
2
23 → Q′ → K3/j (8)

with regular fibers T
2, and singular fibers consisting of union of five S2’s (the pillowcase blown

up at four corners) lying over the singular set Fix(j) ⊂ K3/j . Notice, the complex structure (3)
Jξ ′ on Q′ makes fibers of the fibrations (7) and (8) complex.
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Fig. 3.

Now in the above discussion, by exchanging the roles of α and γ (and x1 and x4) we can do
the same analysis (using the second table) and get a fibration on a closed interval [0, 1

2 ] with two
singular fibers over the end points {0, 1

2 }, and the regular fibers consisting of a Borcea–Voisin
manifold Q, which is obtained by resolving the quotient (T2 × K3)/〈β〉. As above, the Joyce
manifold M is now obtained from the fibration S1 ×Q → S1 by folding it by the α action. From
(3) we see that the derivative of the action β on T2 × K3 is given by:

(z1, z2, z3) �→ (−z1, z2,−z3).

This Q is obtained from T
2
26 ×T

4
1357 (also by exchanging the roles of γ and β here we can get an-

other similar Borcea–Voisin, induced from T
2
15 ×T

4
2367). Now the projection T

2
26 ×T

4
1357 → T

2
567

induces a singular fibration of Q over the 3-sphere, viewed as the orbifold S3
567 = T

3
567/〈β,γ 〉,

and T
3 as the regular fiber.

T
3
123 → Q → S3

567. (9)

To see this first notice that, each of the involutions 〈β,γ 〉 fixes four disjoint circles on T
3
567

(and βγ has no fix points), and also the resulting eight circles are disjoint from each other. The
four components of the fix point set of any one of these involutions are paired among each other,
by the other involution (by complex conjugation map), i.e.

Fix(γ ) =
{

1

4
,

3

4

}
× S1

6 ×
{

1

4
,

3

4

}
,

Fix(β) = S1
5 ×

{
1

4
,

3

4

}
×

{
0,

1

2

}
.

Hence the singular set of S3
567 consists of four disjoint circles (because α and β identified pair of

circles from each other’s fixed point sets). Now we can see S3
567 as a 3-sphere, by first taking the

quotient of T
3
567/〈β〉 = T

1
5 × S2

67 (circle cross the “pillowcase”), then by folding by the action γ

(see Fig. 3).
As noted in [11], from this one can see that the singular set of the orbifold S3

567 is the four
component link L ⊂ S3 shown in Fig. 4. As an independent check, by using the methods of [1] the
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Fig. 4.

reader can draw the handlebody picture of the 4-fold Z2 ⊕ Z2-branched covering of S3 branched
along L (with branching index 2 on each component of L) and get T 3.

Also, it follows from the identifications that the singular fiber of the fibration

T
6
123567/〈β,γ 〉 → S3

567 (10)

is S2 × S1, that is the points lying over the link L, this is because

T
3
123/〈γ 〉 = T

3
123/(x1, x2, x3) ∼ (−x1, x2,−x3) = S2

13 × S1.

Therefore the fibration (9) is obtained by resolving T
6
123567/〈β,γ 〉 along the sixteen sin-

gular T 2’s = {four corners of S2
13} × S1 × L, i.e. by replacing the singular neighborhood

cone(RP3) × T
2 by T ∗

CP1 × T
2. Also note that the complex structure (3) Jξ on Q makes

the regular fiber of the fibration (9) special Lagrangian.
Now recall that the Joyce manifold M is fibered over the interval in two different ways (Fig. 2).

The obvious vector field on the interval with zeros at the end points lifts to transverse vector fields
ξ ′ and ξ to the generic fibers of Xξ ′ and Xξ of these two fibrations (they were called Q′ and Q

above). Clearly ξ ′ and ξ descend from the vector fields e1 and e4 of T
7.

From the fibrations (8) and (9), and from (6), we see that the subbundle generated by
{e1, e2, e3} ⊂ T7 descends as an associative subbundle E on a neighborhood Ot of the regu-
lar fibers of Q and Q′ inside M . Note that in the case of (8) e1 is the transverse direction to Q′
in M . Say Xξ(t) = Ot ∩ Xξ and Xξ ′(t) := Ot ∩ Xξ ′ are the complements of small radius t-tubes
around the singular fibers. It is clear that, by the terminology of Section 1, Xξ(t) and Xξ ′(t) are
dual submanifolds adapted to E, and as t → 0 they converge to the orbifold quotients T

6
123567/Γ

and T
6
234567/Γ .

Remark 2. It is an interesting question whether the G2 structure ϕ on M given by Joyce’s theo-
rem can be deformed so that either one of the conditions Lξ (ϕ)|Xξ = 0 or Lξ (∗ϕ)|Xξ = 0 hold.
If this is the case then we can conclude that the abstract Borcea–Voisin Xξ are indeed exactly
symplectic or complex Calabi–Yau submanifolds by the induced structure given by Theorem 1
(not just asymptotically).

Remark 3. If λ is a 2-frame in the vertical tangent bundle of the fibrations (8) and (9) (i.e. tangent
vectors of the regular fibers), by the remarks at the end of Section 3, we may assume that Xξ(t)

and Xξ ′(t) are duals adapted to a global non-vanishing 2-frame field Λ on M . This is because we
can first choose a non-vanishing 2-frame field Λ′ on M by using [14], then over Xξ(t) ∪ Xξ ′(t)
we can homotope the 2-frame λ to Λ′, then by the homotopy extension property we can extend
λ over M as a non-vanishing 2-frame Λ.
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Remark 4. Some of the Spin(7) manifolds constructed in [10] from the quotients of T
8 (e.g.

Example 14.2), also fiber over an interval in two different ways with dual “almost G2 mani-
folds” (in the sense of [2]) as generic fibers. So we might hope to obtain more interesting “dual”
Calabi–Yau’s living in two different G2’s which are themselves “dual” in a Spin(7); in the case
of Example 14.2 of [10] again we get a pair of Borcea–Voisin’s.
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