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Abstract

This paper studies the existence of extremal solutions for a class of singular boundary value problems of
second order impulsive differential equations. By using the method of upper and lower solutions and the
monotone iterative technique, criteria of the existence of extremal solutions are established.
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1. Introduction

In this paper, we study the existence of extremal solutions for the following singular boundary
value problem of impulsive differential equations:

u′′(t) + f
(
t, u(t)

) = 0, t ∈ (0,1), t �= t1,

�u|t=t1 = I
(
u(t1)

)
,

�u′|t=t1 = N
(
u(t1), u

′(t1)
)
,

u(0) = a, u(1) = b, (P)
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where a, b ∈ R, �u|t=t1 = u(t+1 )−u(t1), �u′|t=t1 = u′(t+1 )−u′(t−1 ) and f :D ⊂ (0,1)×R → R,
I : R → R, N : R × R → R are continuous. We notice that f may be singular at t = 0 and/or
t = 1.

Impulsive differential equations have been studied extensively in recent years. Such equations
arise in many applications such as spacecraft control, impact mechanics, chemical engineering
and inspection process in operations research. It is now recognized that the theory of impulsive
differential equations is a natural framework for a mathematical modelling of many natural phe-
nomena. There have appeared numerous papers on impulsive differential equations during the
last ten years. Many of them are on boundary value problems, see [5,6,8,15–19,21–28,30], and it
is interesting to note that some of them are about comparatively new applications like ecological
competition, respiratory dynamics, vaccination strategies, see [3,7,9,13,29,31–33].

Up to now, the literature devoted to singular impulsive Dirichlet problems is not too much
extensive, e.g. the cases of singularities in the space variable by [1,21,30] and the cases of sin-
gularities in t = 0 and t = 1 by [15,16,22]. The main purpose of this paper, on the contrary to
the mentioned papers, is not only to obtain existence results, but to prove the existence of ex-
tremal solutions. Moreover the solutions in this paper mean so-called w-solutions, i.e. solutions
which need not possess finite derivatives u′(0) and u′(1) at the singular points t = 0 and t = 1.
The monotone iterative method, which we shall employ later is a well-known tool for proving
the existence of extremal solutions for nonlinear problems. In many cases, the method can be
applied successfully with help of the upper and the lower solutions. There is a vast amount of
literature about the method. See [4,14,20,34] and references therein. Specially for the second
order impulsive o.d.e., one may refer to [8] for two point boundary value problems and [6,18] for
periodic boundary value problems. For higher order impulsive o.d.e., one may refer to [5]. As
for the upper and lower solutions method, one may refer to [11] for singular Dirichlet problems
with no impulse effect, [15] for singular Dirichlet impulsive problems and [23–25] for regular
periodic impulsive problems.

If f is continuous or L1-Caratheodory, then we get solutions in PC1[0,1], a Banach space of
C1-functions except at t1. But if we consider a weaker condition on f such that the solutions may
not be of PC1[0,1], then the analysis should depend on more elementary tools at least concerned
with topology of the solution set. For example, consider the problem

u′′(t) + 1

t (1 − t)
= 0, t ∈ (0,1), t �= t1,

�u|t=t1 = I
(
u(t1)

)
,

�u′|t=t1 = N
(
u(t1), u

′(t1)
)
,

u(0) = 0 = u(1).

Let t1 = 1
2 , I (u) = u. If N(u,v) = u − v

2 , then the problem has a unique solution u(t) given by

u(t) =

⎧⎪⎨
⎪⎩

(− ln 2)t − t ln t − (1 − t) ln(1 − t), 0 < t � 1
2 ,

−t ln t − (1 − t) ln(1 − t), 1
2 < t < 1,

0, t = 0,1,

which is not a PC1-function. It is interesting to see that if N(u,v) = −8u + v or N(u,v) = uv,
then the problem has no solution or two solutions respectively, on the other hand, the problem
with no impulse effect always has a unique solution. This means that, when we consider impul-
sive problems, we may have less obvious situation for the uniqueness of solutions for the problem
defining monotone approximation.
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For our results, we will make use of the following assumptions:

(A0) u + I (u) is nondecreasing.
(A1) N(u,v) + Lu is nondecreasing in u, for some 0 < L < 1, i.e. there exists 0 < L < 1 such

that N(u2, v) − N(u1, v) � −L(u2 − u1), whenever u2 � u1.
And also, N(u,v) is nondecreasing in v, i.e. N(u,v2) − N(u,v1) � 0, whenever v2 � v1.

(A′
1) N(u,v) is nondecreasing in u and N(u,v) + Lv is nondecreasing in v.

(A2) α and β are respectively the lower and the upper solution of (P) such that α(t) � β(t), for
t ∈ [0,1].

(A3) There exists hf ∈ A such that |f (t, u)| � hf (t), for all (t, u) ∈ D
β
α .

(A4) There exists q ∈ A with q > 0 such that f (t, u2) − f (t, u1) � −q(t)(u2 − u1), for all
t ∈ [0,1] and α(t) � u1 � u2 � β(t),

where we denote

A =
{

h ∈ C(0,1)

∣∣∣∣∣
1∫

0

s(1 − s)
∣∣h(s)

∣∣ds < ∞
}

and

Dβ
α = {

(t, u) | t ∈ (0,1), α(t) � u � β(t)
}
.

The main results in this paper can be stated as follows:

Theorem 1.1. Assume (A0), (A2)–(A4) and also assume either (A1) or (A′
1). Then there are

monotone sequences (αn), (βn) such that αn → ρ,βn → γ monotonically and piecewise uni-
formly on J , where ρ and γ are the minimal and the maximal solutions of (P), respectively, that
is, if u is a solution of (P) with α � u � β on [0,1], then ρ � u � γ on [0,1].

We notice that the monotone property of I and N are somewhat reduced, instead, these in al-
most all previous works are given as monotone nondecreasing. Recently, Rachu̇nková and Tvrdý
[23–25] also considered weakened monotonicity conditions as well.

The paper is organized as follows: In Section 2, we introduce a theorem for upper and lower
solutions method for two point boundary value problems of second order impulsive differential
equations. In Section 3, we prove the main theorem when N(u,v) satisfies condition (A1). In
Section 4, we prove the main theorem when N(u,v) satisfies condition (A′

1).

2. Upper and lower solutions method

In this section, we introduce the fundamental theorem of the upper and lower solutions method
for second order impulsive differential equations of the form⎧⎪⎨

⎪⎩
u′′(t) + F

(
t, u(t)

) = 0, t �= t1, t ∈ (0,1),

�u|t=t1 = I
(
u(t1)

)
,

u(0) = a, u(1) = b,

(1)

�u′|t=t1 = N
(
u(t1), u

′(t1)
)
, (2)

where a, b ∈ R, F ∈ C(D,R) with D ⊂ (0,1) × R. We denote J = [0,1] and J ′ = [0,1] \
{0,1, t1}. Let PC[0,1] = {u | u : [0,1] → R is continuous at t �= t1, left continuous at t = t1,
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and its right-hand limit at t = t1 exists}. Then we know that PC[0,1] is a Banach space with
norm ‖u‖ = supt∈[0,1] |u(t)|. By a solution of (1) (or (1) + (2)), we mean a function u ∈
PC[0,1]∩C2(J ′)(u ∈ Ω) which satisfies Eq. (1) ((1)+ (2)), where Ω = {u ∈ PC[0,1]∩C2(J ′) |
u′(t+1 ), u′(t−1 ) exist and u′(t1) = u′(t−1 )}.

Definition 2.1. α ∈ Ω is called a lower solution of (1) + (2) if (t, α(t)) ⊂ D for all t ∈ (0,1) and

α′′(t) + F
(
t, α(t)

)
� 0, t �= t1,

�α|t=t1 = I
(
α(t1)

)
,

�α′|t=t1 � N
(
α(t1), α

′(t1)
)
,

α(0) � a, α(1) � b.

We also define an upper solution β ∈ Ω if β satisfies the reverse of the above inequalities.

To establish fundamental theorem of upper and lower solution method for problem (1) + (2),
we need to use a corresponding theorem for the following singular boundary value problems with
no impulse effects,

u′′(t) + F
(
t, u(t)

) = 0,

u(0) = a, u(1) = b. (3)

The following lemma is due to Habets and Zanolin [11].

Lemma A. Suppose that α,β ∈ C[0,1] ∩ C2(0,1) are respectively lower and upper solutions
for (3) with α(t) � β(t). Assume also that there is a function h ∈ A such that |F(t, u)| � h(t)

for all (t, u) ∈ D
β
α . Then (3) has at least one solution u such that α(t) � u(t) � β(t) on [0,1].

Remark. It is not hard to see that if we assume the condition
∫ 1

0 sh(s) ds < ∞, instead of the

condition
∫ 1

0 s(1 − s)h(s) ds < ∞, then the solution u, we find, belongs to C1((0,1]). Similarly,

if
∫ 1

0 (1 − s)h(s) ds < ∞, then u ∈ C1([0,1)).

We now give the theorem of upper and lower solutions method for problem (1) + (2).

Theorem 2.1. Assume (A0) and also assume

(F) F(t, u) is continuous in t �= t1 and u.
Furthermore, limt→t−1

F(t, u) = F(t1, u) and limt→t+1
F(t, u) exists.

(a1) N(u,v) is nondecreasing in v.
(a2) α and β are respectively lower and upper solutions of (1) + (2) such that α(t) � β(t) for

all t ∈ [0,1].
(a3) There exists a function h ∈ A such that |F(t, u)| � h(t), for all (t, u) ∈ D

β
α .

Then (1) + (2) has at least one solution u such that α � u � β on J .
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Proof. Let us consider a real number C ∈ [α(t1), β(t1)]. Then α and β are respectively lower
and upper solutions of the following singular problem with no impulse effect,

u′′ + F(t, u) = 0, t ∈ (0, t1),

u(0) = a, (t1) = C. (BC)

Thus by Lemma A and Remark, problem (BC) has a solution v ∈ C[0, t1] ∩ C2(0, t1] satisfying
α(t) � v(t) � β(t) for all t ∈ [0, t1]. By (A0), we get

α
(
t+1

) = α(t1) + I
(
α(t1)

)
� C + I (C) � β(t1) + I

(
β(t1)

) = β
(
t+1

)
.

Define

α̃(t) =
{

α(t), t ∈ (t1,1],
α(t+1 ), t = t1,

and

β̃(t) =
{

β(t), t ∈ (t1,1],
β(t+1 ), t = t1.

Then α̃ and β̃ are respectively lower and upper solutions of the following problem:

u′′ + F(t, u) = 0, t ∈ (t1,1),

u(t1) = C + I (C), u(1) = b. (FC)

Thus again by Lemma A and Remark, (FC) has a solution w ∈ C[t1,1] ∩ C2[t1,1) satisfying
α̃(t) � w(t) � β̃(t) for all t ∈ [t1,1]. Let us define

u(t) =
{

v(t), t ∈ [0, t1],
w(t), t ∈ (t1,1].

Then u ∈ Ω and

�u|t=t1 = u
(
t+1

) − u(t1) = w(t1) − v(t1) = I (C) = I
(
v(t1)

) = I
(
u(t1)

)
,

and thus u is a solution of (1) satisfying u(t1) = C and α(t) � u(t) � β(t) for all t ∈ [0,1]. So
far, we have shown that for each C ∈ [α(t1), β(t1)], there exists a solution uC of (1) satisfying
uC(t1) = C. We now show that one of the solutions uC satisfies condition (2). Let X(C) =
{u | u is solution of (1) such that u(t1) = C and α(t) � u(t) � β(t), for all t ∈ [0,1]}. Then for
each C ∈ [α(t1), β(t1)], X(C) �= ∅. Let us consider the case α(t1) = β(t1). We claim that any
function u ∈ X(α(t1)) satisfies condition (2). Indeed, if u ∈ X(α(t1)), then since u(t) � α(t),
u(t1) = α(t1), and u(t+1 ) = α(t+1 ), we get α′(t1) � u′(t1) and α′(t+1 ) � u′(t+1 ). Therefore by (a1),

�u′|t=t1 = u′(t+1 ) − u′(t−1 )
� α′(t+1 ) − α′(t−1 ) = �α′|t=t1

� N
(
α(t1), α

′(t1)
)
� N

(
u(t1), u

′(t1)
)
.

On the other hand, if u ∈ X(β(t1)), then we can similarly show �u′|t=t1 � N(u(t1), u
′(t1)).

Since X(α(t1)) = X(β(t1)) �= ∅, this completes the claim. Now let us consider the case α(t1) <

β(t1). Define S = {C̄ ∈ [α(t1), β(t1)): C ∈ (C̄, β(t1)) implies �u′
C |t=t1 < N(uC(t1), u

′
C(t1)),

for all uC ∈ X(C)}. We will prove cases S �= ∅ and S = ∅ separately. First consider the case
S �= ∅. Let C∗ = infS , then α(t1) � C∗ < β(t1). Here again, we consider two cases separately.

Case 1. C∗ > α(t1). Then by the definition of C∗, we can choose sequences Cn ∈ (α(t1),C
∗)

and uCn ∈ X(Cn) such that Cn → C∗ and

�u′
C

∣∣ � N
(
uCn(t1), u

′
C (t1)

)
. (4)
n t=t1 n
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We know that the sequence (uCn) is bounded in PC[0,1] and

uCn(t) =
{

vCn(t), t ∈ [0, t1],
wCn(t), t ∈ (t1,1],

where vCn and wCn are solutions of (BCn) and (FCn), respectively. Thus vCn satisfies

vCn(t) = TnvCn(t) � a + Cn − a

t1
t +

t1∫
0

G1(t, s)F
(
s, vCn(s)

)
ds,

for t ∈ [0, t1] and wCn satisfies

wCn(t) = T̄nwCn(t) � b + b − I (Cn) − Cn

1 − t1
(t − 1) +

1∫
t1

G2(t, s)F
(
s,wCn(s)

)
ds,

for t ∈ [t1,1], where G1(t, s) and G2(t, s) are the Green’s functions of linear homogeneous
problem with Dirichlet boundary condition corresponding to (BC) and (FC). It is well known
that each Tn and T̄n is completely continuous and by Arzela–Ascoli theorem, we can find a
subsequence, say (vCn) again converging to v1 in C[0, t1]. Since vCn = Tn(vCn) and vCn → v1,
by the Lebesgue Dominated Convergence Theorem, v1 satisfies

v1(t) = a + C∗ − a

t1
t +

t1∫
0

G1(t, s)F
(
s, v1(s)

)
ds,

for t ∈ [0, t1]. Thus v1 ∈ C[0, t1] ∩ C2(0, t1] and a solution of

u′′ + F(t, u) = 0, t ∈ (0, t1),

u(0) = a, u(t1) = C∗.

Keeping the index of the convergent subsequence (vCn), we see that (wCn) also has a con-
vergent subsequence converging to say, w1 in C[t1,1]. By the similar argument, we see that
w1 ∈ C[t1,1] ∩ C2(t1,1] and a solution of

u′′ + F(t, u) = 0, t ∈ (t1,1),

u(t1) = C∗ + I (C∗), u(1) = b.

Define

u1(t) =
{

v1(t), t ∈ [0, t1],
w1(t), t ∈ (t1,1].

Then u1 ∈ Ω and a solution of (1) satisfying u1(t1) = C∗ and α � u1 � β on J . Furthermore,
differentiating vCn and wCn , we get

�u′
Cn

∣∣
t=t1

= u′
Cn

(
t+1

) − u′
Cn

(
t−1

) = w′
Cn

(t1) − v′
Cn

(t1) = b − I (Cn) − Cn

1 − t1

+ 1

1 − t1

1∫
(1 − s)F

(
s,wCn(s)

)
ds − Cn − a

t1
+ 1

t1

t1∫
sF

(
s, vCn(s)

)
ds.
t1 0
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Again by Lebesgue Dominated Convergence Theorem, we have

lim
n→∞�u′

Cn

∣∣
t=t1

= b − I (C∗) − C∗

1 − t1
+ 1

1 − t1

1∫
t1

(1 − s)F
(
s,w1(s)

)
ds

− C∗ − a

t1
+ 1

t1

t1∫
0

sF
(
s, v1(s)

)
ds = w′

1(t1) − v′
1(t1)

= u′
1

(
t+1

) − u′
1

(
t−1

) = �u′
1

∣∣
t=t1

.

Thus by (4) and the continuity of N , we have

�u′
1

∣∣
t=t1

� N
(
u1(t1), u

′
1(t1)

)
.

This implies that u1 is a lower solution of (1) + (2) satisfying u1(t1) = C∗. Applying the begin-
ning part of the proof for u1(t) and β(t) as the lower and upper solutions, respectively, we guar-
antee that for all D ∈ [C∗, β(t1)], there exists uD ∈ X(D) with u1(t) � uD(t) � β(t), t ∈ [0,1].
Thus by the definition of C∗, we can find sequences Dn ∈ (C∗, β(t1)) and uDn ∈ X(Dn) with
u1 � uDn � β , on J such that Dn → C∗, �u′

Dn
|t=t1 < N(uDn(t1), u

′
Dn

(t1)). By the similar argu-
ment as we construct u1, we obtain u2 ∈ Ω , a solution of (1) satisfying u2(t1) = C∗, u1 � u2 � β

on J , uDn → u2 in PC[0,1] as a subsequence if necessary and �u′
2|t=t1 � N(u2(t1), u

′
2(t1)).

Thus u2 is an upper solution of (1) + (2). Consequently, u1 and u2 are a lower and an upper solu-
tion of (1) + (2) respectively satisfying u1(t1) = C∗ = u2(t1) and u1 � u2 on J . Therefore, any
function u ∈ X(C∗) satisfies condition (2) and this completes the proof for the case C∗ > α(t1).

Case 2. C∗ = α(t1). Then by the definition of C∗, we may choose sequences Dn and uDn ∈
X(Dn) satisfying Dn → α(t1) and

�u′
Dn

∣∣
t=t1

< N
(
uDn(t1), u

′
Dn

(t1)
)
.

By the same limit argument as we constructed u2, we obtain u3 ∈ Ω , a solution of (1) satisfying
u3(t1) = α(t1), α � u3 � β on J , uDn → u3 in PC[0,1] as a subsequence if necessary and
�u′

3|t=t1 � N(u3(t1), u
′
3(t1)). Thus u3 is an upper solution of (1) + (2) and consequently, α and

u3 are a lower and an upper solution of (1)+ (2) respectively satisfying α(t1) = u3(t1) and α � u3
on J . Therefore, any function u ∈ X(α(t1)) satisfies condition (2) and this completes the proof
for the case C∗ = α(t1).

Finally, we consider the case S = ∅. In this case, we may choose sequences Cn ∈
(α(t1), β(t1)) and uCn ∈ X(Cn) satisfying Cn → β(t1) and

�u′
Cn

∣∣
t=t1

� N
(
uCn(t1), uCn(t1)

)
.

By the similar limit argument as before, we obtain u4 ∈ Ω , a solution of (1) satisfying
u4(t1) = β(t1), α(t) � u4(t) � β(t), t ∈ [0,1], uDn → u4 in PC[0,1] as a subsequence if nec-
essary and �u′

4|t=t1 � N(u4(t1), u
′
4(t1)). On the other hand, u4 ∈ X(β(t1)) implies �u′

4|t=t1 �
N(u4(t1), u

′
4(t1)). Thus u4 satisfies condition (2) and the whole proof is complete. �

3. Monotone iterative method 1

In this section, we prove the main result if N satisfies (A1). To obtain the existence of extremal
solutions of (P), we will employ the monotone iterative method with the help of upper and lower
solutions. We state the main theorem in this section.
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Theorem 3.1. Assume (A0), (A1), (A2), (A3) and (A4). Then problem (P) admits the same con-
clusion as in Theorem 1.1.

The following two lemmas are maximal principles for singular and impulsive differential
operators respectively.

Lemma 3.1. [12] Let q ∈ C(τ1, τ2), q > 0. Then

u � 0 on [τ1, τ2]
holds for each u ∈ C[τ1, τ2] ∩ C2(τ1, τ2) fulfilling

u′′(t) − q(t)u(t) � 0, t ∈ (τ1, τ2),

u(τ1) � 0, u(τ2) � 0.

Lemma 3.2. Let q ∈ C(0,1), q > 0 and L ∈ (0,1). Then

u � 0 on [0,1]
holds for each u ∈ Ω fulfilling

(i) u′′(t) − q(t)u(t) � 0, t ∈ (0,1), t �= t1,
(ii) u(t1) � 0, u(t+1 ) � 0,

(iii) �u′|t=t1 � −Lu(t1),
(iv) u(0) � 0, u(1) � 0.

Proof. Let u ∈ Ω satisfy (i)–(iv).
Step 1. We notice that u cannot have a positive local maximum in J ′. Unless otherwise, u has

a positive maximum at some t0 ∈ J ′. Then by concavity of u, u′′(t0) � 0 which contradicts to (i).
Step 2. Let u(t1) = max{u(t) | t ∈ [0,1]} > 0. Then u′(t1) � 0. Furthermore, by (i), there is

τ ∈ [0, t1) such that u(t) > 0 for t ∈ (τ, t1] and u(τ) = 0. In particular, u′′(t) > 0 on (τ, t1) and
u′(t1) > u(t1)/t1. Hence, by (ii) and (iii), we get

u′(t+)
� u′(t1) − Lu(t1) >

(
1

t1
− L

)
u(t1) � 0.

Since (ii) and (iv) yield

u
(
t+1

)
� 0 and u(1) � 0,

this implies that u has a positive local maximum in (t1,1) which is impossible by Step 1.
Step 3. Let u(t+1 ) = sup{u(t) | t ∈ [0,1]} > 0 and u(t+1 ) > u(t1). Clearly, u′(t+1 ) � 0. Further-

more, by (i), there is τ ∈ (t1, τ ] such that u(t) > 0 for t ∈ (t1, τ ) and u(τ) = 0. In particular,
u′′(t) > 0 for t ∈ (t1, τ ) and u′(t+1 ) < −u(t+1 )/(1 − t1). Hence, using (iii), we derive

− 1

1 − t1
u
(
t+1

)
> u′(t+1 )

> u′(t1) − Lu
(
t+1

)
,

i.e.

u′(t1) <

(
L − 1

)
u
(
t+1

)
< 0.
1 − t1
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In addition, we have u(t1) � 0 and u(0) � 0 by (ii) and (iv). Therefore, u has a positive local
maximum in (0, t1) which is impossible by Step 1. �

To define approximations to extremal solutions, we need a modified problem. For each η ∈ Ω

with α(t) � η(t) � β(t), for all t ∈ [0,1], let us consider

u′′ + Fη(t, u) = 0, t ∈ (0,1), t �= t1,

�u|t=t1 = I
(
u(t1)

)
,

�u′|t=t1 = N
(
u(t1), u

′(t1)
)
,

u(0) = a, u(1) = b, (MP)

where Fη(t, u) = f (t, η(t)) − q(t)(u − η(t)) and q is given in (A4).
The following lemma shows the existence of unique solution for (MP). We note that continuity

of f and condition (A4) are not necessary for the proof.

Lemma 3.3. Let f (t, u) be continuous in t �= t1 and u such that

lim
t→t−1

f (t, u) = f (t1, u) and lim
t→t+1

f (t, u) exists

and let q ∈ A. Also assume (A0), (A1), (A2) and (A3). Then problem (MP) has a unique solu-
tion u such that α � u � β on J .

Proof. It is not hard to see that Fη satisfies condition (F) and α,β are respectively the lower and
the upper solution of (MP). Thus by Theorem 2.1, (MP) has a solution u such that α � u � β

on J . We prove that the solution is unique. Suppose that (MP) admits two distinct solutions u1
and u2. Without loss of generality, let us assume that m(t) � (u1 − u2)(t) > 0 on some subinter-
vals of J . Then m ∈ Ω , m(0) = 0 = m(1) and

m′′(t) = q(t)
(
u1(t) − η(t)

) − f
(
t, η(t)

) − q(t)
(
u2(t) − η(t)

) + f
(
t, η(t)

) = q(t)m(t)

for t ∈ J ′. It is easy to see that m does not attain its positive maximum at t ∈ J ′ and thus m satis-
fies either m(t1) = maxt∈J m(t) or m(t+1 ) = supt∈J m(t). If m(t1) = maxt∈J m(t), then obviously
m(t1) > 0 and �m|t=t1 = �u1|t=t1 − �u2|t=t1 = I (u1(t1)) − I (u2(t1)). Thus by (A0), m(t+1 ) =
u1(t1) + I (u1(t1)) − [u2(t1) + I (u2(t1))] � 0. On the other hand, if m(t+1 ) = supt∈J m(t),
then m(t+1 ) > 0, that is, m(t+1 ) = u1(t1) + I (u1(t1)) − [u2(t1) + I (u2(t1))] > 0. Thus by (A0),
m(t1) > 0. Furthermore, we can show m′(t1) � 0, indeed, otherwise, m should have a local max-
imum on (0, t1) ⊂ J ′ by the boundary condition of m which is a contradiction. Thus by (A1), we
have

�m′|t=t1 = �u′
1

∣∣
t=t1

− �u′
2

∣∣
t=t1

= N
(
u1(t1), u

′
1(t1)

) − N
(
u2(t1), u

′
2(t1)

)
= N

(
u1(t1), u

′
1(t1)

) − N
(
u2(t1), u

′
1(t1)

) + N
(
u2(t1), u

′
1(t1)

) − N
(
u2(t1), u

′
2(t1)

)
� −Lm(t1).

Therefore m satisfies (i)–(iv) in Lemma 3.2 so that m(t) � 0 on J and this is a contradiction. �
For any η ∈ [α,β], we know that problem (MP) has a unique solution u. Define an operator

A : [α,β] ⊂ PC[0,1] → PC[0,1] by Aη = u.
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Lemma 3.4. Assume (A0), (A1), (A2)–(A4). Then the operator A satisfies the following:

(i) Aα,Aβ ∈ [α,β].
(ii) A is a monotone operator on [α,β].

Proof. Proof of (i) is clear by Lemma 3.3.
Proof of (ii). Let η1, η2 ∈ [α,β], η1 � η2 and let ui = Aηi , i = 1,2. We show u1 � u2 on J ,

whenever η1 � η2 on J . If it is not true, so let supt∈J [(u1 − u2)(t) � m(t)] > 0. Then obviously
m ∈ Ω , m(0) = 0 = m(1) and by (A4), we get

m′′(t) = u′′
1(t) − u′′

2(t)

= q(t)
(
u1(t) − η1(t)

) − f
(
t, η1(t)

) − q(t)
(
u2(t) − η2(t)

) + f
(
t, η2(t)

)
= q(t)m(t) + q(t)

(
η2(t) − η1(t)

) + f
(
t, η2(t)

) − f
(
t, η1(t)

)
� q(t)m(t) + q(t)

(
η2(t) − η1(t)

) − q(t)
(
n2(t) − η1(t)

)
= q(t)m(t),

on J ′. Again following the same lines as in the proof of Lemma 3.3, we can show m(t1) � 0,
m(t+1 ) � 0 and �m′|t=t1 � −Lm(t1). By Lemma 3.2, m(t) � 0 on J and this is a contradic-
tion. �

Now we prove Theorem 3.1.

Proof of Theorem 3.1. Let α0 = α and define αn = Aαn−1 for n ∈ N. Then by Lemmas 3.3
and 3.4, α � αn � αn+1 � β for every n ∈ N and thus (αn) is increasing. We know that for
each t ∈ (0,1), the sequence (αn(t)) of real numbers converges to some finite real number ρ(t).
Define ρ(0) = a, ρ(1) = b. We will show that ρ is the minimal solution of (P). Let αn(t1) = Cn.
Then αn satisfies

α′′
n(t) + Fαn−1

(
t, αn(t)

) = 0, t ∈ (0, t1),

αn(0) = a, αn(t1) = Cn

and

α′′
n(t) + Fαn−1

(
t, αn(t)

) = 0, t ∈ (t1,1),

αn(t1) = Cn + I (Cn), αn(1) = b.

Therefore αn can be written as

αn(t) =
⎧⎨
⎩

a + Cn−a
t1

t + ∫ t1
0 G1(t, s)Fαn−1(s,αn(s)) ds, on [0, t1],

b + b−I (Cn)−Cn

1−t1
(t − 1) + ∫ 1

t1
G2(t, s)Fαn−1(s,αn(s)) ds, on (t1,1],

where Gi(t, s) are given in the proof of Theorem 2.1. Since Fαn−1(t, αn(t)) → f (t, ρ(t)) for
t ∈ (0,1), by Lebesgue Dominated Convergence Theorem, we get

lim
n→∞αn(t) = a + ρ(t1) − a

t1
t +

t1∫
G1(t, s)f

(
s, ρ(s)

)
ds, (5)
0
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on (0, t1] and

lim
n→∞αn(t) = b + b − I (ρ(t1)) − ρ(t1)

1 − t1
(t − 1) +

1∫
t1

G2(t, s)f
(
s, ρ(s)

)
ds, (6)

on (t1,1]. Let ρ0 and ρ1 be functions on the right sides of (5) and (6) respectively. Then ρ0 ∈
C[0, t1] ∩ C2(0, t1] and it is a solution of

u′′(t) + f
(
t, u(t)

) = 0, t ∈ (0, t1),

u(0) = a, u(t1) = ρ(t1)

and also ρ1 ∈ C[t1,1] ∩ C2[t1,1) and it is a solution of

u′′(t) + f
(
t, u(t)

) = 0, t ∈ (t1,1),

u(1) = ρ(t1) + I
(
ρ(t1)

)
, u(1) = b.

Furthermore, we have

ρ(t) =
{

ρ0(t) on [0, t1],
ρ1(t) on (t1,1].

Therefore ρ ∈ PC[0,1] ∩ C2(J ′). Since αn is a solution of second order o.d.e. mentioned above,
by using standard arguments, we can easily check that αn converges to ρ piecewise uniformly
and

α′
n(t) → ρ′(t), for t ∈ (0,1). (7)

Now we prove ρ is a solution of (P). We know by Guo [10] that the solution αn of (MP) with
η = αn−1 can be equivalently written as

αn(t) = a + (b − a)t +
1∫

0

G(t, s)Fαn−1

(
s,αn(s)

)
ds

− t
[
I
(
αn(t1)

) + (1 − t1)N
(
αn(t1), α

′
n(t1)

)]
+

∑
t1<t

[
I
(
αn(t1)

) + (t − t1)N
(
αn(t1), α

′
n(t1)

)]
,

where G(t, s) is the Green’s function of corresponding linear homogeneous problem with Dirich-
let condition on [0,1]. Thus by (7) and Lebesgue Dominated Convergence Theorem, we get

ρ(t) = lim
n→∞αn(t) = a + (b − a)t +

1∫
0

G(t, s)f
(
s, ρ(s)

)
ds

− t
[
I
(
ρ(t1)

) + (1 − t1)N
(
ρ(t1), ρ

′(t1)
)]

+
∑
t1<t

[
I
(
ρ(t1)

) + (t − t1)N
(
ρ(t1), ρ

′(t1)
)]

and this implies that ρ is a solution of (P). Finally, to show that ρ is the minimal solution of (P),
let u be a solution of (P) with α � u � β . Then α0 � u implies α1 = Aα0 � Au = u and by
induction, αn � u for all n ∈ N. Thus ρ � u. Define β0 = β and βn = Aβn−1 for n ∈ N. Then by
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the same details provided above, we obtain that (βn) is decreasing and converges to the maximal
solution. This completes the proof. �

If N does not depend on the derivative of solution at t1, then we have the following corollary.

Corollary 3.1. Assume (A0), (A2)–(A4). Also assume

(A′′
1) Nu + Lu is nondecreasing, for some 0 < L < 1.

Then there are monotone sequences (αn), (βn) such that αn → ρ,βn → γ monotonically and
piecewise uniformly on J , where ρ and γ are the minimal and the maximal solution of the
following problem

u′′(t) + f
(
t, u(t)

) = 0, t ∈ (0,1), t �= t1,

�u|t=t1 = I
(
u(t1)

)
,

�u′|t=t1 = N
(
u(t1)

)
,

u(0) = a, u(1) = b,

respectively.

We also apply Theorem 3.1 for singular problems with no impulse effect.

Corollary 3.2. Assume (A2)–(A4). Then there are monotone sequences (αn), (βn) such that
αn → ρ,βn → γ monotonically and piecewise uniformly on J , where ρ and γ are the minimal
and the maximal solutions of the following problem

u′′(t) + f
(
t, u(t)

) = 0, t ∈ (0,1),

u(0) = a, u(1) = b,

respectively.

4. Monotone iteration method 2

In this section, we prove the main result when N satisfies (A′
1). In this case, we cannot apply

Theorem 2.1 directly so that we need to investigate modified problem (MP) more thoroughly. We
state the main theorem in this section.

Theorem 4.1. Assume (A0), (A′
1), (A2)–(A4). Then problem (P) admits the same conclusion as

in Theorem 1.1.

Let

Ā =
{

h ∈ PC(0,1)

∣∣∣∣∣
1∫

0

s(1 − s)
∣∣h(s)

∣∣ds < ∞
}

,

where

PC(0,1) = {
u : (0,1) → R

∣∣ u is continuous at t �= t1, u
(
t−

) = u(t1) and u
(
t+

)
exists

}
.
1 1
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For h ∈ Ā, consider⎧⎨
⎩

Lu � −u′′ + q(t)u = h(t), t ∈ (0,1), t �= t1,

�u|t=t1 = I (u(t1)),

u(0) = a, u(1) = b,

(8)

�u′|t=t1 = N
(
u(t1), u

′(t1)
)
. (9)

We first consider solutions of (8). We notice from well-known singular eigenvalue problems [2]
that

Lu = 0, t ∈ (0, t1),

u(0) = 0 = u(t1)

has only the trivial solution. Thus, for any c ∈ R, the following problem

Lu = h(t), t ∈ (0, t1),

u(0) = a, u(t1) = c

has a unique solution u0 explicitly written as

u0(t) = a

z1(0)
z1(t) + c

z0(t1)
z0(t) +

t1∫
0

K0(t, s)h(s) ds,

where K0(t, s) is the Green’s function given as

K0(t, s) =
⎧⎨
⎩

z0(s)z1(t)
Wz(s)

, 0 < s � t,

z0(t)z1(s)
Wz(s)

, t � s < t1.

We recall that z0 and z1 are the two linearly independent solutions of Lu = 0 on (0, t1) with
z0(0) = 0, z′

0(0) = 1, z1(t1) = 0, z′
1(t1) = −1 and Wz(t) is the corresponding Wronskian. We

notice that zi ∈ C1[0, t1], zi(t) > 0 on (0, t1), i = 0,1, and z′
0(t) > 0, z′

1(t) < 0 on [0, t1]. Simi-
larly, the problem

Lu = h(t), t ∈ (t1,1),

u(t1) = c + I (c), u(1) = b

has a unique solution u1 written as

u1(t) = c + I (c)

w1(t1)
w1(t) + b

w0(1)
w0(t) +

1∫
t1

K1(t, s)h(s) ds,

where K1(t, s) is the Green’s function given as

K1(t, s) =
{ w0(s)w1(t)

Ww(s)
, t1 < s � t,

w0(t)w1(s)
Ww(s)

, t � s < 1.

We also notice that wi ∈ C1[t1,1], wi(t) > 0 on (t1,1), i = 0,1, and w′
0(t) > 0, w′

1(t) < 0 on
[t1,1]. Define

uc(t) =
{

u0(t) on [0, t1],
u (t) on (t ,1].
1 1
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Then uc ∈ Ω and it is a solution of (8) uniquely determined up to uc(t1) = c. Differentiating u0
and u1, we get

�u′|t=t1 = u′
1(t1) − u′

0(t1) = σ − σ1c − σ2I (c),

where constants σ1, σ2 and σ are given by

σ1 = z′
0(t1)

z0(t1)
− w′

1(t1)

w1(t1)
,

σ2 = −w′
1(t1)

w1(t1)
,

σ = a

z1(0)
+ b

w0(1)
+

t1∫
0

z0

Wz

(s)h(s) ds +
1∫

t1

w1

Ww

(s)h(s) ds.

We notice σ1 > σ2 > 0. Since the solution of problem (8) + (9) is one of uc which satisfies
condition (9) and u′

c(t1) = u′
0(t1) = σ3c + σ4, where

σ3 = z′
0(t1)

z0(t1)
> 0,

σ4 = − a

z1(0)
−

t1∫
0

z0

Wz

(s)h(s) ds,

we see that the solution uc of (8) satisfying

σ1c + σ2I (c) + N(c,σ3c + σ4) = σ (10)

is a solution of (8) + (9). Furthermore, if problem (10) has a unique solution c∗, then uc∗ must
be a unique solution of (8) + (9). Now we have the existence of unique solution for (8) + (9) as
follows.

Lemma 4.1. Assume (A0) and (A′
1). Then for h ∈ Ā, problem (8) + (9) has a unique solution.

Proof. For any c ∈ R, let uc be a solution of (8) + (9) satisfying uc(t1) = c. By the above
argument, it is enough to show that Eq. (10) has a unique real solution. Define ϕ(x) = σ1x +
σ2I (x) + N(x,σ3x + σ4) for x ∈ R. Then ϕ : R → R is a continuous function. By showing that
ϕ is strictly increasing and Ranϕ = R, we can complete the proof. First, we show that ϕ is
strictly increasing. Let l(x) = σ3x + σ4 and consider ϕ as the sum of two functions ϕ1 and ϕ2,
where ϕ1(x) = σ1x − Ll(x) + σ2I (x) and ϕ2(x) = Ll(x) + N(x, l(x)). Then by (A′

1), ϕ2(x) is
nondecreasing. Furthermore, it is not hard to see by (A0) that Ax + BI (x) is strictly increasing,
if A > B > 0. Since

ϕ1(x) = (σ1 − Lσ3)x + σ2I (x) − Lσ4

and

σ1 − Lσ3 = (1 − L)
z′

0(t1)

z0(t1)
− w′

1(t1)

w1(t1)
> σ2 > 0,

we get ϕ1(x) is strictly increasing. Therefore ϕ is the sum of strictly increasing and nondecreas-
ing functions and this implies that ϕ is strictly increasing. Finally, if we show Ranϕ1 = R, then
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Ranϕ = R and the proof is done. If it is not true, then ϕ1 is either bounded above or bounded
below. If ϕ1 is bounded above, then there is M > 0 such that (σ1 − Lσ3)x + σ2I (x) < M , for all
x ∈ R. Thus we get

I (x) <
M

σ2
− σ1 − Lσ3

σ2
x, for all x ∈ R. (11)

We notice σ1−Lσ3
σ2

> 1. On the other hand, from (A0),

I (x) > I (0) − x, for all x > 0. (12)

We also notice I (0) < M
σ2

. By (11) and (12), we obtain

I (0) − x < I (x) <
M

σ2
− σ1 − Lσ3

σ2
x, for all x > 0.

This is impossible. Similarly, if ϕ1 is bounded below then we obtain

−M

σ2
− σ1 − Lσ3

σ2
x < I (x) < I (0) − x, for all x < 0.

This is also impossible and the proof is done. �
Lemma 4.2. A function u ∈ Ω satisfying the following inequalities does not exist: For q ∈ C(0,1)

with q > 0,

u′′(t) − q(t)u(t) � 0, t ∈ (0,1), t �= t1,

u
(
t+1

)
� 0, u′(t+1 )

> 0,

u(0) � 0, u(1) � 0. (13)

Proof. Let u ∈ Ω be a function satisfying the above inequalities. Suppose that u > 0 somewhere
in J , so let supt∈J u(t) > 0. Then by (13), we only have the following alternatives: u(t1) =
maxt∈J u(t) or u(t+1 ) = supt∈J u(t). We want to get contradictions for both cases. Consider the
case u(t1) = maxt∈J u(t) first. If u(t+1 ) > 0, then there is 0 < δ2 � 1 − t1 such that u > 0 on
(t1, t1 + δ2) and u(t1 + δ2) = 0. By (13), we know that u is convex down on (t1, t1 + δ2). Also
we know u ∈ C1(t1,1) and u(t1 + δ2) = 0. Thus u′(t+1 ) � 0 and this contradicts to one of the
inequalities in assumptions. If u(t+1 ) = 0, then applying Lemma 3.1 on (t1,1), we get u � 0
on [t1,1]. Thus u′(t+1 ) � 0 and this also contradicts to the same assumption. Obviously, it is
impossible to be assumed u′(t+1 ) > 0 for the case u(t+1 ) = supt∈J u(t). Therefore we conclude
u(t) � 0 on J and thus u(t+1 ) = 0. This implies u′(t+1 ) � 0 which is also a contradiction. �

To apply the monotone iterative method, we also need the modified problem (MP) given in
Section 3. We notice that problem (MP) is the same as

u′′(t) − q(t)u(t) + hη(t) = 0, t ∈ (0,1), t �= t1,

�u|t=t1 = I
(
u(t1)

)
,

�u′|t=t1 = N
(
u(t1), u

′(t1)
)
,

u(0) = a, u(1) = b,

where hη(t) = q(t)η(t) + f (t, η(t)) and η ∈ Ω with α(t) � η(t) � β(t), for all t ∈ [0,1].
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Lemma 4.3. Assume (A0), (A′
1), (A2)–(A4). Then problem (MP) has a unique solution u such

that α(t) � u(t) � β(t) on J .

Proof. Since hη ∈ Ā, Lemma 4.1 implies that (MP) has a unique solution and thus, it is enough
to show that the solution u satisfies α(t) � u(t) � β(t) on J . We prove α � u on J . The proof
for u � β on J is similar. If it is not true, so let supt∈J [(α − u)(t) � m(t)] > 0. Then obviously
m ∈ Ω and m(0) � 0, m(1) � 0. Furthermore

m′′(t) = α′′(t) − u′′(t) � −f
(
t, α(t)

) − q(t)u(t) + q(t)η(t) + f
(
t, η(t)

)
� −q(t)

(
η(t) − α(t)

) − q(t)u(t) + q(t)η(t) = q(t)
(
α(t) − u(t)

)
.

Thus m′′(t) − q(t)m(t) � 0, for t ∈ (0,1), t �= t1. By the above inequality, we can easily see that
function m does not attain its positive maximum at t ∈ J ′ and thus we have the following alter-
natives: m(t1) = maxt∈J m(t) or m(t+1 ) = supt∈J m(t). Consider the case m(t1) = maxt∈J m(t)

first. We know m(t1) > 0 and m(t+1 ) = α(t1) + I (α(t1)) − [u(t1) + I (u(t1))] � 0, by (A0) and
we assume that there exists δ1 � 0 such that m(t) > 0 on (t1 − δ1, t1) and m(t1 − δ1) = 0. Then
m′(t1) > 0. Indeed, it is obvious to see m′(t1) � 0, since m(t1) > 0, m(t1 −δ1) = 0, m ∈ C1(0, t1)

and m is convex down on (t1 − δ1, t1). If m′(t1) = 0, then m′(t) < 0 on (t1 − δ1, t1), since
m′′(t) > 0 on the interval. This contradicts to m(t1) = maxt∈J m(t). Now by the facts m(t1) > 0,
m′(t1) > 0 and (A′

1), we get

�m′|t=t1 � N
(
α(t1), α

′(t1)
) − N

(
u(t1), u

′(t1)
)

= N
(
α(t1), α

′(t1)
) − N

(
α(t1), u

′(t1)
) + N

(
α(t1), u

′(t1)
) − N

(
u(t1), u

′(t1)
)

� −Lm′(t1).

Thus m′(t+1 ) � (1 −L)m′(t1) > 0. Therefore by Lemma 4.2, we conclude that such a function m

does not exist. Next, we consider m(t+1 ) = supt∈J m(t) case. Since m(t+1 ) > 0 and m(t+1 ) =
α(t1) + I (α(t1)) − [u(t1) + I (u(t1))], we get m(t1) > 0 by (A0). And then following the same
argument as the above, we can show m′(t1) > 0 and m′(t+1 ) > 0. Therefore by Lemma 4.2 again,
we get the same conclusion and the proof is done. �

Now for given η ∈ [α,β], let u be a unique solution of (MP) and define an operator
A : PC[0,1] → PC[0,1] by Aη = u.

Lemma 4.4. Assume (A0), (A′
1), (A2)–(A4). Then the operator A satisfies

(i) Aα,Aβ ∈ [α,β].
(ii) A is a monotone operator on [α,β].

Proof. Proof of (i) is clear by Lemma 4.3.
Proof of (ii). Let η1, η2 ∈ [α,β] with η1 � η2 and let ui = Aηi , i = 1,2. Then we show

u1 � u2 on J if η1 � η2 on J . If it is not true, so let supt∈J [(u1 − u2)(t) � m(t)] > 0. Then we
get m ∈ Ω , m(0) = 0 = m(1) as checked in the proof of Lemma 3.4(ii), m′′(t) − q(t)m(t) � 0
on J ′. Again following the same lines on the proof of Lemma 4.3, we get m(t+1 ) � 0,m′(t+1 ) > 0
and the proof is completed by Lemma 4.2. �
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Proof of Theorem 4.1. Let α0 = α and β0 = β and define αn = Aαn−1 and βn = Aβn−1 for
n ∈ N. Then following exactly the same lines as in the proof of Theorem 3.1 replacing Lem-
mas 3.3 and 3.4 by Lemmas 4.3 and 4.4, we can complete the proof. �

If N depends only on the derivative of solutions at t1, then we have the following corollary.

Corollary 4.1. Assume the same hypotheses in Corollary 3.1. Then the problem

u′′(t) + f
(
t, u(t)

) = 0, t ∈ (0,1), t �= t1,

�u|t=t1 = I
(
u(t1)

)
,

�u′|t=t1 = N
(
u′(t1)

)
,

u(0) = a, u(1) = b

admits the same conclusion as in Theorem 1.1.
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