Almost convergence and a core theorem for double sequences

Mursaleen and Osama H.H. Edely

Department of Mathematics, Aligarh Muslim University, Aligarh 202002, India

Received 7 March 2003
Submitted by H.R. Parks

Abstract

The idea of almost convergence was introduced by Moricz and Rhoades [Math. Proc. Cambridge Philos. Soc. 104 (1988) 283–294] and they also characterized the four dimensional strong regular matrices. In this paper we define the M-core for double sequences and determine those four dimensional matrices which transform every bounded double sequence \(x = [x_{jk}] \) into one whose core is a subset of the M-core of \(x \).

@ 2004 Elsevier Inc. All rights reserved.

Keywords: Double sequences; Almost convergence; Strongly regular matrices; Core of a sequence

1. Introduction

A double sequence \(x = [x_{jk}]_{j,k=0}^{\infty} \) is said to be convergent in the Pringsheim sense or P-convergent if for every \(\varepsilon > 0 \) there exists \(N \in \mathbb{N} \) such that \(|x_{jk} - L| < \varepsilon \) whenever \(j, k > N \) and \(L \) is called the Pringsheim limit (denoted by P-lim \(x = L \)) (cf. [8]). We will denote the space of P-convergent sequences by \(c_2 \).

A double sequence \(x \) is bounded if there exists a positive number \(M \) such that \(|x_{jk}| < M \) for all \(j \) and \(k \), i.e., if

\[\|x\| = \sup_{j,k} |x_{jk}| < \infty. \]
Note that in contrast to the case for single sequences, a convergent double sequence need not be bounded.

Let \(A = [a_{jk}^{mn}]_{j,k=0}^{\infty} \) be a doubly infinite matrix of real numbers for all \(m, n = 0, 1, \ldots \).

Forming the sums
\[
y_{mn} = \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} a_{jk}^{mn} x_{jk},
\]
called the \(A \)-means of the double sequence \(x \), yields a method of summability. We say that a sequence \(x \) is \(A \)-summable to the limit \(s \) if the \(A \)-means exist for all \(m, n = 0, 1, \ldots \) in the sense of Pringsheim’s convergence,
\[
\lim_{p,q \to \infty} \sum_{j=0}^{p} \sum_{k=0}^{q} a_{jk}^{mn} x_{jk} = y_{mn}
\]
and
\[
\lim_{m,n \to \infty} y_{mn} = s.
\]

A two dimensional matrix transformation is said to be regular if it maps every convergent sequence into a convergent sequence with the same limit. In 1926 Robinson [9] presented a four dimensional analogue of regularity for double sequences in which he added an additional assumption of boundedness: A four dimensional matrix \(A \) is said to be bounded-regular or RH-regular if it maps every bounded \(P \)-convergent sequence into a \(P \)-convergent sequence with the same \(P \)-limit.

The following is a four dimensional analogue of the well-known Silverman–Toeplitz theorem [1].

Theorem 1.1. The four dimensional matrix \(A \) is bounded-regular or RH-regular if and only if (see Hamilton [2], Robinson [9])

- (RH1) \(\operatorname{P-lim}_{m,n} a_{jk}^{mn} = 0 \) (\(j, k = 0, 1, \ldots \)),
- (RH2) \(\operatorname{P-lim}_{m,n} \sum_{j,k=0}^{\infty} a_{jk}^{mn} = 1 \),
- (RH3) \(\operatorname{P-lim}_{m,n} \sum_{j=0}^{\infty} |a_{jk}^{mn}| = 0 \) (\(k = 0, 1, \ldots \)),
- (RH4) \(\operatorname{P-lim}_{m,n} \sum_{k=0}^{\infty} |a_{jk}^{mn}| = 0 \) (\(j = 0, 1, \ldots \)),
- (RH5) \(\sum_{j,k=0}^{\infty} |a_{jk}^{mn}| \leq C < \infty \) (\(m, n = 0, 1, \ldots \)).

Note that (RH1) is a consequence of each of (RH3) and (RH4).

The core (or K-core) of a real number sequence is defined to be the closed interval \([\liminf x, \limsup x]\). The well-known Knopp core theorem states as follows (see Knopp [3], Maddox [5]).

Theorem 1.2. In order that \(L(Ax) \leq L(x) \) for every bounded sequence \(x = (x_k) \), it is necessary and sufficient that \(A = (a_{nk}) \) should be regular and \(\lim_{n} \sum_{k=0}^{\infty} |a_{nk}| = 1 \), where \(L(x) = \lim sup x \).
Recently in [7], Patterson extended this idea for double sequences by defining the Pringshein core as follows.

Let $P-C_n \{x\}$ be the least closed convex set that includes all points x_{jk} for $j, k > n$; then the Pringshein core of the double sequence $x = \{x_{jk}\}$ is the set $P-C \{x\} = \bigcap_{n=1}^{\infty} [P-C_n \{x\}]$.

Note that the Pringshein core of a real-valued bounded double sequence is the closed interval $[\text{P-lim inf } x, \text{P-lim sup } x]$.

In this regard, Patterson proved the following

Theorem 1.3. If A is a four dimensional matrix, then for all real-valued double sequences x,

$$P\text{-lim sup } Ax \leq P\text{-lim sup } x$$

if and only if

(1) A is RH-regular and

(2) $P\lim_{mn} \sum_{j,k=0}^{\infty} |a_{mn}| = 1$.

In the present paper we define the M-core of a double sequence by using the idea of almost convergence introduced and studied by Moricz and Rhoades [6], and then proved an analogue of Theorem 1.3.

2. Almost convergence and M-core

The notion of almost convergence for single sequences was introduced by Lorentz [4]. Recently Moricz and Rhoades [6] extended this idea for double sequences.

A double sequence $x = \{x_{jk}\}_{j,k=0}^{\infty}$ of real numbers is said to be almost convergent to a limit s if

$$\lim_{p,q,m,n \to \infty} \sup_{m,n \geq 0} \left| \frac{1}{pq} \sum_{j=m}^{m+p-1} \sum_{k=n}^{n+q-1} x_{jk} - s \right| = 0,$$

that is, the average value of $\{x_{jk}\}$ taken over any rectangle $\{(j, k): m \leq j \leq m + p - 1; \ n \leq k \leq n + q - 1\}$ tends to s as both p and q tend to ∞, and this convergence is uniform in m and n.

Note that a convergent single sequence is also almost convergent but for a double sequence this is not the case, that is, a convergent double sequence need not be almost convergent. However every bounded convergent double sequence is almost convergent.

Using the idea of almost convergence, Lorentz [4] introduced and characterized strongly regular matrices. We say that a matrix A is strongly regular if every almost convergent sequence x is A-summable to the same limit, and the A-means are also bounded.

If a double sequence x is almost convergent to s, then we write f_2-lim $x = s$ and f_2 for the space of almost convergent double sequences.

In [6], Moricz and Rhoades gave four dimensional analogue of strongly regular matrices as follows.
Theorem 2.1. Necessary and sufficient conditions for a matrix \(A = [a_{jk}^{mn}] \) to be strongly regular are that \(A \) is bounded-regular and satisfies the following two conditions:

(MR1) \(\lim_{m,n \to \infty} \sum_{j,k=0}^{\infty} |\Delta_{10} a_{jk}^{mn}| = 0 \),

(MR2) \(\lim_{m,n \to \infty} \sum_{j,k=0}^{\infty} |\Delta_{01} a_{jk}^{mn}| = 0 \),

where \(\Delta_{10} a_{jk}^{mn} = a_{jk}^{mn} - a_{j+1,k}^{mn} \) and \(\Delta_{01} a_{jk}^{mn} = a_{jk}^{mn} - a_{j,k+1}^{mn} \) \((j, k = 0, 1, \ldots)\).

We define the following. Let us write

\[
L^*(x) = \limsup_{p,q \to \infty} \sup_{m,n \geq 0} \frac{1}{pq} \sum_{j=m}^{m+p-1} \sum_{k=n}^{n+q-1} x_{jk}.
\]

Then we define the M-core of a real-valued bounded double sequence \(x \) to be the closed interval \([-L^*(-x), L^*(x)]\).

Since every bounded convergent double sequence is almost convergent, we have

\[
L^*(x) \leq P-\limsup x,
\]

and hence it follows that M-core\(\{x\} \subseteq P\)-core\(\{x\}\) for a bounded double sequence \(x = [x_{jk}]_{j,k=0}^{\infty} \).

We quote here the following useful lemma.

Lemma 2.2 [7]. If \(A \) is a real or complex-valued four dimensional matrix such that (RH3), (RH4), and

\[
P-\limsup_{m,n \to \infty} \sum_{j,k=0}^{\infty} |a_{jk}^{mn}| = M
\]

hold, then for any bounded double sequence \(x \) we have

\[
P-\limsup |Ax| \leq M(\ P-\limsup |x|).
\]

3. Main result

Here we prove a core theorem for double sequences making use of four dimensional strongly regular matrices due to Moricz and Rhoades [6].

Theorem 3.1. For every bounded double sequence \(x \),

\[
L(Ax) \leq L^*(x)
\]

(or P-core\(\{Ax\} \subseteq M\)-core\(\{x\}\)) if and only if

(i) \(A = [a_{jk}^{mn}] \) is strongly regular and

(ii) \(P-\lim_{m,n \to \infty} \sum_{j,k=0}^{\infty} |a_{jk}^{mn}| = 1 \).
Proof. Necessity. Let us consider a bounded double sequence \(x \) to be almost convergent to \(s \). Then we have \(\mathbb{L}^* (x) = - \mathbb{L}^* (-x) \). By (3.1), we get

\[
s = - \mathbb{L}^* (x) \leq - \mathbb{L}^* (-Ax) \leq \mathbb{L} (Ax) \leq \mathbb{L}^* (x) = s.
\]

Hence \(Ax \) is P-convergent and \(\text{P-lim} Ax = f_2 \text{-lim} x = s \), and so \(A \) is strongly regular, i.e., condition (i) holds.

Since every strongly regular matrix is also bounded-regular, by Lemma 2.2 there exists a bounded double sequence \(x \) such that \(\lim \sup |x| = 1 \) and \(\text{P-lim} \sup Ax = C \), where \(C \) is defined by (RH5). Therefore we have

\[
1 \leq \text{P-lim inf}_{m,n} \sum_{j,k=0}^{\infty} \left| a^m_{jk} \right| \leq \text{P-lim sup}_{m,n} \sum_{j,k=0}^{\infty} \left| a^m_{jk} \right| \leq 1,
\]

i.e., condition (ii) holds.

Sufficiency. Given \(\varepsilon > 0 \), we can find fixed integers \(p, q \geq 2 \) such that

\[
\frac{1}{pq} \sum_{j,m} \sum_{k,n} x_{jk} < \mathbb{L}^* (x) + \varepsilon.
\]

(3.2)

Now as in [6], we can write

\[
y_{MN} = \sum_{j,k=0}^{\infty} a^M_{jk} x_{jk} = \Sigma_1 + \Sigma_2 + \Sigma_3 + \Sigma_4 + \Sigma_5 + \Sigma_6 + \Sigma_7 + \Sigma_8,
\]

(3.3)

where

\[
\Sigma_1 = \frac{1}{pq} \sum_{m,n=0}^{\infty} \sum_{j,k=0}^{m+p-1 n+q-1} a^M_{mn} x_{jk},
\]

\[
\Sigma_2 = -\frac{1}{pq} \sum_{j=0}^{p-2} \sum_{k=0}^{q-2} x_{jk} \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} a^M_{mn},
\]

\[
\Sigma_3 = -\frac{1}{pq} \sum_{j=p-1}^{\infty} \sum_{k=0}^{q-2} x_{jk} \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} a^M_{mn},
\]

\[
\Sigma_4 = -\frac{1}{pq} \sum_{j=0}^{p-2} \sum_{k=q-1}^{q-1} x_{jk} \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} a^M_{mn},
\]

\[
\Sigma_5 = -\sum_{j=p-1}^{\infty} \sum_{k=q-1}^{\infty} x_{jk} \left\{ \frac{1}{pq} \sum_{m=j-p+1}^{\infty} \sum_{n=k-q+1}^{\infty} a^M_{mn} - a^M_{jk} \right\},
\]

\[
\Sigma_6 = \sum_{j=0}^{p-2} \sum_{k=0}^{q-2} a^M_{jk} x_{jk},
\]

\[
\Sigma_7 = \sum_{j=p-1}^{\infty} \sum_{k=0}^{q-2} a^M_{jk} x_{jk},
\]

\[
\Sigma_8 = \sum_{j=0}^{p-2} \sum_{k=0}^{q-2} a^M_{jk} x_{jk}.
\]
\[\Sigma_8 = - \sum_{p=q-1}^{p-2} \sum_{k=0}^{\infty} a_{jk}^{MN} x_{jk}. \]

Using the conditions of strong regularity of \(A \), we observe that

\[|\Sigma_2| \leq \|x\| \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} |a_{mn}| |a_{MN}| \to 0 \quad (M, N \to \infty), \]

and

\[|\Sigma_6| \leq \|x\| \sum_{j=0}^{p-2} \sum_{k=0}^{q-2} |a_{jk}^{MN}| \to 0 \quad \text{by (RH}_1\text{)}, \]

\[|\Sigma_3| \leq \|x\| \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} |a_{mn}| |a_{MN}| \to 0, \]

and

\[|\Sigma_7| \leq \|x\| \sum_{j=p-1}^{\infty} \sum_{k=0}^{q-2} |a_{jk}^{MN}| \to 0 \quad \text{by (RH}_3\text{)}, \]

\[|\Sigma_4| \to 0 \quad \text{and} \quad |\Sigma_8| \to 0 \quad \text{by (RH}_4\text{)}. \]

Now

\[|\Sigma_5| \leq \|x\| \sum_{r=0}^{\infty} \sum_{s=0}^{q-1} \left\{ (p - r - 1) \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} \Delta_{10} a_{MN}^{j,k} \right\} \to 0 \quad \text{by (MR}_1\text{) and (MR}_2\text{)}. \]

Therefore we have by (3.3),

\[L(Ax) \leq \limsup_{M,N} \sum_{m,n=0}^{\infty} \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} \left| a_{MN}^{j,k} \right| \frac{m+p-1}{pq} \sum_{j=0}^{m} \sum_{k=0}^{n} x_{jk}. \]

Now conditions (RH}_1\text{), (RH}_3\text{) and (ii) yield

\[L(Ax) \leq L^*(x) + \varepsilon. \]
Since \(\varepsilon \) is arbitrary we finally have
\[
L(Ax) \leq L^*(x).
\]
This completes the proof of the theorem. \(\square \)

4. Examples

4.1. Almost convergent sequences

(i) Define the double sequence \(x = [x_{jk}] \) by
\[
x_{jk} = \begin{cases}
1 & \text{if } j \text{ is odd, for all } k, \\
0 & \text{otherwise.}
\end{cases}
\]
Then \(x \) is almost convergent to 1/2.

(ii) Define \(x = [x_{jk}] \) by
\[
x_{jk} = (-1)^j \quad \text{for all } k.
\]
Then \(x \) is almost convergent to 0.

4.2. Strongly regular matrix

Define \(A = [a_{jk}^{mn}] \) by
\[
a_{jk}^{mn} = \begin{cases}
\frac{1}{m^2} & \text{if } m = n \text{ and } j, k \leq m \text{ (even)}, \\
\frac{1}{m^2 - m} & \text{if } m = n, j \neq k \text{ and } j, k \leq m \text{ (odd)}, \\
0 & \text{otherwise.}
\end{cases}
\]
We can easily verify that \(A \) is strongly regular, that is, conditions (RH1)–(RH3), (MR1) and (MR2) hold. Moreover, for the sequence (i), we have
\[
\sum_{j=1}^{\infty} \sum_{k=1}^{\infty} a_{jk}^{mn} x_{jk} = a_{11}^{mm} x_{11} + a_{12}^{mm} x_{12} + \cdots + a_{1m}^{mm} x_{1m} \\
+ a_{21}^{mm} x_{21} + a_{22}^{mm} x_{22} + \cdots + a_{2m}^{mm} x_{2m} \\
+ a_{31}^{mm} x_{31} + a_{32}^{mm} x_{32} + a_{33}^{mm} x_{33} + \cdots + a_{3m}^{mm} x_{3m} \\
\vdots \\
+ a_{m-1}^{mm} x_{m-1,1} + \cdots + a_{m-1,m}^{mm} x_{m-1,m} \\
+ a_{m1}^{mm} + \cdots + a_{mm}^{mm}
\]
\[
= \frac{m}{m^2} \cdot \frac{m}{2} \quad \text{(if } m \text{ is even)}
\]
\[
\to \frac{1}{2} \quad \text{as } m, n \to \infty.
\]
Similarly
\[\sum_{j=1}^{\infty} \sum_{k=1}^{\infty} a_{jk}^{mn} x_{jk} = \frac{m - 1}{m^2 - m} \cdot \frac{m + 1}{2} \quad \text{(if } m \text{ is odd)} \]
\[\rightarrow \frac{1}{2} \quad \text{as } m, n \rightarrow \infty. \]

That is
\[\text{P-lim}_{m,n} Ax = \frac{1}{2} = f_2-\text{lim} x, \]
and so \(A \) transforms almost convergent sequence into convergent (P-convergent) to the same limit.

4.3. Bounded-regular matrix which is not strongly regular

In Section 4.2, \(A \) is strongly regular and so bounded regular. Let us define \(A = [a_{jk}^{mn}] \) as
\[a_{jk}^{mn} = \begin{cases} \frac{2}{m^2} & \text{if } m = n, j + k = \text{even}, \text{and } j, k \leq m \text{ (even)}, \\ \frac{1}{m^2 - m} & \text{if } m = n, j \neq k \text{ and } j, k \leq m \text{ (odd)}, \\ 0 & \text{otherwise}. \end{cases} \]
Then \(A \) is bounded-regular but not strongly regular. Conditions (RH1)–(RH5) can easily be verified. But
\[\lim_{m,n} \sum_{j=1}^{\infty} \sum_{k=1}^{\infty} |a_{jk}^{mn} - a_{j+1,k}^{mn}| = \begin{cases} 2 & \text{if } m \text{ is even}, \\ 0 & \text{if } m \text{ is odd}, \end{cases} \]
and also
\[\lim_{m,n} \sum_{j=1}^{\infty} \sum_{k=1}^{\infty} |a_{jk}^{mn} - a_{j,k+1}^{mn}| = \begin{cases} 2 & \text{if } m \text{ is even}, \\ 0 & \text{if } m \text{ is odd}. \end{cases} \]
Therefore conditions (MR1) and (MR2) do not hold and so \(A \) is not strongly regular.

4.4. In Theorem 3.1, strong regularity of \(A \) cannot be replaced by bounded-regularity.

Consider the matrix \(A = [a_{jk}^{mn}] \) as defined in Section 4.3. This is bounded-regular but not strongly regular, and also
\[\text{P-lim}_{m,n} \sum_{j,k=0,0}^{\infty,\infty} |a_{jk}^{mn}| = 1, \]
i.e., condition (ii) of Theorem 3.1 holds. Take the bounded double sequence \(x = [x_{jk}] \) defined by \(x_{jk} = (-1)^{j+k} \), which is almost convergent to zero, that is,
\[L^*(x) = 0. \]
Now
\[\sum_{j,k} a_{jk}^{mn} x_{jk} = \begin{cases} \frac{2}{m^2} \cdot \frac{m}{2} & \text{if } m \text{ is even}, \\ \frac{1}{m+1} \cdot m & \text{if } m \text{ is odd}. \end{cases} \]

Therefore
\[\limsup_{m,n} \sum_{j,k} a_{jk}^{mn} x_{jk} = 1 \]

and
\[\liminf_{m,n} \sum_{j,k} a_{jk}^{mn} x_{jk} = 0, \]

i.e., \(L(Ax) = 1 \). Hence \(L(Ax) > L^*(x) \), that is (3.1) does not hold.

References