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Four types of quadratic spline interpolants are considered for which we obtain
error bounds of the form

lcr= 9%l < ol @l (k=0,1,2).

Moreover, the optimality of the constant C, is proved.  © 1996 Academic Press, Inc.

1. INTRODUCTION

In [1] and [4] error bounds were derived for cubic spline interpolation
over arbitrary partitions, and in [5] the optimality of these bounds was
investigated. In [3] the results were extended to the periodic case. The
purpose of this paper is to obtain error bounds for four types of quadratic
spline interpolation problems using a technique similar to the technique
developed in [1, 4, 5, and 3]. Bounds for periodic cubic and quadratic
splines are also presented in [8] for uniform partition.
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Throughout this paper we use the following notation. Let N > 2 and
Ara=xy<x; < -+ <x; < »» <xpy_,<xy=b

be any partition of the interval [a, b]. A function s is said to be a spline of
degree n over A if s is a polynomial of degree at most n on each interval
[x,_,,x;]and s € C"([a, b], R). It is said to be periodic if s*(a) = s*(b)
fork=0,...,n — 1 Let

h=max{h, =x;, —x;,_,li=1,...,N}
be the mesh size of the partition and
B=h/min{h;li=1,... n}

be the mesh ratio of the partition. Finally, let us consider the following
function spaces

([, bR) - {f: [a6) = R | [*15(0) s < -,

L*([a,b];R) = {f: [a,b] = R| lIfll. = esssup{| f(x)|: x € [a,b]} < =},
and
(i) f*"P el ([a,b]:R)

AT La b 1By = f e LabER Gy pngopft = [ poren ey e

A function f € AC"*!([a, b];R) is said to be periodic if f*(a) = f*(b)

2. QUADRATIC SPLINE INTERPOLANT

Let A’ be the partition of [a, b] such that
Aia=zy<z; <+ <z, 1 <z;<z;,, < <zy<zy.,=b

where z, = (x,_, +x)/2 (i =1,...,N). Given any function f &
AC®(a, b];R), we consider the following four types of quadratic spline
interpolant s of f defined on A:

Type | (Marsden [7]). f and s are periodic and

s(z;) =f(z,) (i=1,...,N), (2.1a)
s®(a) =sP(b) (k=0,1). (2.1b)
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Type Il (Demko [2], Kammerer et al. [6], and Xie [10]).

s(z;) =f(z) (i=0,...,N+1). (2.2)

Type 11 (Xie [10)).
s(z) =f(z;) (i=1,..., N), (2.3a)
sP(z,) =fP(z,)) (i=0,N+1). (2.3b)

Type IV (Xie [10]).
s(z;) =f(z) (i=2,...,N-1), (2.4a)
s®(z) =f®(z) (i=0,N+1k=0,1). (2.4b)

The existence and uniqueness results are presented in the references
given here. Our goal is to obtain, for each type of interpolant, error
bounds of the form

I — 5], < C-4
for k = 0,1,2, where M = || f®)]...

3. FUNDAMENTAL SPLINES

Let v and w be two quadratic splines defined on A’ and such that

v(x;)) =0=w(x,) (i=0,....,N) (3.1)
and for
v®(a) = 0 = w(b);

Types I and I {U(Z)(a) — 1= (—1)"w®(p). (3.2)

vD(a) =1 = (—-1)"wD(b);
Type 111 {u<2>(a) 0= (). (3.3)

0(z;) =1=(-1)"w(zy);
Type IV v®@ is continuous at z,; (3.4)

w® is continuous at z,.

There is no difficulty to show that v and w are well defined by the given
conditions. Some of the properties of v and w are stated in the next
lemmas.
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LEMMA 1. The splines v and w have the following sign properties:

vD(x) = (-1)]vP(x)|  (i=0,...,N), (3.5a)
v@(x) = (-1)]v®(x)| (i=1,...,N); (3.5b)
wh(x) = (=) wh(x)|  (i=0,...,N),  (36a)

w®(x,) = (-1 |w®(x)| (i=0...,N—1). (3.6h)

The splines v and w satisfy the following identities:

[0®(x) | = 3[o®(x,_ )| +[0@(xioy) (3.7a)
0@ (x,) |h; = 8|v®(x,_1)| + 3[v@(x,_1) |hy; (3.7b)
WO (xi_ ) [ = 3w (x) | +[w®(x) [k, (3.8a)
|W(2)(xi—1) |hi = 8|W(1)(xi)| + 3|W(2)(xi) |hi; (3.8b)

fori=1,...,N for types |, Il, and |1, and for type \V (3.7) holds for
i=2,...,Nand (3.8) holds fori =1,...,N — 1.

Furthermore, v and w have no zeros in each interval (xl-_ o xl-),and

i—-1 i
o(x) = (=" Jo(x)| and  w(x) =(-1)w(x)| (3.9

fori=1,...,N.

Proof. We prove only these results for v since the proofs for w are
similar. We use the following representation of v on [x;_,, x;]

2 X=X ! x_Zi2+
v(x)=j¥lu(/)(xil)( j!l ) +J( 2!)

where J =0@(z") — v@P(z;7). If we evaluate vP(x;) and vP(x,), we
obtain

—0D(x;) = 30D (x;y) + 0@ (x; 1) (3.10)
—v@(x)h; =80 (x;,_;) + 309(x;_1)h;. (3.10b)
For v of type I, I, or 11l, we have from the definition that v®(a) and

v®(a) are nonnegative. Therefore we obtain (3.5) form (3.10) in these
cases. If v is of type IV then v is a polynomial on [a, x;] such that
vP(a) = 4/h, and vP(a) = —4/h2. It follows from (3.10) that —v®(x,)
and —v®(x,) are nonnegative and (3.5) follows. As a direct consequence
of (3.5) and (3.10) we obtain (3.7). Since v is a spline with a single knot at
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z; on (x;_4, x,), it follows from the Budan—Fourier Theorem for polyno-
mial splines [9, Theorem 4.58] that v has no zeros in (x,_, x,). Therefore
(3.9) is a consequence of (3.5). 1

LEMMA 2. The quadratic spline v has the properties

2

[ le(o)lar = (=1 (v9(x;) - um(x,-l))%, (3.11a)

Xi-1

x; h?
[ o0 ldx < [0 (), (3.11b)

3

[ () lde = (-1)(0@(x;) + v<2>(x,-1));’—;, (3.11c)

Xi—1
3

X, h _
J lo(x)]dx < 22 (FD'0@(x) = v(a)), (3.11d)

a

fori=1,..., N. Moreover, if the partition is uniform then (d) is an equality.

Proof. Let w(u) =u(u — ) — 1)/6 and define Q(x) = hdw((x —
x;,_1)/h) for x € [x;_,, x;]. Then Q®(x) = 1 and, from (3.9), we have

(=0 [ o) ldy = [T o(x0)09(x) dx.

Xi-1 Xi-1

Integrating by parts, using (3.1) and the continuity of v@(x)Q(x), we
obtain

2

[ 0(0)QO(x) dv = = (69(x;) = 0D (x,,))

Xi-1

12
and (3.11a) follows. To obtain (3.11b) we have from (3.11a)

2

X; i . h
JREEIE I (0(00) = o0-0) 3

a

and, using (3.5a), we obtain

X; /’lz i1
[ e lde < @)+ 2 X [0®x)] +[0P(a) ]}
a j=1
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But from (3.7a) we have |v®W(x)| > 3lv™®(x,_,)| (for type IV we have
vD(x,) = —v®(x,)). It follows that

1
31'—1

X; h? i-1 1
fa’|u(x)|dxs E'”(l)(xi” 1+2j§l§ +
h2
< =[x

If we observe that
U(l)(xi) - U(l)(xi—l) = U(l)(xi) - U(l)(zi) + U(l)(zi) - U(l)(xifl)
h;
= (U(Z)(xi) + U(z)(xi—l))?

then (3.11a) becomes (3.11c). Also,

Xj

[eolde= X [ loo s

Xj-1

/A .
< ﬂjgl(—l)](u(z)(xj) + U(Z)(xj,l))

3

< h—{ —1)"v®(x;) — v@(a)}
=2\ %

and we get (3.11d). 1
From (3.11d) and (3.5b) we obtain

3 [[v@CG) | =[v@(a)| for types 1and 11,
[l = 24 o) for type 11,
@ 0@ (x,)| +]0v@(a)] for type IV.

Using the same method we obtain the following result for w.

LEMMA 3. The quadratic spline w has the properties

Yit1 i+1/ 1 %, q
[ s = (=) 0 = w0 0) 5t (3422)

2

h
[ () lde < = [wo(x)|, (3.12b)

Xi



OPTIMAL ERROR BOUNDS 55

Xit1 i 9 9 h?+1
[ Iwold = (=1 (wP(x) + w(x,0)) 5570 (3120)

i
3

h .
TIw()ldr < o2 ((~)'wO(x) — (-1 w(b)), (312d)

X

i

fori=0,..., N — 1. Moreover, if the partition is uniform then (3.12d) is an
equality.

From (3.12d) and (3.6b) we get

, [Iw®(x)| =1w®(b)| for types | and I1,
/blw(x)ldxs o4 [w®(x,)| for type 111,
i [w®(x)| +|w®(b)] for type IV.
4. KERNELS

For the quadratic spline interpolant s of f € AC3(a, b]; R) we define
the error e(x) = f(x) — s(x). Let us observe that for the four types of
interpolant considered here we have

e(z;,) =0 (i=2,...,N-1),
e® and ¢® are continuous at z;  (i=1,..., N).
Moreover v, v®, w, and w®) are continuous at z, (i =0, ..., N + 1), and
v(x;)) =0=w(x,) (i =0,...,N). Using these properties we obtain

[ 0(x)e@(x) ds = v(a)e®(a) — vO(x)e®(x,)

+0@(x)e(x;) —v@(a)e(a)
+[v®(z7) = 0®@(z)]e(z)
+ SiN[U(Z)(Z;,)-U(Z)(Z;})]e(ZN). (4.1)

Similarly, for w we have

f%W(X)€(3)(x) dx = w(l)(xl-)e(l)(x,-) — W(l)(b)e(l)(b)

Xi

+w@(b)e(b) —w®(x;)e(x;)
+[wP(zy) = w®(zy)]e(zy)

+ 8o[wP(21) —wO(z)]e(z1).  (42)
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Using the supplementary conditions for each type of interpolant we obtain
the following results.

Type 1. From (2.1) and (3.2) we have
fbu(x)e(s)(x) dx = (vV2(b) — v@(a))e(a) — vP(b)eP(a),
fbw(x)e(g)(x) dx = (W2(b) —w?(a))e(a) + wP(a)eV(a).
It is a linear system for e(a) and e®(a) for which the determinant of the
coefficient matrix is
D(a,b) = w(a)(v?(b) = v@(a)) + vO(b)(WO(b) — w?(a)).
But from (3.11d), (3.12d), (3.5), and (3.6), we have
sgn(v®(b) — v®(a)) = sgn(v®(b)) = (-1)",
sgn(w®(b) —w®(a)) = —sgn(w®(a)) = —1.
Hence,
D(a,b) = [[w®(a)[[0®(b) — v®(a)]
+[o®(b) [[w®(b) = w®(a)|] (=)
It follows that
e®(a) = ["Ky(x)e®(x) dv

where ¢®(x) = f®(x), and
Ko(x) = [w®(a)v(x) + v®(b)w(x)]/D(a,b),
Ky(x) = [(v@(b) —v@(a))w(x) — (w®(b) —w®(a))v(x)]/D(a,b).

Therefore, using Lemmas 2 and 3 we have

h3 2
K|l < — and K| < —.
IKolly < 24 1K, < 5

Finally, using the periodicity, and considering any interval of the form
[x;, x; + b — a], we obtain

max{|e®(x,)|:i=0,..., N} <K .M
for k =0,1.
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Type 1l.  From (2.2) and (3.2) we have

LXi”(x)e‘3)(X) de = v@(x;)e(x;) — 0P (x,)eD(x,),

[ w(x)e@(x) de = —wO(x)e(x) + wh(x)eV(x,),

Xi

fori=0,...,N.
Type 111.  From (2.3) and (3.3) we have

[ o(x)e®(x) ds = v®(x)e(x,) — 0O (x,)eD(x),

[ w()e () de = —wE(x)e(x) + W (x)e(x,),

fori=0,...,N.
Type IV. From (2.4) and (3.4) we have

[0 de = 1Dk ex) — 06) e (),

[ w()e () de = —wO(x)e(x) + W (x)e(x,),

fori=1,...,N—-1
For these three cases we have to solve a linear system for e(x;) and
eW(x,) for which the determinant of the coefficient matrix is

D(x;) = v®(x)wh(x;) — vP(x)w?(x,).
Using (3.5) and (3.6) we have
D(x;) = _{|U(2)(xi)||w(l)(xi)| +|U(l)(xi)||w(2)(xi)|} #0
for all i (depending on the type of the interpolant).
Solving for e(x;) and e®(x,), we have
M (x) = ["K,(x;0)e®(x) dx

where ’
w D (x)v(x) _

D(x;) "
v D (x ) w(x)

D(x,) i

K(x;5x) =
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for k = 0, 1. It follows from Lemmas 2 and 3 that

h? /24 for types Il and 111,
Kol < "/ P
h*/12 for type 1V,
and [|K,|l; < h?/6. Finally,
max{|e®(x,)[:i =0,..., N} <K, LM

for k = 0,1. In summary we have the following result.

PrROPOSITION 4. Let f € AC%([a,b];R) and s be the quadratic spline
interpolant of type 1, 1, 111, or IV. Then for e(x) = f(x) — s(x) we have

max{le®(x;)|:i=0,..., N} <K .M
for k = 0,1, where

h®/24  fortypes |, Il, and 11,

Ky <
1Ml h*/12  fortype IV,
1K, ll. < h?/8,

and M = || fO)...

5. DERIVATION OF ERROR BOUNDS

For any interval [x,_,, x;] on which we have the condition f(z,) = s(z;)
we consider the Lagrange interpolating polynomial p(x) of degree 2 such
that

p(x;1) = f(x;-1), r(z) =f(z), p(x;) =f(x;).
Then

h3
| £(x) —P(X)|S|(1+t)f(1—f)|4—éM (5.1)

for x =z, + (h;/2)t and —1 <t < 1. The difference p — s is then the
Lagrange interpolant of e = f — s on [x,_,, x;], and

|p(x) = s(x)| < ltmax{e(x; 1) |, [e(x;) [} (5:2)
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Hence, from (5.1), (5.2), and Proposition 4, it follows that
3

h
max x) —s(x)| < —M
x€[xi,1,xi]|f( ) —s(x)] 4

for types I, 11, and 111, and

h3
max |f(x) —s(x)|< =M
]

xe€lx;_q,x; 12

for type IV.

For type 1V it remains to consider the interval [x,, x,] where f®(z,) =
sM(z,) (and similarly the interval [xy_,, xy] where f®(zy,,) =
sP(zy, 1)) In this case we consider the Hermite interpolating polynomial
p(x) of degree 2 such that

P(xg) = f(xo), P(l)(xo) Zf(l)(xo)’ p(x1) = f(x1).
Then

h3
() = ()| =@+ '@ - )| oM. (53)
Also, p — s is the Hermite interpolant of e = f — s on [xg, x,], and

(1 +1)°
|p(x) = s(x)] = == le(x). (54)
Hence, from (5.3), (5.4), and Proposition 4, we have

max ]|f(x) —s(x)| < %M

x€[xg, xq

To obtain the error bounds for e¢’(x) and e®(x) we use the following
lemma about linear interpolation.
LEMMA 5. Let ¢ € AC%([a, b]; R), then
(b-a)
11l < max{[$(a) ], [ (D) [} + 57l
and

2

a
6Pl < 1@IL...

——max(| ¢(a)]. | 6(b)} +
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Using this lemma, if ¢(x) = eP(x) then

le®l.. < max{|e®(x,)|:i=0,...,N} + =M

and
h o h
le@]l.. <max{— +—h i=1,...,N}hM.

Finally we have the following result.

THEOREM 6. Let s be a type |, I, lll, or IV interpolant of f &
AC3(a, b]; R). Then

l(r =% <cn @l (k=0,1,2)

where

1

z fortypes 1, 11, and 111,
C, = 1

= for type 1V,

c 7
1oo2a

5

ry ifl<pB<3/2
C, = B 1

-+ — B=3/2.

2 2B

Moreover, C, is optimal in the sense that

u ||f - s”oo
s IO
where the supremum is taken over all partitions A of [a,b] and all f €

AC3([a, b]; R) such that || f®|l.. # 0 (for type |, fis assumed to be periodic).

Proof. It remains to prove the optimality of C,. We only have to show
that for any & > 0 there exists an index i and a function f € AC3((a, b]; R)
for which

Cy=s5

for types I, 11, and 111,
le(x)| > (1 = )l £l
for type IV.

= N
v\>|"‘4>|H
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We consider the following three situations.

Type 1. From (3.5a), (3.5b), (3.8a), and (3.8b) we have

1
() = D@l + (0B o]

forany x € (x,_,,x,)and i = 1,..., N. Hence for N even

fab|Ko(x)|dx = m[|w(1)(0)|f‘lb|v(x)|dx

wawﬁmwm}

But from (3.11d) and (3.12d) for a uniform partition, we obtain
3

[ 1K) i = o
, o o
Finally, let f € AC%(a, b];R) be a periodic function such that f®(x) =
sgn(Ko(x)) = (=1~ for x € (x,_4, x,), then

e(a) = [ Ko()e@(x) de = [*Ko(2) f(x) d

h3
b
= [ 1Ko 71 dr = 19

Types 1l and 111. From (3.7b) and (3.8b) we have
|v@(x,)| = 31 v@(a)] and [w®(x,)| = 3V |w®(b)].

Hence, for a uniform partition, we obtain from (3.11d) and (3.12d)

Llﬁxﬂw>(1——J—%w%xﬂ

Cwuﬂwz@—jéyiw%wl

then
1\ Ahe
flK(xz'x)ldX>(l_3aN)24

for all aN <i < (1 — a)N where a € (0, 2). It follows that
3

Ilmf |K(x;; x)|alx—
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Finally, let f € AC3([a, b]; R) be such that

fO(x) = sgn(Ko(x;; x)).
Then

o) = [ Kolies 0)e(x) di

b
= " 1Ko ) e @)

h

3
>(1- G)ﬂ”f@)”w

for aN <i < (1 — a)N and N such that 1/3*V < e.

Type IV. Let N =2 and A be the uniform partition of [a, b]. In this
case v@(a) = —v@(x)land w®(b) = —|wP(x,)l. We obtain from (3.11d)
and (3.12d)

x h? b h®
[lo@lde= @] and [T w(x) ldy = S w(x)].

1

Then
b K ; dx = "
/; | 0(x11x)| 12°

Finally, let f € AC*([a, b]; R) be such that f®(x) = sgn(K,(x,; x)) for all
x € [a, b]. Then

dm=fmumvwnm

b
J7 1Koy ) e[l

h3
— (©)]
Sl
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