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Abstract

We investigate parallel searching onm concurrent rays. We assume that a targett is located somewhere on one
of the rays; we are given a group ofm point robots each of which has to reacht . Furthermore, we assume that the
robots have no way of communicating over distance. Given a strategyS we are interested in the competitive ratio
defined as the ratio of the time needed by the robots to reacht usingS and the time needed to reacht if the location
of t is known in advance.

If a lower bound on the distance to the target is known, then there is a simple strategy which achieves a
competitive ratio of 9—independent ofm. We show that 9 is a lower bound on the competitive ratio for two
large classes of strategies ifm� 2.

If the minimum distance to the target is not known in advance, we show a lower bound on the competitive ratio
of 1+ 2(k+ 1)k+1/kk wherek = �logm� where log is used to denote the base-2 logarithm. We also give a strategy
that obtains this ratio. 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Searching for a target is an important and well studied problem in robotics. In many realistic situations
the robot does not possess complete knowledge about its environment, for instance, the robot may not
have a map of its surroundings, or the location of the target may be unknown [3–6,8,9,11,12,15–17].

The search of the robot can be viewed as anon-line problem since the robot’s decisions about the
search are based only on the part of its environment that it has seen so far. We use the framework of
competitive analysisto measure the performance of an on-line search strategyS [18]. Thecompetitive
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ratio of S is defined as the maximum of the ratio of the traveling time needed for a robot to find the target
using strategyS to the optimal distance from its starting point to the target, over all possible locations in
the environment of the target. Note that we have normalized the speed so that time equals distance for a
full speed strategy.

A problem with paradigmatic status in this framework is searching onm concurrent rays. Here, a point
robot or—as in our case—a group of point robots is imagined to stand at the origin ofm concurrent rays.
One of the rays contains the targett whose distance to the origin is unknown. A robot can detectt only
if it stands on top of it. It can be shown that an optimal strategy for one robot is to visit the rays in cyclic
order, increasing the step length each time by a factor ofm/(m− 1). In the beginning the robots starts
with a step length of 1 which is assumed to be a lower bound on the distance tot [1,7]. The competitive
ratioCm achieved by this strategy is given by

1+ 2
mm

(m− 1)m−1
.

The lower bound for searching onm rays has proved to be a very useful tool for proving lower bounds
for searching in a number of classes of simple polygons, such as star-shaped polygons [14], generalized
streets [6,13], HV-streets [5] andθ -streets [5].

In this paper we are interested in obtaining upper and lower bounds for the competitive ratio ofparallel
searchingonm concurrent rays. This problem has been addressed before in two contexts.

The first context is the on-line construction of hybrid algorithms the setting of which can be described
as follows [10]. We are given a problemQ andm approaches to solving it. Each approach is implemented
by an algorithm which is called abasicalgorithm. We have a computer withk � m disjoint memory
areas which can be used to run one basic algorithm and to store the results of its computation. Only a
single basic algorithm can be run by the computer at a given time. It is not known in advance which
of the algorithms solves the problemQ—although we assume that there is at least one—or how much
time it takes to compute a solution. In the worst case only one algorithm solvesQ whereas the others
do not even halt onQ. One way to solveQ is to construct a hybrid algorithm that uses the basic
algorithms in the following way. A basic algorithm is run for some time, and then the computer switches
to another algorithm and so on untilQ is solved. Ifk < m, then there is not enough memory to save all
the intermediate results. So sometimes the current intermediate results have to be discarded and to be
recomputed later from scratch.

A different way to look at this problem is to assume that we are givenk robots that have to search on
m rays for a targett with k <m. Each ray corresponds to a basic algorithm, and a robot corresponds to a
memory area. At any time we are allowed to move only one robot. Discarding intermediate results of the
basic algorithmA corresponds to moving the robot on the ray corresponding toA back to the origin.

Kao et al. [10,19] present an algorithm for the above problem that achieves an optimal competitive
ratio of

k + 2
(m− k+ 1)m−k+1

(m− k)m−k ,

which is, of course, also the competitive ratio of searching withk robots onm rays if only one robot is
allowed to move at a time.

In the second context a group ofm point robots searches for the target. Again neither the ray containing
the target nor the distance to the target are known. Now all the robots have to reach the target and the
only way two robots can communicate is if they meet, that is, they have no communication device. We
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are going to use this model in our paper. Baeza-Yates and Schott investigate searching on the real line,
that is, the casem= 2 [2]. They present two strategies both of which achieve a competitive ratio of 9.
They also consider searching for a target line in the plane with multiple robots and present symmetric
and asymmetric strategies. However, the question of optimality, that is, corresponding lower bounds, is
not considered.

In this paper we investigate search strategies for parallel searching onm concurrent rays. If a lower
bound on the distance to the target is known, then there is a simple strategy that achieves a competitive
ratio of 9—independent ofm. We show that even in the casem= 2 there is a matching lower bound of 9
on the competitive ratio of two large classes of strategies,monotoneandsymmetricstrategies. Moreover,
we show that a lower bound ofC for m= 2 implies a lower bound ofC for m> 2—as is to be expected.
This implies, in particular, that there is no monotone or symmetric strategy for arbitrarym that has a
competitive ratio better than 9. For monotone strategies we can even strengthen this result and show that

Ck = 1+ 2(k + 1)k+1

kk
,

wherek = �logm� is lower bound on the competitive ratio.
We also consider the case that the minimum distance to the target is not known in advance which turns

out to be essentially equivalent to restricting ourselves to monotone strategies. We again show a lower
bound on the competitive ratio ofCk wherek = �logm�. We also present a (monotone) strategy that
achieves this competitive ratio.

The paper is organized as follows. In the next section we present some definitions and preliminary
results. In particular, we present three strategies to search on the line(m= 2), each with a competitive
ratio of 9. In Section 3 we show a matching lower bound of 9 for two large classes of strategies. In
Section 4 we extend our results to the casem> 2. Finally, in Section 5 we present an optimal algorithm
to search onm rays if there is no minimum distance to the target.

2. Preliminaries

In the following we consider the problem of a group ofm robots searching for a target of unknown
location onm rays in parallel. The robots have the same maximal speed which we assume without loss
of generality to be 1 distance unit per time unit. If the robots have unbounded speed, then the time to find
the target (both off-line and on-line) can be made arbitrarily small. The speed of a robot may be positive
(if it moves away from the origin) or negative (if it moves towards the origin).

Let S be a strategy for parallel searching onm rays andTS(D) the maximum time the group of robots
needs to find and reach a target placed at a distance ofD if it uses strategyS. Since the maximum speed
of a robot is one, the time needed to reach the target if the position of the target is known isD time units.
The competitive ratio is now defined as the maximum ofTS(D)/D, over allD � 0. In some applications
a lower boundDmin on the distance to the target may be known. If such a lower bound exists, then we
assume without loss of generality thatDmin = 1. It will turn out that the existence ofDmin leads to a
drastically lower competitive ratio ifm> 2.

We define different classes of possible strategies to search onm rays in parallel. We say a strategy is
monotoneif, at all times, all the robots (that do not know the location of the target) have non-negative
speed. We say a strategy isfull speedif all the robots travel at a speed of 1 or−1 at all times. We say a
strategy issymmetricif, at all times, all the robots (that do not know the location of the target) have the
same speed.
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We illustrate the different types of strategies form = 2. The optimal monotone strategy is for each
robot to travel at a speed of 1/3 on each ray. After one robot has found the target, it runs back to fetch
the other. This leads to a competitive ratio of 9. This strategy is described in [2]. In the next section
we show a lower bound of 9 on the competitive ratio of monotone strategies. The optimal (full-speed)
symmetric strategy is for each robot to double the distance that has been explored before and then to
return to the origin. This strategy can only be applied if a lower bound on the distance to the target is
known. It achieves a competitive ratio of 9. Again this strategy is described in [2] and we show a lower
bound of 9 on the competitive ratio of symmetric strategies in the next section. Finally, an asymmetric
strategy is for both robots to walk together and to use the optimal strategy for one robot to search on two
rays. This again yields a competitive ratio of 9.

3. Searching on two rays

In this section we consider the problem of two robots searching for a target of unknown location on
the real line in parallel; the robots are initially placed at the origin. We assume in the following that a
lower bound on the distance from the origin to the target ofDmin = 1 is known.

For monotone strategies we have the following lower bound.

Theorem 1. There is no monotone strategy that achieves a better competitive ratio than9 to search on
two rays in parallel.

Proof. The proof uses an adversary to place the target point in order to maximize the competitive ratio.
Let us enumerate the robots and definevi(T ) as theaveragespeed of roboti ∈ {1,2} at timeT , i.e.,

the distance of the robot to the origin at this time divided by the time. It is clear that a monotone search
strategy is completely specified by the two average speed functions.

First of all we realize that the two robots will not both go in the positive or negative direction since then
the adversary can place the target on the ray not visited by the robots, yielding an infinite competitive
ratio.

Hence, the two robots go in different directions. As time passes the robots move continuously and
monotonically with some speed along the line until one of them finds the target. This robot now travels
at full speed to the other robot and communicates to it the location of the target and they both return to
this target point. Consider the valuevmin specified by

vmin = inf
t�Tmin

min
{
v1(t), v2(t)

}
,

whereTmin is the first point in time such that both robots are at least a distanceDmin from the origin.
From the definition ofvmin, we know thatv1(T )� vmin andv2(T )� vmin, for all T > Tmin.

For anyε > 0, there is a timeTε � Tmin such that eitherv1(Tε)� vmin +ε or v2(Tε)� vmin +ε. Assume
without loss of generality that for some specificε it holds forv1(Tε). By the definition of monotonicity
Tε � Tmin and hencev1(Tε)Tε � v1(Tmin)Tmin = Dmin, so the adversary places the target at the point
Dε = v1(Tε)Tε. A lower bound on the competitive ratioC of the strategy can now be expressed as

C � Tε + 2TR
Dε

,
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whereTR denotes the time for the robot that found the target to reach the second robot at full speed.
Since they both have to return to the target this adds an extra termTR. Because of the monotonicity of
the strategy we can express the timeTR by

TR =Dε + v2(Tε + TR)(Tε + TR).
This is because the robot that finds the target goes towards the other robot at full speed traveling first the
distanceDε and then the distancev2(Tε + TR)(Tε + TR) until they meet. We have that

TR = Dε + v2(Tε + TR)Tε
1− v2(Tε + TR) ,

where we can assume thatv2(Tε + TR) < 1 since otherwise robot 1 never reaches robot 2. Hence,

C � Tε + 2(v1(Tε)Tε + v2(Tε + TR)Tε)/(1− v2(Tε + TR))
v1(Tε)Tε

= 1

v1(Tε)
+ 2

1− v2(Tε + TR) + 2

v1(Tε)

v2(Tε + TR)
(1− v2(Tε + TR))

� 1

vmin + ε + 2

1− vmin
+ 2

(vmin + ε)
vmin

(1− vmin)

� 9− 18ε

1+ 3ε
,

since the above expression is minimized forvmin = 1/3 and it tends to 9 asε tends to 0. ✷
Next we look at symmetric strategies. The following lemma shows that only full speed strategies need

to be considered.

Lemma 2. For all ε > 0 and all strategiesS, there is a full speed strategyS ′ such that the competitive
ratio of S ′ is at most(1+ ε) times the competitive ratio ofS.

Proof. Divide the time into small intervals of lengthδ. If strategyS has average speedv in an intervalI ,
then letS ′ be the full-speed strategy that first travels back for(1− v)δ/2 time units and then forward for
(1+ v)δ/2 time units inI . At the end ofI the robot is at the same position as if it had usedS. By letting
δ go to 0, the claim follows. ✷

The previous lemma tells us that we can simulate any strategy with a full speed strategy and therefore
we only have to consider full speed strategies if we are given a lower bound on the distance to the target.

In the following we show a lower bound for symmetric full speed strategies. We start with the case
m= 2 and consider the general case later.

Lemma 3. LetS be a symmetric strategy. Then, there is a sequence of positive numbers(y0, y1, y2, . . .)

such that the competitive ratioCS of S satisfies

CS � sup
k�1

1+ 2

∑k+1
i=0 yi

yk
.

Proof. Since the strategy is symmetric, the two robots will use the same local strategy to search its own
ray. Furthermore, by Lemma 2 we can assume that it is a full speed strategy. We can model a full speed
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Fig. 1. The definition ofUk andLk .

strategy for a robot by saying that it first moves a distancex0 forward along the ray at full speed, then it
moves a distancey0 backwards at full speed, then a distancex1 forward, a distancey1 backward, and so
on. When one of the robots finds the target, it runs back at full speed until it meets the other robot, and
they both run to the target at full speed.

The proof uses an adversary to place the target point in order to maximize the competitive ratio.
We say that a robot is instepk when it moves forward and backward the(k+ 1)th time. LetLk denote

the distance to the origin of the turning point where the robot begins stepk and letUk denote the distance
to the origin of the turning point where the robot starts to move backwards during stepk (see Fig. 1).

We have that

L0 = 0,

Lk = Lk−1 + xk−1 − yk−1 =
k−1∑
i=0

xi − yi,

Uk = Lk + xk = xk +
k−1∑
i=0

xi − yi = yk +
k∑
i=0

xi − yi.

The total time that the robot has traveled when it completes stepk is

Tk =
k∑
i=0

xi + yi.

We can assume thatUk−1 < Uk , since otherwise, the strategy will not explore any new part of the ray
during stepk, and we can exchange the strategy for another equivalent one, where the assumption holds.
In particular, we can assume thatyk < xk+1, for all k � 0.

Furthermore, we can assume thatyk � Uk for all k � 0, that is, a robot always stays on the same ray,
since if this does not hold, we can exchange the strategy for an equivalent one where, if the two robots
meet at the origin, they exchange places and continue on their own ray instead of the other robot’s ray.

Assume that the target is placed at distanceD with 1 = Dmin � D and that the two robots meet in
stepk, that is, during the time that one robot travels fromUk to Lk+1, say at pointq ∈ [Lk+1,Uk]. The
competitive ratio for this placement is given by

Ck(D)= Tk−1 + xk + (Uk − q)+ (q +D)
D

= 1+ Tk−1 + xk +Uk
D

= 1+ 2

∑k−1
i=0 yi +Uk
D

, (1)

sinceTk−1 + xk + (Uk − q) is the time needed to reach pointq andq +D is the time needed for both
robots to return to the target after they have met. It is interesting to note that, for a givenD, the above
analysis is completely independent of the step in which the target isfoundand only depends on the step
k in which the robotsmeet.
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To each stepk we will associate a placement of the target point, such that the robot that finds the target
finds it during a step no earlier than stepk + 1. The corresponding competitive ratio of the placement is
denotedCk .

Consider placing the target at distanceD afteryk . By Lemma 4 we can assume thatyk �Uk−1, so the
robot that finds the target, say robot 1, discovers it earliest during stepk. We claim that the robots do not
meet before stepk+ 1. The total distance between the robots is 2D at the time when the target is found.
The distance is only reduced during the times when robot 2 travels back towards the origin. During such
a phase the distance is reduced by two distance units per time unit since the robots travel towards each
other. Now, if the target is found in stepk, then the robots meet in the first stepk∗ such that

∑k∗
i=k yi �D.

SinceD > yk , this implies thatk∗ � k+1. If the target is not found in stepk, then the robots meet earliest
in stepk+ 1 anyway. Hence, using Eq. (1) the competitive ratioCk of placing the target afteryk satisfies

Ck � sup
D∈]yk,∞[

{
1+ 2

∑k
i=0 yi +Uk+1

D

}
= 1+ 2

∑k
i=0 yi +Uk+1

yk
� 1+ 2

∑k+1
i=0 yi

yk
,

sinceyk+1 �Uk+1.
As a result the competitive ratio for any symmetric strategy is bounded below by

C = sup
k�0
Ck � sup

k�0
1+ 2

∑k+1
i=0 yi

yk

as claimed. ✷
Lemma 4. Using the terminology of the proof of Lemma3 there is an optimal symmetric strategy with
yk �Uk−1, for all k � 1.

Proof. Let S be any strategy such thatyk < Uk−1 for somek � 1. We show that we can exchangeS
for another strategyS∗ such that its specifying parametersy∗

i andU ∗
i have the propertyy∗

i = yi , for
0� i < k, U ∗

i =Ui, for 0� i � k andy∗
k �U ∗

k−1.
Let k∗ be the smallest index with

∑k∗
i=k yi �Uk−1. The indexk∗ must exist and be finite since otherwise

we can place the target at distanceD >Uk−1 and get an infinite competitive ratio for the strategy.
We now define two new specifying sequencesy∗

i andU ∗
i of S∗ which will replace the sequencesyi

andUi .
For 0� i < k, nothing changes, that is, we sety∗

i = yi andU ∗
i = Ui . For k we defineU ∗

k = Uk and
y∗
k =∑k∗

l=k yl . Finally, we drop all indices fromk + 1 to k∗ and defineU ∗
k+j = Uk∗+j andyk∗+j = yk∗+j ,

for j � 1.
Let Cn(D) andC∗

n(D) be the corresponding competitive ratios for strategiesS andS∗, respectively,
when the target is placed at distanceD from the origin, and the robots meet at stepn. Recall that

Cn(D)= 1+ 2

∑n−1
i=0 yi +Un
D

,

wheren is the step in which the two robots meet. ForC∗
n(D) we have a similar formula.

We will compareCn(D) andC∗
n(D) for all possible meeting steps from one onwards.

If the robots meet in stepi where 0� i � k, then obviouslyCi(D)= C∗
i (D).

If in strategyS the robots meet in stepk∗ + j , for j � 1, then they will meet in stepk + j in strategy
S∗ and it holds thatCk∗+j (D)= C∗

k+j (D). Hence it only remains to consider the stepsk + 1, . . . , k∗ of
strategyS.
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If the robots meet in stepl of strategyS wherek + 1 � l � k∗, then they meet in stepk in strategyS∗.
To see this, we prove that if robot 2 (which does not know about the target) reaches the pointU ∗

k = Uk,
then the distance between the two robots is at most 2y∗

k—and they meet when robot 2 travels back in
stepk.

We first note that when robot 2 reaches the pointUl of S, then robot 1 is at most a distance 2yl
from it (since they meet in stepl). Similarly, if robot 2 reaches pointUl−1, then the distance is at most
2(yl + yl−1). By induction we have that when robot 2 is at pointUk , then the distance between them is at
most 2

∑l
i=k yi � 2

∑k∗
i=k yi = 2y∗

k as claimed.
The competitive ratio of strategyS if the robots meet during stepl > k is

Cl(D)= 1+ 2

∑l−1
i=0yi +Ul
D

� 1+ 2

∑k−1
i=0 y

∗
i +U ∗

k

D
= C∗

k (D)

sincey∗
i = yi , for 0� i � k− 1, andU ∗

k =Uk < Ul. Thus, the competitive ratio of strategyS∗ is at most
as large as the competitive ratio ofS.

Repeating the process for allk in S such thatyk < Uk−1 we get a strategyS ′ with specifying parameters
y′
i andU ′

i such thaty′
i �U ′

i−1 for all i � 1.
If S was taken as an optimal strategy then obviouslyS ′ must also be optimal, thus concluding the

proof. ✷
Since for any sequence of positive numbers(y0, y1, y2, . . .) the value of

sup
k�0

1+ 2

∑k+1
i=0 yi

yk

is bounded from below by 9 [1,7], we have shown the following theorem.

Theorem 5. There is no symmetric strategy that achieves a better competitive ratio than9 to search on
two rays in parallel.

4. Searching on m rays

We now turn to searching onm rays in parallel. We assume that a group ofm robots is located at the
origin of the rays in the beginning and that again a lower bound on the distance to the target is known.
We first show that any lower bound for searching on two rays with two robots implies a lower bound for
searching onm rays withm robots.

Theorem 6. If C is a lower bound for searching on two rays in parallel, thenC is also a lower bound
for searching on m rays in parallel.

Proof. It is obvious that if them robots have more information in the beginning about the location of the
target, then the competitive ratio for a strategy that exploits this information does not increase. Assume
that the robots know that the target is on one of the first two rays. They can all explore these rays in
common using strategyS. We now define a new strategyS ′ for searching in parallel with two robots on
two rays which depends onS. At all times the two robots ofS ′ follow the robots inS that are furthest
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from the origin on each of the two rays. Clearly, it is possible for two robots to maintain the position of
the furthest of them robots on both rays since this position changes continuously.

Now assume that one robot (of them robots), say roboti, finds the target. Clearly, roboti is a robot
which is the furthest from the origin on its ray. Hence, one of the two robots ofS ′ finds the target at the
same time. Now all of the other robots have to be notified. It is easy to show by simple induction that we
can assume that roboti notifies all the other robots itself since
(1) no other robot can travel faster to the opposite ray than roboti, and
(2) a robot can only start chasing other robots once it meets a robot that at some point after the discovery

of the target met roboti.
Obviously, the last robot that is going to be notified is, at the moment of notification, furthest from the

origin on the opposite ray. But this robot is at the same position as the second robot ofS ′. Hence, both
strategies need the same time for all robots to reach the target and the competitive ratio is the same—this
implies the claim. ✷

We have the following corollary.

Corollary 7. There is no monotone or symmetric strategy that achieves a better competitive ratio than9
to search on m rays in parallel.

Now, there is a symmetric strategy that achieves a competitive ratio of 9 to search onm rays in parallel.
The strategy is known as thedoubling strategyand goes as follows [1,2,7]. Each robot starts by going
one unit at full speed on its ray and then goes back to the origin. Then they each go two units, four units,
and so on, on their corresponding ray, always doubling the distance traveled and repeatedly going back
to the origin. Once a robot finds the target, it goes back at full speed to the origin and waits there until the
other robots reach it. It then communicates the location of the target to the other robots and they all move
at full speed to that location. The competitive ratio of the doubling strategy, if the target is at distanceD

from the origin is

C � sup
k�1

sup
D∈]2k−1,2k]

{
2
∑k
i=0 2i +D
D

}
= 1+ sup

k�1
sup

D∈]2k−1,2k]

{
2
∑k
i=0 2i

D

}

= 1+ sup
k�1

2
∑k
i=0 2i

2k−1
= 1+ 2sup

k�1

2k+1 − 1

2k−1
= 9.

We have proved the following theorem.

Theorem 8. The doubling strategy achieves a competitive ratio of9 to search on m rays in parallel given
a lower bound on the distance to the target.

Corollary 7 can be strengthened considerably for monotone strategies. This also illustrates nicely that
there is a difference between monotone and symmetric strategies form> 2.

Consider a monotone strategy. As time passes the robots move continuously and monotonically with
some speed along the rays until one of them has found the target. This robot now travels at full speed
to one of the other robots and communicates to him the location of the target, they both travel to other
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robots to communicate the location of the target, and so on. When all robots know where the target is
they all go to this target point. We use this idea to show the following lower bound.

Theorem 9. There is no monotone strategy that achieves a better competitive ratio than

Ck = 1+ 2
(k + 1)k+1

kk
,

wherek = �logm�, to search on m rays in parallel given a lower bound on the distance to the target.

Proof. We start similar to the proof of the casem= 2. Them robots will each go on a different ray since
otherwise the competitive ratio is infinite.

Let vi(T ) be the average speed of robot 1� i �m at timeT and

vmin = inf
t�Tmin

min
{
v1(t), v2(t), . . . , vm(t)

}
,

whereTmin is the first point in time such that all robots are at least at distanceDmin from the origin.
For everyε > 0, there is aTε > Tmin, such thatvi(Tε)� vmin + ε, for one 1� i � m. The adversary

places the target at a pointDε = vi(Tε)Tε on rayi. Once roboti has found the target, we can designate
the robots by two types. Robots of the first type are called thehunters, i.e., the robots that currently
know the position of the target and are chasing after other robots in order to convey this information.
The remaining robots are called theprey, and these continue on their respective ray using their monotone
strategy. Initially at timeTε, only roboti is a hunter, all the others are prey.

Denote byTn the first time when at leastn of them robots are hunters.
We use induction to prove the following inequality:

Tn � Tε
(

1+ 2
vmin

1− vmin

)�logn�
.

Note that we can assume thatvmin< 1 since otherwise the robot that finds the target will never reach any
other robot.

The base casen= 1 follows directly since we know thatT1 = Tε.
For n > 1, we prove the claim as follows. The timeTn is, of course, non-decreasing inn. Consider

now the point in timeTn, for some specificn. At some time prior toTn, at least�n/2� robots are hunters.
Assume otherwise, i.e., that there aren′ < �n/2� hunters at any time prior toTn. Then the largest number
of robots that can become hunters at timeTn is 2n′ < n, since each hunter can produce at most one new
hunter at timeTn. This is a contradiction since at timeTn we have at leastn hunters. For the same reason,
there is a hunter and a prey that meet at a timeT no earlier thanT�n/2� and then one of them, say robot
l, chases some other prey, say robotj , and catches it at a timeT ′ no later thanTn. Let TR = T ′ − T . We
have that

Tn � T�n/2� + TR.
The distance of the robot on rayl to the origin is nowvl(T )T and it reaches the other robot on rayj at a
distance ofvj (T + TR)(T + TR). Hence,

TR � min
T�n/2��T�Tn

{
vl(T )T + vj (T + TR)(T + TR)}

� min
T�T�n/2�

{
vl(T )

}
T�n/2� + min

T�T�n/2�

{
vj (T + TR)}(T�n/2� + TR).
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Therefore,

TR � T�n/2�
minT�T�n/2� {vl(T )} + minT�T�n/2� {vj (T + TR)}

1− minT�T�n/2� {vj (T + TR)} � 2T�n/2�
vmin

1− vmin
.

From above we have that

Tn � T�n/2� + 2T�n/2�
vmin

1− vmin
� T�n/2�

(
1+ 2

vmin

1− vmin

)
� Tε

(
1+ 2

vmin

1− vmin

)�logn�
,

by our induction hypothesis.
So, afterTm time, all robots are hunters. Assume that (one of) the last robot(s) to become a hunter is

robot l. The competitive ratio of any monotone strategy can now be expressed by

C � Tm + vl(Tm)Tm +D
D

= 1+ Tm + vl(Tm)Tm
vi(Tε)Tε

� 1+
(

1+ 2
vmin

1− vmin

)�logm� 1+ vmin

vmin + ε
= 1+

(
1+ vmin

1− vmin

)k 1+ vmin

vmin + ε (k = �logm�)

= 1+ (1+ vmin)
k+1

vmin(1− vmin)k
− (ε)

� 1+ (1+ 1/(2k + 1))k+1

(1/(2k + 1))(1− 1/(2k + 1))k
− (ε)

= 1+ 2
(k + 1)k+1

kk
− (ε),

since the expression is minimized forvmin = 1/(2k+1) and it tends toCk asε tends to 0, which concludes
the proof. ✷

In the next section we show that there is a monotone strategy that achieves this lower bound.

5. Without lower bound on the minimum distance

In this section we consider the problem of a group ofm robots searching for a target of unknown
location onm rays in parallel where no lower bound on the distance from the origin to the target is
known. It should be noted that if one allows an additive constant in the definition of the competitive ratio,
then it is not necessary to know the minimum distance to the target.

However, using the stronger definition of competitive ratio this special case has been considered before
for searching on the line—even with only one searcher which requires somewhat artificial assumptions
on the strategies [7]. These assumptions are unnecessary in our case. Moreover, there are problems in
which no lower bound on the distance to the target is known, for instance, when one wants to check
whether a polygon is star-shaped or not [14].

We begin by presenting a strategy that achieves the competitive ratio

Ck = 1+ 2
(k + 1)k+1

kk
,

wherek = �logm�. We then show that, in fact, no strategy can do better than this.
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5.1. The strategy

The optimal strategy is a monotone strategy where all the robots move, one on each ray, with a constant
speedv. When one robot finds the target it searches for a robot at full speed to tell it where the target is
located. Then they both go at full speed to search for two more robots and tell them the location of the
target, and so on. After each step the number of robots that know the location of the target is doubled.
Once all robots know the location, they all move to the target. Suppose the target is on some ray and at
distanceD from the origin. The strategy consists ofsteps. Stepi starts when 2i robots know the location
to the target and ends when 2i+1 robots know the location to the target; that is, in stepi the 2i robots that
currently know the position of the target chase 2i of those robots that do not. In the last stepk = �logm�
onlym− 2k−1 robots search for the remaining robots whereas the rest moves to the target.

Let Ti denote the time it takes to complete stepi. It takes any of the robotsD/v time to find the target,
and when all robots know the location of the target, it takes them timeTF to go to the target. Hence, the
competitive ratio of the strategy is

C = D/v+∑k−1
i=0 Ti + TF
D

,

wherek = �logm�.
The time that has passed in order to inform 2i robots isD/v+∑i−1

j=0Tj . Hence, at the end of stepi− 1

all the robots have a distance ofD +∑i−1
j=0Tj to the origin. The 2i informed robots now start chasing

2i uninformed robots. In order to reach them, they have to travel a distance ofD + v∑i−1
j=0Tj to reach

the origin, a distance ofD + v∑i−1
j=0Tj to reach the location of the chased robot at the beginning of

stepi, and a distance ofvTi until the uninformed robots are finally reached. Hence,Ti is given by the
equation

Ti = 2

(
D + v

i−1∑
j=0

Tj

)
+ vTi

and

Ti =
2D + 2v

∑i−1
j=0Tj

1− v = 2D+ 2v
∑i−2
j=0Tj

1− v + 2v

1− vTi−1 � Ti−1
1+ v
1− v .

This is a recurrence relation with the solution

Ti � T0

(
1+ v
1− v

)i
= 2D

1− v
(

1+ v
1− v

)i
.

We obtain
k−1∑
i=0

Ti �
2D

1− v
k−1∑
i=0

(
1+ v
1− v

)i
= D

v

((
1+ v
1− v

)k
− 1

)
.

By the above considerations the timeTF it takes for the robots to get to the target is the time
of the last robot that is informed to go to the originD + v

∑i−1
j=0Tj plus the distanceD to the

target

TF =D + v
k−1∑
i=0

Ti +D �D
(

1+ v
1− v

)k
+D.
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So, the competitive ratio of the strategy is

C � 1

v
+ 1

v

(
1+ v
1− v

)k
− 1

v
+
(

1+ v
1− v

)k
+ 1= 1+

(
1

v
+ 1

)(
1+ v
1− v

)k

= 1+
(

1

1/(2k + 1)
+ 1

)(
1+ 1(2k + 1)

1− 1(2k + 1)

)k
= 1+ 2

(k + 1)k+1

kk
,

if we set the speedv = 1/(2k + 1).
We have proved the following result.

Theorem 10. There is a monotone strategy that achieves a competitive ratio ofCk = 1+2(k+1)k+1/kk,
wherek = �logm�, to search on m rays in parallel if no lower bound on the distance to the target is
known.

Since Theorem 9 remains valid if no lower bound on the distance to the target is known, this strategy
is an optimalmonotonestrategy (with or without minimum distance to the target). But we can show an
even stronger result if no minimum distance to the target is known.

5.2. A lower bound

Theorem 11. There is no strategy at all that achieves a better competitive ratio thanCk = 1 + 2(k +
1)k+1/kk , wherek = �logm�, to search on m rays in parallel if no minimum distance to the target is
known.

Proof. Any strategy can be specified by the average speed functionsv1(T ), . . . , vm(T ) of them robots.
(In conjunction with information about whether a robot switches ray, at some point in time.) Given these
average speed functions, an adversary can extract information about the time length that a robot moves
monotonically along a ray. (This includes also the time that a robot stands still at the origin.) LetTi , for
1 � i �m, denote the time that roboti moves monotonically along a ray. EachTi is greater than 0 since
either the robot stands still or moves along some ray. LetTmin = min1�i�m{Ti}.

Now consider the speeds of the robots in the beginning. Assume that robot 1 is (one of) the robot(s)
that starts with the least speedvmin, that is,vmin = limT→0 v1(T ). 1 Forε > 0, letTε be the time such that,
for all 0< T � Tε,
(1) v1(T )� vmin + ε and
(2) vi(T )� vmin − ε for all 1 � i �m.
The adversary now places the target on ray 1 at distanceD = v1(TD)TD where

TD = min{Tε, Tmin}
Ck

,

for k = �logm�. If the strategy uses more thanCkTD time, then the competitive ratio is trivially bounded
from below byCk.

1 We assume that this limit exists, for all 1� i � m. Hence we disallow functions like 1/2(sin(1/x) + 1) for the average
speed.
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If, on the other hand, the strategy uses less thanCkTD time, then the strategy is monotone in the
interesting time interval and we can apply a proof similar to the proof of Lemma 9. Only nowTn satisfies

Tn � TD
(

1+ 2
vmin − ε

1− vmin + ε
)�logn�

.

This proves our claim. ✷

6. Conclusions

We consider search strategies for parallel search onm concurrent rays. We show that a straight forward
generalization of the so called doubling strategy, from searching on the line to searching onm concurrent
rays, yields a competitive ratio of 9 if a minimum distance from the origin to the target is known in
advance. Furthermore, we prove that 9 is a lower bound on the competitive ratio for both monotone and
symmetric strategies in this case.

We also prove a lower bound of

1+ 2
(k + 1)k+1

kk

on the competitive ratio, wherek = �logm�, which applies to monotone strategies and strategies for the
case when the minimum distance from the origin to the target is not known in advance. Finally, we give
a search strategy that achieves this ratio regardless of whether such a minimum distance is known or not,
giving us an optimal search strategy in the latter case.

The question that remains unanswered is whether the lower bound of 9 can be generalized to hold for
any strategy.
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